Arteries of the Abdomen

Total Page:16

File Type:pdf, Size:1020Kb

Arteries of the Abdomen Arteries of the Abdomen Arteries that supply the abdominal organs and abdominal wall structures originate from the abdominal aorta. About half of resting cardiac output flows through these vessels. The abdominal arteries are all in pairs, except for the superior and inferior mesenteric arteries, the celiac trunk, and the median sacral artery. Major Arteries of the Abdomen Artery Area Supplied Description Inferior Inferior surface of Arise from the aorta just below the diaphragm phrenic diaphragm arteries Celiac trunk Branches supply Large unpaired artery divides into common hepatic, splenic, and various abdominal left gastric arteries; A branch of the common hepatic artery, the organs gastroduodenal artery, becomes the hepatic artery proper, whose branches supply the liver; Gastroduodenal and splenic arteries give rise to the right and left gastroepiploic arteries, respectively, that supply the greater curvature of the stomach Superior Branches supply the Large unpaired artery; Branches: intestinal arteries (supply most of mesenteric duodenum, pancreas, small intestine), ileocolic artery (appendix, cecum, and ascending artery and parts of the colon), right and middle colic arteries (part of transverse colon) small and large intestines Middle Adrenal glands Adrenal glands are supplied by the middle suprarenal arteries, as suprarenal well as the superior suprarenal branches of the inferior phrenic arteries arteries and the inferior suprarenal branches of the renal arteries Renal Kidneys The left renal artery is shorter than the right arteries Gonadal Ovaries in females One artery for each gonad arteries and testes in males Inferior Branches supply Branches off the anterior surface of the abdominal aorta below the mesenteric parts of the large renal artery branch points artery intestine Lumbar Posterior abdominal There are four pair of these arteries arteries wall structures Median Coccyx, sacrum Supply lower region of the abdominal cavity and base of the spine sacral artery Common Lower abdominal Paired arteries; Supply pelvic organs and lower limbs iliac arteries wall .
Recommended publications
  • The Anatomy of the Rectum and Anal Canal
    BASIC SCIENCE identify the rectosigmoid junction with confidence at operation. The anatomy of the rectum The rectosigmoid junction usually lies approximately 6 cm below the level of the sacral promontory. Approached from the distal and anal canal end, however, as when performing a rigid or flexible sigmoid- oscopy, the rectosigmoid junction is seen to be 14e18 cm from Vishy Mahadevan the anal verge, and 18 cm is usually taken as the measurement for audit purposes. The rectum in the adult measures 10e14 cm in length. Abstract Diseases of the rectum and anal canal, both benign and malignant, Relationship of the peritoneum to the rectum account for a very large part of colorectal surgical practice in the UK. Unlike the transverse colon and sigmoid colon, the rectum lacks This article emphasizes the surgically-relevant aspects of the anatomy a mesentery (Figure 1). The posterior aspect of the rectum is thus of the rectum and anal canal. entirely free of a peritoneal covering. In this respect the rectum resembles the ascending and descending segments of the colon, Keywords Anal cushions; inferior hypogastric plexus; internal and and all of these segments may be therefore be spoken of as external anal sphincters; lymphatic drainage of rectum and anal canal; retroperitoneal. The precise relationship of the peritoneum to the mesorectum; perineum; rectal blood supply rectum is as follows: the upper third of the rectum is covered by peritoneum on its anterior and lateral surfaces; the middle third of the rectum is covered by peritoneum only on its anterior 1 The rectum is the direct continuation of the sigmoid colon and surface while the lower third of the rectum is below the level of commences in front of the body of the third sacral vertebra.
    [Show full text]
  • Rectum & Anal Canal
    Rectum & Anal canal Dr Brijendra Singh Prof & Head Anatomy AIIMS Rishikesh 27/04/2019 EMBRYOLOGICAL basis – Nerve Supply of GUT •Origin: Foregut (endoderm) •Nerve supply: (Autonomic): Sympathetic Greater Splanchnic T5-T9 + Vagus – Coeliac trunk T12 •Origin: Midgut (endoderm) •Nerve supply: (Autonomic): Sympathetic Lesser Splanchnic T10 T11 + Vagus – Sup Mesenteric artery L1 •Origin: Hindgut (endoderm) •Nerve supply: (Autonomic): Sympathetic Least Splanchnic T12 L1 + Hypogastric S2S3S4 – Inferior Mesenteric Artery L3 •Origin :lower 1/3 of anal canal – ectoderm •Nerve Supply: Somatic (inferior rectal Nerves) Rectum •Straight – quadrupeds •Curved anteriorly – puborectalis levator ani •Part of large intestine – continuation of sigmoid colon , but lacks Mesentery , taeniae coli , sacculations & haustrations & appendices epiploicae. •Starts – S3 anorectal junction – ant to tip of coccyx – apex of prostate •12 cms – 5 inches - transverse slit •Ampulla – lower part Development •Mucosa above Houstons 3rd valve endoderm pre allantoic part of hind gut. •Mucosa below Houstons 3rd valve upto anal valves – endoderm from dorsal part of endodermal cloaca. •Musculature of rectum is derived from splanchnic mesoderm surrounding cloaca. •Proctodeum the surface ectoderm – muco- cutaneous junction. •Anal membrane disappears – and rectum communicates outside through anal canal. Location & peritoneal relations of Rectum S3 1 inch infront of coccyx Rectum • Beginning: continuation of sigmoid colon at S3. • Termination: continues as anal canal, • one inch below
    [Show full text]
  • Gross Anatomical Studies on the Arterial Supply of the Intestinal Tract of the Goat
    IOSR Journal of Agriculture and Veterinary Science (IOSR-JAVS) e-ISSN: 2319-2380, p-ISSN: 2319-2372. Volume 10, Issue 1 Ver. I (January. 2017), PP 46-53 www.iosrjournals.org Gross Anatomical Studies on the Arterial Supply of the Intestinal Tract of the Goat Reda Mohamed1, 2*, ZeinAdam2 and Mohamed Gad2 1Department of Basic Veterinary Sciences, School of Veterinary Medicine, Faculty of Medical Sciences, University of the West Indies, Trinidad and Tobago. 2Anatomy and Embryology Department, Faculty of Veterinary Medicine, Beni Suef University Egypt. Abstract: The main purpose of this study was to convey a more precise explanation of the arterial supply of the intestinal tract of the goat. Fifteen adult healthy goats were used. Immediately after slaughtering of the goat, the thoracic part of the aorta (just prior to its passage through the hiatus aorticus of the diaphragm) was injected with gum milk latex (colored red) with carmine. The results showed that the duodenum was supplied by the cranial pancreaticoduodenal and caudal duodenal arteries. The jejunum was supplied by the jejunal arteries. The ileum was supplied by the ileal; mesenteric ileal and antimesenteric ileal arteries. The cecum was supplied by the cecal artery. The ascending colon was supplied by the colic branches and right colic arteries. The transverse colon was supplied by the middle colic artery. The descending colon was supplied by the middle and left colic arteries. The sigmoid colon was supplied by the sigmoid arteries. The rectum was supplied by the cranial; middle and caudal rectal arteries. Keywords: Anatomy,Arteries, Goat, Intestine I. Introduction Goats characterized by their high fertility rate and are of great economic value; being a cheap meat, milk and some industrial substances.
    [Show full text]
  • PERIPHERAL VASCULATURE Average Vessel Diameter
    PERIPHERAL VASCULATURE Average Vessel Diameter A Trio of Technologies. Peripheral Embolization Solutions A Single Solution. Fathom™ Steerable Guidewires Total Hypotube Tip Proximal/ UPN Length (cm) Length (cm) Length (cm) Distal O.D. Hepatic, Gastro-Intestinal and Splenic Vasculature 24 8-10 mm Common Iliac Artery 39 2-4 mm Internal Pudendal Artery M00150 900 0 140 10 10 cm .016 in 25 6-8 mm External Iliac Artery 40 2-4 mm Middle Rectal M00150 901 0 140 20 20 cm .016 in 26 4-6 mm Internal Iliac Artery 41 2-4 mm Obturator Artery M00150 910 0 180 10 10 cm .016 in 27 5-8 mm Renal Vein 42 2-4 mm Inferior Vesical Artery 28 43 M00150 911 0 180 20 20 cm .016 in 15-25 mm Vena Cava 2-4 mm Superficial Epigastric Artery 29 44 M00150 811 0 200 10 10 cm pre-shaped .014 in 6-8 mm Superior Mesenteric Artery 5-8 mm Femoral Artery 30 3-5 mm Inferior Mesenteric Artery 45 2-4 mm External Pudendal Artery M00150 810 0 200 10 10 cm .014 in 31 1-3 mm Intestinal Arteries M00150 814 0 300 10 10 cm .014 in 32 Male 2-4 mm Superior Rectal Artery A M00150 815 0 300 10 10 cm .014 in 33 1-3 mm Testicular Arteries 1-3 mm Middle Sacral Artery B 1-3 mm Testicular Veins 34 2-4 mm Inferior Epigastric Artery Direxion™ Torqueable Microcatheters 35 2-4 mm Iliolumbar Artery Female 36 2-4 mm Lateral Sacral Artery C 1-3 mm Ovarian Arteries Usable 37 D UPN Tip Shape RO Markers 3-5 mm Superior Gluteal Artery 1-3 mm Ovarian Veins Length (cm) 38 2-4 mm Inferior Gluteal Artery E 2-4 mm Uterine Artery M001195200 105 Straight 1 M001195210 130 Straight 1 M001195220 155 Straight 1 Pelvic
    [Show full text]
  • The Blood Supply of the Lumbar and Sacral Plexuses in the Human Foetus* by M
    J. Anat., Lond. (1964), 98, 1, 105-116 105 With 4 plates and 3 text-figures Printed in Great Britain The blood supply of the lumbar and sacral plexuses in the human foetus* BY M. H. DAYt Department of Anatomy, Royal Free Hospital School of Medicine INTRODUCTION The existence of a blood supply to peripheral nerve is well established. Recently, a number of authors have reviewed the literature of the field, among them Blunt (1956) and Abdullah (1958), who from their own observations have confirmed that peripheral nerves are supplied by regional vessels reinforcing longitudinally arranged channels which freely anastomose with each other. There is also evidence that posterior root ganglia are particularly well supplied with blood vessels (Abdullah, 1958), but the precise distribution and arrangement of arteries to some individual nerve trunks and plexuses is still in need of investigation. The literature reveals few references to the blood supply of the lumbar and sacral plexuses. The distribution of arteries to the roots and ganglia of the sacral nerves was noted by Haller (1756), but the most important contributions in this field were those of Bartholdy (1897) and Tonkoff (1898), whose observations on the lumbar and sacral plexuses form part of a general survey of the blood supply of peripheral nerve in man. They cited the lumbar, ilio-lumbar, median and lateral sacral arteries as well as the gluteal and pudendal vessels as sources of supply, but gave no indication of the frequency of these contributions. Subsequent authors including Hovelacque (1927), dealt briefly with the distribution of the lateral sacral, median sacral, gluteal and pudendal arteries to the sacral plexus, but treated more fully the blood supply of the sciatic nerve.
    [Show full text]
  • Vessels and Circulation
    CARDIOVASCULAR SYSTEM OUTLINE 23.1 Anatomy of Blood Vessels 684 23.1a Blood Vessel Tunics 684 23.1b Arteries 685 23.1c Capillaries 688 23 23.1d Veins 689 23.2 Blood Pressure 691 23.3 Systemic Circulation 692 Vessels and 23.3a General Arterial Flow Out of the Heart 693 23.3b General Venous Return to the Heart 693 23.3c Blood Flow Through the Head and Neck 693 23.3d Blood Flow Through the Thoracic and Abdominal Walls 697 23.3e Blood Flow Through the Thoracic Organs 700 Circulation 23.3f Blood Flow Through the Gastrointestinal Tract 701 23.3g Blood Flow Through the Posterior Abdominal Organs, Pelvis, and Perineum 705 23.3h Blood Flow Through the Upper Limb 705 23.3i Blood Flow Through the Lower Limb 709 23.4 Pulmonary Circulation 712 23.5 Review of Heart, Systemic, and Pulmonary Circulation 714 23.6 Aging and the Cardiovascular System 715 23.7 Blood Vessel Development 716 23.7a Artery Development 716 23.7b Vein Development 717 23.7c Comparison of Fetal and Postnatal Circulation 718 MODULE 9: CARDIOVASCULAR SYSTEM mck78097_ch23_683-723.indd 683 2/14/11 4:31 PM 684 Chapter Twenty-Three Vessels and Circulation lood vessels are analogous to highways—they are an efficient larger as they merge and come closer to the heart. The site where B mode of transport for oxygen, carbon dioxide, nutrients, hor- two or more arteries (or two or more veins) converge to supply the mones, and waste products to and from body tissues. The heart is same body region is called an anastomosis (ă-nas ′tō -mō′ sis; pl., the mechanical pump that propels the blood through the vessels.
    [Show full text]
  • Colon Operative Standards
    282 SECTION IV | COLON F G E F FIGURE 16-7 (Continued). patients with hereditary nonpolyposis colon cancer, as they have a higher incidence of synchronous and metachronous colonic tumors than do patients with sporadic colorectal cancer. As calculated by life table analysis, the risk for metachronous cancer among patients with hereditary nonpolyposis is as high as 40% at 10 years. Simi- larly, for colon cancer patients with familial adenomatous polyposis, surgical resec- tion should consist of either total abdominal colectomy or total proctocolectomy. The choice between these two operations depends on the burden of polypoid disease in the rectum and the patient’s preference for close surveillance. 7,8,9 Finally, individuals who develop colon cancer in the setting of long-standing ulcerative colitis require a total proctocolectomy. The oncologic principles of colon cancer surgery as outlined in this chapter, including the attention to surgical margins and the need for proximal vascular ligation, should be adhered to bilaterally, not just for the portion of colon in which the tumor has been identifi ed.10,11 3. PROXIMAL VASCULAR LIGATION AND REGIONAL LYMPHADENECTOMY Recommendation: Resection of the tumor-bearing bowel segment and radical lymphadenectomy should be performed en bloc with proximal vascular ligation at the origin of the primary feeding vessel(s). Copyright © 2015 Wolters Kluwer Health, Inc. Unauthorized reproduction of the article is prohibited. 226_ACS_Ch16.indd6_ACS_Ch16.indd 228282 44/3/15/3/15 22:58:58 AAMM CHAPTER 16 | Colon Resection 283 Type of Data: Prospective and retrospective observational studies. Strength of Recommendation: Moderate. Rationale The standard of practice for the treatment of stage I to III (nonmetastatic) colon can- cer is complete margin-negative resection (R0 resection) of the tumor-bearing bowel combined with en bloc resection of the intact node-bearing mesentery (i.e., regional lymphadenectomy).
    [Show full text]
  • Anomalous Vascular Peritoneal Band Causing Small Bowel Obstruction in an Adult
    CASE REPORT Anomalous Vascular Peritoneal Band Causing Small Bowel Obstruction in an Adult Suzanne Nyakirugumi, Mathenge Nduhiu Nyeri County Referral Hospital, Nyeri, Kenya Correspondence to: Dr. Suzanne Nyakirugumi; Email:[email protected] Summary Peritoneal bands resulting in small bowel obstruction in band. This is the first reported case in Sub-Saharan adults are rare. We present a case study of a 39-year-old Africa. male who presented with a 10-day history of signs and symptoms of intestinal obstruction. The patient had no history of abdominal trauma or surgery. Intraoperatively, Keywords: Small bowel obstruction, Congenital bands, the small bowel obstruction was caused by a vascularized Peritoneal bands, Vascular bands, Inferior mesenteric peritoneal band that had a membrane. The band formed a artery, Superior mesenteric artery closed loop and caused the small bowel to herniate and Ann Afr Surg. 2020; 17(2):85-87 lead to mechanical obstruction. In the band was an DOI: http://dx.doi.org/10.4314/aas.v17i2.10 anomalous artery that connected the ileocolic artery to Conflicts of Interest: None the descending branch of the left colic artery. The Funding: None mainstay for diagnosis is an exploratory laparoscopy or © 2020 Author. This work is licensed under the Creative laparotomy. The definitive treatment is transection of the Commons Attribution 4.0 International License. Introduction past. He also had no comorbidity. The patient was alert We present a case study of a 39-year-old male with a 10- and sick looking on physical examination. His pulse rate day history of obstipation resulting from a vascular was 109 beats per minute, respiratory rate was 22 breaths anomalous peritoneal band.
    [Show full text]
  • Ascending Aorta to Intestinal Artery Bypass: Technical Aspects
    EJVES Extra 9, 13–15 (2005) doi:10.1016/j.ejvsextra.2005.01.003, available online at http://www.sciencedirect.com on SHORT REPORT Ascending Aorta to Intestinal Artery Bypass: Technical Aspects L. Chiche* and E. Kieffer Department of Vascular Surgery, Pitie´-Salpeˆtrie`re University Hospital, Assistance Publique-Hoˆpitaux de Paris, Paris, France We describe the ascending aorta as an inflow in patients who need a mesenteric bypass and in whom the ascending aorta is the only remaining non-diseased segment. This operation was performed in five patients. Introduction interspace, is the preferred approach. Partial sterno- tomy can be extended by dividing the third costal A number of techniques can be used to treat chronic cartilage or by adding oblique sternotomy. Total intestinal ischemia.1,2 We use the ascending aorta as an sternotomy is necessary if access to the aortic arch or inflow in patients in whom the supraceliac, descend- supra-aortic trunks is required. ing thoracic aorta, the abdominal aorta or iliac arteries Median or subcostal laparotomy provides good are unsuitable due to the presence of extensive lesions access to intestinal artery lesions.1 The celiac trunk or previous surgery. The technique described here was (CT) can be exposed by the interhepatogastric route. performed in five patients (2.4%) out of 211 in whom Its origin is exposed after incision of the right crus of 309 intestinal artery revascularization procedures the diaphragm and division of the arcuate ligament. were carried out between 1990 and 2004. It is similar The superior mesenteric artery (SMA) can be to the classical technique of ascending aorta-abdomi- approached by the pre- or sub-duodenal intramesen- nal aorta bypass used in the management of thoraco- teric route or by a route between duodenum and 3 abdominal aortic lesions.
    [Show full text]
  • Anatomy of the Rectum and Anal Canal, Surgery (2017), J.Mpsur.2016.12.008 BASIC SCIENCE
    BASIC SCIENCE been described in the previous article) are noticeably absent on Anatomy of the rectum the rectal wall. Indeed it is this abrupt change in external appearance that enables the surgeon to identify the rectosigmoid and anal canal junction with confidence, at operation. The rectosigmoid junc- tion is approximately 6 cm below the level of the sacral prom- Vishy Mahadevan ontory. Approached from the distal end, however, as when performing a rigid or flexible sigmoidoscopy, the rectosigmoid junction is seen to be 14e18 cm from the anal verge. The rectum Abstract in the adult measures 10e14 cm in length. Collectively the rectum and anal canal constitute the very terminal segment of the large intestine, and thus of the entire gastro- Relationship of the peritoneum to the rectum intestinal tract. Their distal location renders the rectum and anal Unlike the transverse colon and sigmoid colon, the rectum lacks canal readily accessible to direct inspection and examination. The a mesentery. The posterior aspect of the rectum is thus entirely prime function of the rectum is to act as a distensible reservoir for free of a peritoneal covering. In this respect the rectum resembles faeces, while the anal canal incorporates in its wall a powerful the ascending and descending segments of the colon, and all of muscular sphincter which is of paramount importance in the mecha- these segments may be therefore be spoken of as retroperitoneal. nism of faecal continence. Diseases of the rectum and anal canal, The precise relationship of the peritoneum to the rectum is as both benign and malignant, account for a very large part of colorectal follows.
    [Show full text]
  • Axis Scientific Human Circulatory System 1/2 Life Size A-105864
    Axis Scientific Human Circulatory System 1/2 Life Size A-105864 05. Superior Vena Cava 13. Ascending Aorta 21. Hepatic Vein 28. Celiac Trunk II. Lung 09. Pulmonary Trunk 19. Common III. Spleen Hepatic Artery 10. Pulmonary 15. Pulmonary Artery 17. Splenic Artery (Semilunar) Valve 20. Portal Vein 03. Left Atrium 18. Splenic Vein 01. Right Atrium 16. Pulmonary Vein 26. Superior 24. Superior 02. Right Ventricle Mesenteric Vein Mesenteric Artery 11. Supraventricular Crest 07. Interatrial Septum 22. Renal Artery 27. Inferior 14. Aortic (Semilunar) Valve Mesenteric Vein 08. Tricuspid (Right 23. Renal Vein 12. Mitral (Left Atrioventricular) Valve VI. Large Intestine Atrioventricular) Valve 29. Testicular / 30. Common Iliac Artery Ovarian Artery 32. Internal Iliac Artery 25. Inferior 31. External Iliac Artery Mesenteric Artery 33. Median Sacral Artery 41. Posterior Auricular Artery 57. Deep Palmar Arch 40. Occipital Artery 43. Superficial Temporal Artery 58. Dorsal Venous Arch 36. External Carotid Artery 42. Maxillary Artery 56. Superficial Palmar Arch 35. Internal Carotid Artery 44. Internal Jugular Vein 39. Facial Artery 45. External Jugular Vein 38. Lingual Artery and Vein 63. Deep Femoral Artery 34. Common Carotid Artery 37. Superior Thyroid Artery 62. Femoral Artery 48. Thyrocervical Trunk 49. Inferior Thyroid Artery 47. Subclavian Artery 69. Great Saphenous Vein 46. Subclavian Vein I. Heart 51. Thoracoacromial II. Lung Artery 64. Popliteal Artery 50. Axillary Artery 03. Left Atrium 01. Right Atrium 04. Left Ventricle 02. Right Ventricle 65. Posterior Tibial Artery 52. Brachial Artery 66. Anterior Tibial Artery 53. Deep Brachial VII. Descending Artery Aorta 70. Small Saphenous Vein IV. Liver 59.
    [Show full text]
  • The Thoracic Aorta the Abdominal Aorta
    The Thoracic Aorta The Thoracic Aorta (portion of descending aorta) descends through the thorax. Visceral branches: > pericardial - posterior pericardium > bronchial - 2 left, 1 right supplying blood to the lungs and bronchial pleurae > esophageal - esophagus > mediastinal - posterior mediastinum Parietal branches: > posterior intercostals - 9-10 pairs - anastomose around the front with anterior intercostals > superior phrenics - posterior diaphragm The Abdominal Aorta The Abdominal Aorta pierces diaphragm and enters abdominal cavity and is now abdominal aorta over the vertebral column. It gives off the following branches: > inferior phrenic - to supply the inferior diaphragm > celiac trunk gives off 3 branches: 1. common hepatic artery - gives off a complex group of arteries to the stomach: • right gastric artery which meets up (anastomoses) with left gastric artery to supply the lesser curvature of the stomach. • right gastroepiploic artery that meets up (anastomoses) with left gastroepiploic artery (branch of splenic artery) to supply the greater curvature of the stomach. 2. splenic artery (to spleen), 3. left gastric artery (to stomach) > superior mesenteric - to supply the midgut (duodenum to mid-transverse colon) > suprarenals - to supply the adrenal gland > renals - to supply the kidneys > gonadals - to supply the testes and ovaries > inferior mesenteric - to supply the hindgut (mid-transverse colon to rectum) > lumbar arteries - several pairs off the posterior side of the descending aorta > median sacral artery - off the posterior
    [Show full text]