Paris, 1865: the Birth of the Union

Total Page:16

File Type:pdf, Size:1020Kb

Paris, 1865: the Birth of the Union This PDF is provided by the International Telecommunication Union (ITU) Library & Archives Service from an officially produced electronic file. Ce PDF a été élaboré par le Service de la bibliothèque et des archives de l'Union internationale des télécommunications (UIT) à partir d'une publication officielle sous forme électronique. Este documento PDF lo facilita el Servicio de Biblioteca y Archivos de la Unión Internacional de Telecomunicaciones (UIT) a partir de un archivo electrónico producido oficialmente. ﺟﺮﻯ ﺇﻟﻜﺘﺮﻭﻧﻲ ﻣﻠﻒ ﻣﻦ ﻣﺄﺧﻮﺫﺓ ﻭﻫﻲ ﻭﺍﻟﻤﺤﻔﻮﻇﺎﺕ، ﺍﻟﻤﻜﺘﺒﺔ ﻗﺴﻢ ، (ITU) ﻟﻼﺗﺼﺎﻻﺕ ﺍﻟﺪﻭﻟﻲ ﺍﻻﺗﺤﺎﺩ ﻣﻦ ﻣﻘﺪﻣﺔ PDF ﺑﻨﺴﻖ ﺍﻟﻨﺴﺨﺔ ﻫﺬﻩ .ﺭﺳﻤﻴﺎ ً◌ ﺇﻋﺪﺍﺩﻩ 本PDF版本由国际电信联盟(ITU)图书馆和档案服务室提供。来源为正式出版的电子文件。 Настоящий файл в формате PDF предоставлен библиотечно-архивной службой Международного союза электросвязи (МСЭ) на основе официально созданного электронного файла. © International Telecommunication Union 3 PARIS, 1865: THE BIRTH OF THE UNION PARIS, 1865: THE BIRTH OF THE UNION This volume is being published on the occasion of the 150th anniversary of the International Telecommunication Union Published by the International Telecommunication Union Geneva, 2015 ACKNOWLEDGMENTS This publication was edited by Kristine Clara, (Head of Library and Archives, International Telecommunication Union), in collaboration with Anthony Drummond for the text in English and Ahone Njume-Ebong for the graphic design and page layout. We also wish to thank Lucy Spencer and Hélène Eckert for their critical reading and editing of the text. © 2015 ITU International Telecommunication Union Place des Nations CH-1211 Geneva, Switzerland All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the International Telecommunication Union. Denominations and classifications employed in this publication do not imply any opinion on the part of the International Telecommunication Union concerning the legal or other status of any territory or any endorsement or acceptance of any boundary. ISBN: 978-92-61-15681-7 CONTENTS 05 PREFACE 06 INTRODUCTION 08 THE ELECTRIC TELEGRAPH: THE FIRST NATIONAL NETWORKS 12 INTERNATIONAL TELEGRAPHY: THE COMPLEX PRE-1865 DIPLOMATIC AGREEMENTS 15 Central and Eastern Europe 16 Western Europe 17 Efforts to harmonize the two European Unions 18 THE INTERNATIONAL TELEGRAPH CONFERENCE (PARIS, 1865) 24 THE NEW CONVENTION AND ITS REGULATIONS AND TARIFFS TEXTS IN FRAMES 08 The pre-electric telegraph: Chappe’s Semaphore 10 The first European electric telegraph lines 11 Reuter’s telegrams 15 The first International Telegraph Agreement 19 ‘Modern’ Paris in 1865 25 Creation of the Bureau, not in 1865 but in 1868 26 The significance of the 1865 conference and its international treaty 27 ENDNOTES AND ILLUSTRATIONS 28 BIBLIOGRAPHY 29 CONVENTION TÉLÉGRAPHIQUE INTERNATIONALE DE 1865 (FACSIMILE) 84 PARTICIPANTS 86 TIMELINE SINCE 1865 Quai d’ Orsay 1850 05 For a century and a half since 1865, ITU has been at the centre of advances in FOREWORD communications – from telegraphy, BY THE SECRETARY-GENERAL telephony, radio and television through to satellites, mobiles, Internet and broadband. This year marks the 150th anniversary of the ITU’s 150th anniversary is not only a International Telecommunication Union. celebration of the founding of ITU, but also Since the first International Telegraph a tribute to the incredible engineering feat Convention was signed in 1865 to the which is today’s ICT and telecommunication present, our membership has grown from its ecosystem; the ecosystem which now original 20 to the current 193 Member States underpins societies and economies around and over 700 Sector Members, Associates the world, and which will be the foundation and Academia members. of an environmentally sustainable future. The story of ITU is This publication describes the environment PREFACE one of international that led to the founding of ITU back cooperation and in 1865, and provides a fascinating collaboration amongst governments, look at the world of communications private companies and other stakeholders technologies 150 years ago and how many in the information and communication of the challenges that led to its creation technology (ICT) sector. remain today. I trust that readers will In 2015, we celebrate both the vision of find it interesting and informative. ITU’s founding members and the ongoing commitment of ITU Membership towards the principle of global collaboration and harmony that helped to found ITU back in 1865. Indeed, these are values that as Secretary-General I am determined to uphold firmly at ITU – to ensure that the collaboration and unity of purpose which Houlin Zhao marked the beginnings of ITU continue Secretary-General to underpin its work in radio-spectrum International management, telecommunication Telecommunication Union standards and connecting the world. April, 2015 06 INTRODUCTION The International Telecommunication A century and a half later, the Union (ITU) has developed and thrived fundamental objectives of the organization in an era of unprecedented discovery are basically unchanged. ITU has developed and innovation. Throughout its 150 year with the rapidly changing landscape of history, ITU has promoted international telecommunications throughout this period, cooperation, working to achieve as reflected in its rich 150 year history. practical solutions to integrate new communications technologies as they develop and to spread their benefits to all. The historic signing of the first International Telegraph Convention and the creation of the International Telegraph Union has had a profound influence on the global communications landscape. In the mid-19th century, telegraph lines did not cross national frontiers because each country used a different system and equipment. Messages had to be transcribed, translated and handed over at borders before being retransmitted over the telegraph network of the neighbouring country. It is therefore not surprising that countries decided to conclude agreements to interconnect their networks. On 17 May 1865, after two and a half months of arduous negotiations, the first International Telegraph Convention was signed in Paris by its twenty founding members, and the International Telegraph Union (the first incarnation of ITU) was created. This first international convention created a framework to standardize telegraphy equipment, set uniform operating instructions, and lay down common international tariff and accounting rules. 07 Morse key. 08 THE ELECTRIC TELEGRAPH: THE FIRST NATIONAL NETWORKS Electricity’s use in technology began in ways to communicate over distance had the mid-19th century, greatly expanding reached a life-changing new level. mankind’s capacity and scope for practical This exciting new medium superseded achievement. Nowhere was this seen more and largely outperformed all previous dramatically than through the invention means of long-distance communications. of the electric telegraph. Experiments Long gone were the days of smoke signals, were conducted in sending electric signals homing pigeons, post riders and the mail and telegraph lines soon linked major coach, which had been the mainstay towns in many countries; man’s age- methods humans used to communicate for old quest for more rapid and effective millennia. Nor was the optical telegraph THE PRE-ELECTRIC TELEGRAPH: CHAPPE’S SEMAPHORE Introduced by French a distance” and drawbacks was télégraphiste and engineer Claude “graphien,” meaning the need for good instructed him to Chappe (1763-1805) “to write”. weather conditions establish a line of in 1792, the visual to deliver messages semaphore stations telegraph system Chappe’s system – the system was between Paris and was widely used consisted of a set disrupted by rainy or Lille. The military throughout Europe of moveable arms misty weather, and victory of French until the 1850s before mounted on the top messages could not troops at Quesnoy it was phased out of a tower or hill. The be sent at night. in 1794 was the first by the advent of position of the arms news transmitted electric telegraphy. indicated a letter of There was a over that line. It was the first the alphabet, a word desperate need for genuine ‘organized or an idea. Messages swift and reliable The visual telegraph communication were relayed from communication in was by no doubt system’ in history. one signal tower to France during the the fastest means When naming his another – placed at revolutionary years of communication system, Chappe used roughly 10 kilometres from 1790-1795. In at the time. Various the word ‘telegraph’ apart – and the response, in the sources indicate for the first time: the messages were summer of 1793, the that the duration of term comes from read with the aid of French government transmission was the Greek words a telescope. One of appointed Chappe at best about 20 “tele,” meaning “at the systems major Ingénieur- to 30 seconds per Portrait of Claude Chappe. 09 semaphore system, the immediate • A desire to have a rapid and reliable predecessor of the electric telegraph, a means of communications for diplomatic match for this promising new medium. correspondence and state affairs, Almost immediately after it was • The recognition that the telegraph was proven practical, nations began an indispensable asset for the safe and installing electric telegraph networks. rapid functioning of the railroads which For the most part,
Recommended publications
  • THE CABLE THAT WIRED the WORLD 41 the CABLE THAT WIRED the WORLD Today We Take Global Attractive Proposition to the Cotton Communications for Granted
    INFORM NETWORK DEVELOP NIGEL LINGE, BILL BURNS THE CABLE THAT WIRED THE WORLD 41 THE CABLE THAT WIRED THE WORLD Today we take global attractive proposition to the cotton communications for granted. NIGEL LINGE, merchants and growers. However, it was an American, Cyrus Field (see Figure 1), who on Whether telephoning someone in BILL BURNS 6 November 1856 established the Atlantic America, sending emails to Telegraph Company and sought to raise Australia or simply browsing the Xxxx xxxx xxxx £350,000 to manufacture and lay a web, we accept that our global telegraph cable between Britain and North America. To appreciate the scale of what telecommunications networks was being proposed, 1,600 nautical miles of will make it all happen. cable would be required to cross the Atlantic Nevertheless, life hasn’t always at its shortest width between the west coast been this convenient and this of Ireland and the east coast of Newfoundland, Canada. The longest year we are celebrating the 150th successful undersea cable that had been anniversary of a significant event constructed up until that time was a mere that proved to be the catalyst for 300 miles in length under the Black Sea, linking the Crimea to Varna on the Bulgarian a telecommunications revolution coast. that laid the foundations of the global connectivity that we all Nevertheless, the Victorian can-do attitude enjoy today – the first fully- prevailed and on 31 July 1857, HMS Agamemnon and USA Niagara set sail from operational telecommunications Figure 1: Cyrus Field (1819-1892), Pioneer of the Valentia in Ireland and headed west towards cable to be laid under the Trans-Atlantic Telegraph Trinity Bay in Newfoundland.
    [Show full text]
  • Battle Management Language: History, Employment and NATO Technical Activities
    Battle Management Language: History, Employment and NATO Technical Activities Mr. Kevin Galvin Quintec Mountbatten House, Basing View, Basingstoke Hampshire, RG21 4HJ UNITED KINGDOM [email protected] ABSTRACT This paper is one of a coordinated set prepared for a NATO Modelling and Simulation Group Lecture Series in Command and Control – Simulation Interoperability (C2SIM). This paper provides an introduction to the concept and historical use and employment of Battle Management Language as they have developed, and the technical activities that were started to achieve interoperability between digitised command and control and simulation systems. 1.0 INTRODUCTION This paper provides a background to the historical employment and implementation of Battle Management Languages (BML) and the challenges that face the military forces today as they deploy digitised C2 systems and have increasingly used simulation tools to both stimulate the training of commanders and their staffs at all echelons of command. The specific areas covered within this section include the following: • The current problem space. • Historical background to the development and employment of Battle Management Languages (BML) as technology evolved to communicate within military organisations. • The challenges that NATO and nations face in C2SIM interoperation. • Strategy and Policy Statements on interoperability between C2 and simulation systems. • NATO technical activities that have been instigated to examine C2Sim interoperation. 2.0 CURRENT PROBLEM SPACE “Linking sensors, decision makers and weapon systems so that information can be translated into synchronised and overwhelming military effect at optimum tempo” (Lt Gen Sir Robert Fulton, Deputy Chief of Defence Staff, 29th May 2002) Although General Fulton made that statement in 2002 at a time when the concept of network enabled operations was being formulated by the UK and within other nations, the requirement remains extant.
    [Show full text]
  • Samuel Morse's Telegraph
    1 SAMUEL MORSE’S TELEGRAPH (The Start of the Communications Revolution) Steve Krar We live in the information age where more and more information is required at all times. There never seems to be a time when information is so readily available, but this has not always been the case. The today’s communications revolution includes radio, telephones, television computers, fax machines and satellites. So fast is the change in communications that we sometimes forget the machine that started it all. The Telegraph The telegraph was born at a time when few grasped even remotely what electric current was, let alone what it might do. The telegraph was a landmark in human development from which there could be no retreat. For the first time messages could routinely travel great distances faster than man or beast could carry them. Samuel Morse In October 1832 Samuel Morse, an early pioneer of the telegraph, on his way home from Europe met Dr. Charles Jackson who asked whether electricity took much time to travel over a long wire. The idea began to obsess Morse and before reaching shore, he had sketched the basic elements of a telegraph instrument and a crude version of a code based on dots and dashes. News from Europe in early 1837 told of the great strides being made in telegraphy; Morse realized that if he did not finish the invention soon, his efforts might be wasted. Finally, in February 1837 Congress directed the Secretary of the Treasury to ask for proposals for a telegraph. Morse’s Telegraph Morse thought that if he could perfect the electromagnetic telegraph that he had designed, in 1836, it would answer the government's needs.
    [Show full text]
  • Early Telecommunication and the Birth of Telegraphy in Malta
    Early Telecommunication and the Birth of Telegraphy in Malta Mario Aloisio [email protected] Abstract: This paper reviews the birth of telegraphy and its take-up in Malta before the advent of radio. The driving force behind the adoption of a number of signalling methods and the telegraph in Malta was the militia, but a means of effective communication was also important for trade and as a warning system against unwanted intruders. Foreign, diplomatic, and news correspondence became possible after submarine cables linking Malta to mainland Europe were laid in the 1860s. Keywords: Telecommunications; electric telegraph, semaphore, submarine cables Introduction he Maltese archipelago has been the focus of attention of many powers who, at different periods, sought to capture and rule the Tislands. The Carthaginians, Romans, Arabs, Normans, French, and British, among others, all left their mark on these tiny islands. The Knights Hospitaller, a military religious order of St John now known as the Knights of Malta, settled in Malta in 1530 when Emperor Charles V of Sicily offered it to them after they had been driven out of Rhodes by Suleiman I. In 1798 the last grand master of the knights surrendered to Napoleon when the latter captured Malta on his way to Egypt. The French occupation was brief, the British taking over just two years later. Malta was made a British colony in 1813 and became independent in 1964. In view of Malta’s strategic location and therefore its importance as a military base and a place for international trade, the knights of St Symposia Melitensia Number 10 (2015) SYMPOSIA MELITENSIA NUMBER 10 (2015) John built impressive forts and bastions and improved upon existing defence structures.
    [Show full text]
  • The Story of Subsea Telecommunications & Its
    The Story of Subsea Telecommunications 02 & its Association with Enderby House By Stewart Ash INTRODUCTION The modern world of instant communications 1850 - 1950: the telegraph era began, not in the last couple of decades - but 1950 - 1986: the telephone era more than 160 years ago. Just over 150 years 1986 until today, and into the future: the optical era ago a Greenwich-based company was founded that became the dominant subsea cable system In the telegraph era, copper conductors could supplier of the telegraph era, and with its carry text only — usually short telegrams. During successors, helped to create the world we know the telephone era, technology had advanced today. enough for coaxial cables to carry up to 5,680 simultaneous telephone calls. And in today’s On 7 April 1864, the Telegraph Construction and optical era, fibres made of glass carry multi- Maintenance Company Ltd, better known for most wavelengths of laser light, providing terabits of of its life as Telcon, was incorporated and began its data for phone calls, text, internet pages, music, global communications revolution from a Thames- pictures and video. side site on the Greenwich Peninsula. Today, high capacity optic fibre subsea cables For more than 100 years, Telcon and its successors provide the arteries of the internet and are the were the world’s leading suppliers of subsea primary enablers of global electronic-commerce. telecommunications cable and, in 1950, dominated the global market, having manufactured and For over 160 years, the Greenwich peninsula has supplied 385,000 nautical miles (714,290km) of been at the heart of this technological revolution, cable, 82% of the total market.
    [Show full text]
  • A New Morse Code Scheme Optimized According to the Statistical Properties of Turkish
    Turkish Journal of Electrical Engineering & Computer Sciences Turk J Elec Eng & Comp Sci (2013) 21: 804 – 811 http://journals.tubitak.gov.tr/elektrik/ c TUB¨ ITAK˙ Research Article doi:10.3906/elk-1110-11 A new Morse code scheme optimized according to the statistical properties of Turkish ∗ Emrah C¸ IC˙ ¸ EK, Asım Egemen YILMAZ Department of Electronical-Electronics Engineering, Faculty of Engineering, Ankara University, 06100 Tando˘gan, Ankara, Turkey Received: 08.10.2011 • Accepted: 17.02.2012 • Published Online: 03.05.2013 • Printed: 27.05.2013 Abstract: Morse code has been in use for more than 180 years, even though its currently known form is slightly different than the form defined by Morse and Vail. The code book constructed by Vail was optimized according to the statistical properties of English. In this study, we propose a new code book optimized for Turkish and demonstrate that it is information-theoretically possible to achieve about a 10% improvement throughout the coding of Turkish texts by means of our proposal. The outcomes of this might serve as a basis for potential (academic and/or applied) Turkish language-specific lossless data compression studies. Key words: Information theory, source encoding, Morse code, language statistics, data compression 1. Introduction Morse code is a method of transmitting textual information as a series of on–off signals (e.g. tones, lights, clicks), which can be directly interpreted by a skilled listener or observer. This listener or observer might be either a human individual with the knowledge of the code book, or special equipment in which the code book and its encoding/decoding rules are embedded.
    [Show full text]
  • Case 20-32299-KLP Doc 208 Filed 06/01/20 Entered 06/01/20 16
    Case 20-32299-KLP Doc 208 Filed 06/01/20 Entered 06/01/20 16:57:32 Desc Main Document Page 1 of 137 Case 20-32299-KLP Doc 208 Filed 06/01/20 Entered 06/01/20 16:57:32 Desc Main Document Page 2 of 137 Exhibit A Case 20-32299-KLP Doc 208 Filed 06/01/20 Entered 06/01/20 16:57:32 Desc Main Document Page 3 of 137 Exhibit A1 Served via Overnight Mail Name Attention Address 1 Address 2 City State Zip Country Aastha Broadcasting Network Limited Attn: Legal Unit213 MezzanineFl Morya LandMark1 Off Link Road, Andheri (West) Mumbai 400053 IN Abs Global LTD Attn: Legal O'Hara House 3 Bermudiana Road Hamilton HM08 BM Abs-Cbn Global Limited Attn: Legal Mother Ignacia Quezon City Manila PH Aditya Jain S/O Sudhir Kumar Jain Attn: Legal 12, Printing Press Area behind Punjab Kesari Wazirpur Delhi 110035 IN AdminNacinl TelecomunicacionUruguay Complejo Torre De Telecomuniciones Guatemala 1075. Nivel 22 HojaDeEntrada 1000007292 5000009660 Montevideo CP 11800 UY Advert Bereau Company Limited Attn: Legal East Legon Ars Obojo Road Asafoatse Accra GH Africa Digital Network Limited c/o Nation Media Group Nation Centre 7th Floor Kimathi St PO Box 28753-00100 Nairobi KE Africa Media Group Limited Attn: Legal Jamhuri/Zaramo Streets Dar Es Salaam TZ Africa Mobile Network Communication Attn: Legal 2 Jide Close, Idimu Council Alimosho Lagos NG Africa Mobile Networks Cameroon Attn: Legal 131Rue1221 Entree Des Hydrocarbures Derriere Star Land Hotel Bonapriso-Douala Douala CM Africa Mobile Networks Cameroon Attn: Legal BP12153 Bonapriso Douala CM Africa Mobile Networks Gb,
    [Show full text]
  • Optical Communication: Its History and Recent Progress Govind P
    177 8 Optical Communication: Its History and Recent Progress Govind P. Agrawal 8.1 Historical Perspective – 178 8.2 Basic Concepts Behind Optical Communication – 181 8.2.1 Optical Transmitters and Receivers – 181 8.2.2 Optical Fibers and Cables – 182 8.2.3 Modulations Formats – 184 8.2.4 Channel Multiplexing – 185 8.3 Evolution of Optical Communication from 1975 to 2000 – 187 8.3.1 The First Three Generations – 187 8.3.2 The Fourth Generation – 188 8.3.3 Bursting of the Telecom Bubble in 2000 – 190 8.4 The Fifth Generation – 191 8.5 The Sixth Generation – 192 8.5.1 Capacity Limit of Single-Mode Fibers – 193 8.5.2 Space-Division Multiplexing – 194 8.6 Worldwide Fiber-Optic Communication Network – 195 8.7 Conclusions – 197 References – 198 G.P. Agrawal (*) The Institute of Optics, University of Rochester, Rochester NY 14627, USA e-mail: [email protected] © The Author(s) 2016 M.D. Al-Amri et al. (eds.), Optics in Our Time, DOI 10.1007/978-3-319-31903-2_8 178 G.P. Agrawal 8.1 Historical Perspective The use of light for communication purposes dates back to antiquity if we interpret optical communication in a broad sense, implying any communication scheme that makes use of light. Most civilizations have used mirrors, fire beacons, or smoke signals to convey a single piece of information (such as victory in a war). For example, it is claimed that the Greeks constructed in 1084 B.C. a 500-km-long line of fire beacons to convey the news of the fall of Troy [1].
    [Show full text]
  • Radio Science Bulletin Staff
    INTERNATIONAL UNION UNION OF RADIO-SCIENTIFIQUE RADIO SCIENCE INTERNATIONALE ISSN 1024-4530 Bulletin No 360 March 2017 Radio Science URSI, c/o Ghent University (INTEC) St.-Pietersnieuwstraat 41, B-9000 Gent (Belgium) Contents Radio Science Bulletin Staff ....................................................................................... 4 URSI Offi cers and Secretariat.................................................................................... 7 Editor’s Comments ..................................................................................................... 9 Special Section: The Best Papers from the EMTS 2016 Young Scientist Awards 11 Sub-Voxel Refi nement Method for Tissue Boundary Conductivities in Volume Conductor Models ................................................................................... 13 How Kerr Nonlinearity Infl uences Polarized Electromagnetic Wave Propagation ................................................................................................. 19 Sum-Frequency and Second-Harmonic Generation from Plasmonic Nonlinear Nanoantennas ...................................................................................... 43 Hornet Biological Radar for Detection, Tracking, Direction Finding, and Long Distance Communication: Is This Possible? ............................................. 50 Foreword to Radio Science for Humanity: URSI-France 2017 Workshop ......... 60 URSI France 2017 Workshop on Radio Science for Humanity ............................ 62 Journées scientifi ques URSI-France 2017
    [Show full text]
  • The Early History of Telegraphy
    VOLUME 26 268 PHILIPS TECHNICAL REVIEW The early history of telegraphy G. R. M. Garratt 621.394(091) It has been said that the history of the art of commu- cian in The Hague tried to explain the causes of the .nication is the history of the human race. While such astonishing military successes of the French which had a statement is perhaps too sweeping, it is undoubtedly occurred in the meantime, he mentioned several factors: a fact that the development of communication is an in- " ... courage, aided by inventiveness which yielded the tegral part ofthe growth of civilization, Every improve- useful telegraph, the application of the balloon, an ample ment in the speed and facility with which thoughts production of saltpetre and ingenious strategic plans" [11. and ideas can be exchanged has had its social or econo- It is certainly not without significanee that it was the mic effect, and we can appreciate fully the significanee telegraph, the device which had permitted coordina- and trend of historical, social and political develop- tion of efforts on different fronts, which was given ments only if we view them against the background of priority of mention in this quotation. The telegraph the contemporary state of the art of communication. referred to was the visual telegraph or Semaphore Momentous changes in the art of communication devised by Claude Chappe. were initiated in the first half of the 19th century, and Claude Chappe - nephew of a well-known astron- in the context of this special issue of Philips Technical omer- had shown a keen interest in science when still Review it seems worth while to give some attention to a young man and had published several articles in the this most interesting period.
    [Show full text]
  • The Failure of Fax: When a Vision Is Not Enough
    The Failure of Fax: When a Vision Is Not Enough Jonathan Coopersmith TexasA&M University In the lastdecade, fax machineshave revolutionized communications. We have becomeused to and dependentupon instantaneousinformation. Many peoplecannot conceive how theyworked without a fax machine.The question, however,arises: If the conceptis so good,why did nearlya centuryand a half elapsefrom the first patent in 1843 until rapid commercialdiffusion in the 1980s? In actuality,attempts to commercializefacsimile technology extend back to the 1860s[5]. Its promotersspanned the spectrumfrom individualinventors, suchas Thomas Edison and Arthur Korn, to massivecorporations, such as Xerox and AT&T. Their most common feature until the mid-1980s was failure. The few successesoccurred not in generalcommunications but in dedicatedniche marketsand, evenhere, failuresflourished. Perhaps the questionshould be: In view of the dismalhistory of failures,why did so manypeople and companies pressahead? What motivatedindividuals and ill-msto commitresources to createnew marketsand technology,given the dauntinghistory that lay behind them? Failure,the lack of technicaland commercial success for a productin the marketplace,is endemicto innovativetechnologies. Failure is worthyof study if only to betterunderstand success. Historians of businessand technology acceptthis, but tend to focusmore on success. This lack of coveragedistorts our knowledgeof the businessprocess because failure is an integral,if not dominant, theme in the existenceof companies. Much scholarlywriting
    [Show full text]
  • Transocean and German Wireless Telegraphy, 1914-1922
    "The Path to Freedom"? Transocean and German Wireless Telegraphy, 1914-1922 The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Evans, Heidi Jacqueline. 2010. "The path to freedom"? Transocean and German wireless telegraphy, 1914-1922. Historical Social Research 35(1): 209-233. Published Version http://nbn-resolving.de/urn:nbn:de:0168-ssoar-285403 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:11375397 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA “The Path to Freedom”? Transocean and German Wireless Telegraphy, 1914-1922 Heidi J. S. Evans ∗ Abstract: »„Der Weg ins Freie”? Transocean und die deutsche drahtlose Te- legraphie, 1914-1922«. This article examines the early years of Transocean, a news agency owned and run by the German government, and its use of wire- less telegraphy from 1914 to 1922. This investigation of the infancy of wireless technology demonstrates that technology plays a constitutive role in defining news. The German government used the new possibilities innate in the medium of wireless to carve out their own sphere of operation in the seas and on conti- nents where German telegraph news had never played a major role, in particu- lar East Asia. Wireless telegraphy enabled the German government to circum- vent the British communications blockade in World War I. Afterwards, Transocean’s wireless transmissions to East Asia and ships en route caused an uproar in Britain disproportionate to its circulation.
    [Show full text]