Software Process Recovery: Recovered Unified Process Views

Total Page:16

File Type:pdf, Size:1020Kb

Software Process Recovery: Recovered Unified Process Views Evidence-based Software Process Recovery by Abram Hindle A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Doctor of Philosophy in Computer Science Waterloo, Ontario, Canada, 2010 c Abram Hindle 2010 I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Abstract Developing a large software system involves many complicated, varied, and inter- dependent tasks, and these tasks are typically implemented using a combination of defined processes, semi-automated tools, and ad hoc practices. Stakeholders in the development process | including software developers, managers, and customers | often want to be able to track the actual practices being employed within a project. For example, a customer may wish to be sure that the process is ISO 9000 compliant, a manager may wish to track the amount of testing that has been done in the current iteration, and a developer may wish to determine who has recently been working on a subsystem that has had several major bugs appear in it. However, extracting the software development processes from an existing project is ex- pensive if one must rely upon manual inspection of artifacts and interviews of developers and their managers. Previously, researchers have suggested the live observation and in- strumentation of a project to allow for more measurement, but this is costly, invasive, and also requires a live running project. In this work, we propose an approach that we call software process recovery that is based on after-the-fact analysis of various kinds of software development artifacts. We use a variety of supervised and unsupervised techniques from machine learning, topic analysis, natural language processing, and statistics on software repositories such as version control systems, bug trackers, and mailing list archives. We show how we can combine all of these methods to recover process signals that we map back to software development processes such as the Unified Process. The Unified Process has been visualized using a time-line view that shows effort per parallel discipline occurring across time. This visualization is called the Unified Process diagram. We use this diagram as inspiration to produce Recovered Unified Process Views (RUPV) that are a concrete version of this theoretical Unified Process diagram. We then validate these methods using case studies of multiple open source software systems. iii Acknowledgements I would like to recognize my coauthors on much of this work: • Michael W. Godfrey (PhD Supervisor) • Richard C. Holt (PhD Supervisor) • Daniel German (Masters Supervisor) • Neil Ernst (Fellow PhD Student and collaborator) I would also like to acknowledge those who awarded me with scholarships: • NSERC, as I was funded by a NSERC PGS-D Scholarship • David Cheriton and the David Cheriton School of Computer Science for the David Cheriton scholarship I received. I would like to thank all the people who helped motivate this work: • Lixin Luo • Ron and Faye Hindle • Michael W. Godfrey and Richard C. Holt iv Dedication This is dedicated to my loving wife Lixin and to principles of Free Software as prescribed by the Free Software Foundation. v Contents List of Tables xii List of Figures xv 1 Introduction 1 1.1 Relationship to Mining Software Repositories . .2 1.2 Application of Software Process Recovery . .3 1.2.1 Stakeholders . .4 1.3 Conceptual View of Software Process Recovery . .6 1.4 Summary . .9 2 Related Research 11 2.1 Stochastic Processes, Business Processes and Software Development Processes 11 2.1.1 Stochastic Processes . 12 2.1.2 Business Processes . 12 2.1.3 Software Development Processes . 13 2.1.4 Process Summary . 15 2.2 Data Analysis . 15 2.2.1 Statistics . 15 2.2.2 Time-series analysis . 16 2.2.3 Machine Learning and Sequence Mining . 18 2.2.4 Natural Language Processing . 20 vi 2.2.5 Social Network Analysis . 23 2.2.6 Data Analysis Summary . 23 2.3 Mining Software Repositories . 23 2.3.1 Fact extraction . 24 2.3.2 Prediction . 24 2.3.3 Metrics . 25 2.3.4 Querying Repositories . 27 2.3.5 Statistics and Time-series analysis . 28 2.3.6 Visualization . 28 2.3.7 Social Aspects . 31 2.3.8 Concept Location and Topic Analysis . 31 2.3.9 MSR Summary . 32 2.4 Software Process Recovery . 32 2.4.1 Process Mining: Business Processes . 32 2.4.2 Process Discovery . 33 2.4.3 Process Recovery . 33 2.4.4 Software Process Recovery Summary . 34 2.5 Summary . 34 3 Software Process Recovery: A Roadmap 36 3.1 Software Artifact Perspective . 40 3.1.1 Source Control Systems . 40 3.1.2 Mailing list and Bug Trackers . 41 3.2 Process Perspective . 41 3.2.1 Evidence of Software Development Processes . 42 3.2.2 Concurrent Effort . 43 3.2.3 Process and Behaviour . 43 3.3 Software Development Perspective . 43 3.3.1 Requirements and Design . 44 3.3.2 Implementation, Testing, and Maintenance . 44 3.3.3 Deployment, Project Management, and Quality Assurance . 45 3.4 Summary . 46 vii 4 Evidence of Process 47 4.1 Release Patterns . 48 4.1.1 Background . 49 4.1.2 Terminology . 50 4.2 Methodology . 51 4.2.1 Extraction . 52 4.2.2 Partitioning . 53 4.2.3 Aggregates . 53 4.2.4 Analysis . 54 4.2.5 STBD Notation . 55 4.3 Case Study . 55 4.3.1 Questions and Predictions . 56 4.3.2 Tools and Data-sets . 56 4.4 Results . 58 4.4.1 Indicators of Process . 61 4.4.2 Linear Regression Perspective . 61 4.4.3 Release Perspective . 62 4.4.4 Interval Length Perspective . 62 4.4.5 Project Perspective . 63 4.4.6 Revision Class Perspective . 64 4.4.7 Zipf Alpha Measure . 65 4.4.8 Answers to Our Questions . 65 4.4.9 Validity Threats . 67 4.5 Possible Extension . 68 4.6 Conclusions . 69 5 Learning the Reasons behind Changes 70 5.1 What About Large Commits? . 71 5.1.1 Previous Work . 71 viii 5.2 Methodology . 72 5.3 Results . 77 5.3.1 Themes of the Large Commits . 77 5.3.2 Quantitative Analysis . 79 5.4 Analysis and Discussion . 88 5.4.1 Threats to Validity . 90 5.5 Conclusions . 90 6 Classifying Changes by Rationale 92 6.1 On the Classification of Large Commits . 93 6.2 Previous Work . 94 6.3 Methodology . 95 6.3.1 Projects . 95 6.3.2 Creating the training set . 95 6.3.3 Features used for classification . 95 6.3.4 Machine Learning Algorithms . 96 6.4 Results . 97 6.4.1 Learning from Decision Trees and Rules . 98 6.4.2 Authors . 101 6.4.3 Accuracy . 101 6.4.4 Discussion . 105 6.5 Validity Threats . 106 6.6 Possible Extension . 107 6.7 Conclusions . 107 7 Recovering Developer Topics 108 7.1 Latent Dirichlet Allocation and Developer Topics . 109 7.1.1 Topics of Development . 109 7.1.2 Background . 111 7.1.3 Preliminary Case Study . ..
Recommended publications
  • Writing and Reviewing Use-Case Descriptions
    Bittner/Spence_06.fm Page 145 Tuesday, July 30, 2002 12:04 PM PART II WRITING AND REVIEWING USE-CASE DESCRIPTIONS Part I, Getting Started with Use-Case Modeling, introduced the basic con- cepts of use-case modeling, including defining the basic concepts and understanding how to use these concepts to define the vision, find actors and use cases, and to define the basic concepts the system will use. If we go no further, we have an overview of what the system will do, an under- standing of the stakeholders of the system, and an understanding of the ways the system provides value to those stakeholders. What we do not have, if we stop at this point, is an understanding of exactly what the system does. In short, we lack the details needed to actually develop and test the system. Some people, having only come this far, wonder what use-case model- ing is all about and question its value. If one only comes this far with use- case modeling, we are forced to agree; the real value of use-case modeling comes from the descriptions of the interactions of the actors and the system, and from the descriptions of what the system does in response to the actions of the actors. Surprisingly, and disappointingly, many teams stop after developing little more than simple outlines for their use cases and consider themselves done. These same teams encounter problems because their use cases are vague and lack detail, so they blame the use-case approach for having let them down. The failing in these cases is not with the approach, but with its application.
    [Show full text]
  • The Guide to Succeeding with Use Cases
    USE-CASE 2.0 The Guide to Succeeding with Use Cases Ivar Jacobson Ian Spence Kurt Bittner December 2011 USE-CASE 2.0 The Definitive Guide About this Guide 3 How to read this Guide 3 What is Use-Case 2.0? 4 First Principles 5 Principle 1: Keep it simple by telling stories 5 Principle 2: Understand the big picture 5 Principle 3: Focus on value 7 Principle 4: Build the system in slices 8 Principle 5: Deliver the system in increments 10 Principle 6: Adapt to meet the team’s needs 11 Use-Case 2.0 Content 13 Things to Work With 13 Work Products 18 Things to do 23 Using Use-Case 2.0 30 Use-Case 2.0: Applicable for all types of system 30 Use-Case 2.0: Handling all types of requirement 31 Use-Case 2.0: Applicable for all development approaches 31 Use-Case 2.0: Scaling to meet your needs – scaling in, scaling out and scaling up 39 Conclusion 40 Appendix 1: Work Products 41 Supporting Information 42 Test Case 44 Use-Case Model 46 Use-Case Narrative 47 Use-Case Realization 49 Glossary of Terms 51 Acknowledgements 52 General 52 People 52 Bibliography 53 About the Authors 54 USE-CASE 2.0 The Definitive Guide Page 2 © 2005-2011 IvAr JacobSon InternationAl SA. All rights reserved. About this Guide This guide describes how to apply use cases in an agile and scalable fashion. It builds on the current state of the art to present an evolution of the use-case technique that we call Use-Case 2.0.
    [Show full text]
  • Challenges and Opportunities for the Medical Device Industry Meeting the New IEC 62304 Standard 2 Challenges and Opportunities for the Medical Device Industry
    IBM Software Thought Leadership White Paper Life Sciences Challenges and opportunities for the medical device industry Meeting the new IEC 62304 standard 2 Challenges and opportunities for the medical device industry Contents With IEC 62304, the world has changed—country by country— for medical device manufacturers. This doesn’t mean, however, 2 Executive summary that complying with IEC 62304 must slow down your medical 2 Changes in the medical device field device software development. By applying best practices guid- ance and process automation, companies have a new opportunity 3 What is so hard about software? to improve on their fundamental business goals, while getting through regulatory approvals faster, lowering costs and deliver- 4 Disciplined agile delivery: Flexibility with more structure ing safer devices. 4 Meeting the specification: A look at some of the details This paper will explore what IEC 62304 compliance means for manufacturers in some detail, and also describe the larger con- text of systems and software engineering best practices at work 6 Process steps for IEC 62304 compliance in many of today’s most successful companies. 7 Performing the gap analysis Changes in the medical device field 8 Choosing software tools for IEC 62304 The IEC 62304 standard points to the more powerful role that software plays in the medical device industry. Once hardware 11 Conclusion was king. Older systems used software, of course, but it was not the main focus, and there wasn’t much of a user interface. Executive summary Software was primarily used for algorithmic work. Not to overly The recent IEC 62304 standard for medical device software is generalize, but the focus of management was on building causing companies worldwide to step back and examine their hardware that worked correctly; software was just a necessary software development processes with considerable scrutiny.
    [Show full text]
  • The Timeboxing Process Model for Iterative Software Development
    The Timeboxing Process Model for Iterative Software Development Pankaj Jalote Department of Computer Science and Engineering Indian Institute of Technology Kanpur – 208016; India Aveejeet Palit, Priya Kurien Infosys Technologies Limited Electronics City Bangalore – 561 229; India Contact: [email protected] ABSTRACT In today’s business where speed is of essence, an iterative development approach that allows the functionality to be delivered in parts has become a necessity and an effective way to manage risks. In an iterative process, the development of a software system is done in increments, each increment forming of an iteration and resulting in a working system. A common iterative approach is to decide what should be developed in an iteration and then plan the iteration accordingly. A somewhat different iterative is approach is to time box different iterations. In this approach, the length of an iteration is fixed and what should be developed in an iteration is adjusted to fit the time box. Generally, the time boxed iterations are executed in sequence, with some overlap where feasible. In this paper we propose the timeboxing process model that takes the concept of time boxed iterations further by adding pipelining concepts to it for permitting overlapped execution of different iterations. In the timeboxing process model, each time boxed iteration is divided into equal length stages, each stage having a defined function and resulting in a clear work product that is handed over to the next stage. With this division into stages, pipelining concepts are employed to have multiple time boxes executing concurrently, leading to a reduction in the delivery time for product releases.
    [Show full text]
  • Descriptive Approach to Software Development Life Cycle Models
    7797 Shaveta Gupta et al./ Elixir Comp. Sci. & Engg. 45 (2012) 7797-7800 Available online at www.elixirpublishers.com (Elixir International Journal) Computer Science and Engineering Elixir Comp. Sci. & Engg. 45 (2012) 7797-7800 Descriptive approach to software development life cycle models Shaveta Gupta and Sanjana Taya Department of Computer Science and Applications, Seth Jai Parkash Mukand Lal Institute of Engineering & Technology, Radaur, Distt. Yamunanagar (135001), Haryana, India. ARTICLE INFO ABSTRACT Article history: The concept of system lifecycle models came into existence that emphasized on the need to Received: 24 January 2012; follow some structured approach towards building new or improved system. Many models Received in revised form: were suggested like waterfall, prototype, rapid application development, V-shaped, top & 17 March 2012; Bottom model etc. In this paper, we approach towards the traditional as well as recent Accepted: 6 April 2012; software development life cycle models. © 2012 Elixir All rights reserved. Keywords Software Development Life Cycle, Phases and Software Development, Life Cycle Models, Traditional Models, Recent Models. Introduction Software Development Life Cycle Models The Software Development Life Cycle (SDLC) is the entire Software Development Life Cycle Model is an abstract process of formal, logical steps taken to develop a software representation of a development process. SDLC models can be product. Within the broader context of Application Lifecycle categorized as: Management (ALM), the SDLC
    [Show full text]
  • Multi Objective Analysis for Timeboxing Models of Software Development
    MULTI OBJECTIVE ANALYSIS FOR TIMEBOXING MODELS OF SOFTWARE DEVELOPMENT Vassilis C. Gerogiannis and Pandelis G. Ipsilandis Department of Project Management, Technological Education Institute of Larissa, Larissa, Greece Keywords: Software Project Management, Iterative Development, Timeboxing, Project Scheduling, Linear Programming, Multi-Objective Optimization. Abstract: In iterative/incremental software development, software deliverables are built in iterations - each iteration providing parts of the required software functionality. To better manage and monitor resources, plan and deliverables, iterations are usually performed during specific time periods, so called “time boxes”. Each time box is further divided into a sequence of stages and a dedicated development team is assigned to each stage. Iterations can be performed in parallel to reduce the project completion time by exploiting a “pipelining” concept, that is, when a team completes the tasks of a stage, it hands over the intermediate deliverables to the team executing the next stage and then starts executing the same stage in the next iteration. In this paper, we address the problem of optimizing the schedule of a software project that follows an iterative, timeboxing process model. A multi objective linear programming technique is introduced to consider multiple parameters, such as the project duration, the work discontinuities of development teams in successive iterations and the release (delivery) time of software deliverables. The proposed model can be used to generate alternative project plans based on the relative importance of these parameters. 1 INTRODUCTION team of experts is usually assigned to each stage, i.e., a team for a stage performs only the activities In iterative and incremental development, software for that stage.
    [Show full text]
  • Software Development a Practical Approach!
    Software Development A Practical Approach! Hans-Petter Halvorsen https://www.halvorsen.blog https://halvorsen.blog Software Development A Practical Approach! Hans-Petter Halvorsen Software Development A Practical Approach! Hans-Petter Halvorsen Copyright © 2020 ISBN: 978-82-691106-0-9 Publisher Identifier: 978-82-691106 https://halvorsen.blog ii Preface The main goal with this document: • To give you an overview of what software engineering is • To take you beyond programming to engineering software What is Software Development? It is a complex process to develop modern and professional software today. This document tries to give a brief overview of Software Development. This document tries to focus on a practical approach regarding Software Development. So why do we need System Engineering? Here are some key factors: • Understand Customer Requirements o What does the customer needs (because they may not know it!) o Transform Customer requirements into working software • Planning o How do we reach our goals? o Will we finish within deadline? o Resources o What can go wrong? • Implementation o What kind of platforms and architecture should be used? o Split your work into manageable pieces iii • Quality and Performance o Make sure the software fulfills the customers’ needs We will learn how to build good (i.e. high quality) software, which includes: • Requirements Specification • Technical Design • Good User Experience (UX) • Improved Code Quality and Implementation • Testing • System Documentation • User Documentation • etc. You will find additional resources on this web page: http://www.halvorsen.blog/documents/programming/software_engineering/ iv Information about the author: Hans-Petter Halvorsen The author currently works at the University of South-Eastern Norway.
    [Show full text]
  • The Unified Software Development Process and Framework Development
    Doğuş Üniversitesi Dergisi, 2002, (5), 109-122 THE UNIFIED SOFTWARE DEVELOPMENT PROCESS AND FRAMEWORK DEVELOPMENT Abdelaziz Khamis & Ashraf Abdelmonem Department of Computer Science, Institute of Statistics, Cairo University ABSTRACT: Application frameworks are a very promising software reuse technology. The development of application frameworks is a complex process. Many methodologies and approaches have been proposed with the purpose of minimizing the complexities. The Unified Software Development Process directly addresses the complexity challenge of today's software applications. in this paper, we explore the role of the Unified Software Development Process together with a popular CASE tool: Rational Rose, in managing the complexity of developing application frameworks. Keywords: Application Frameworks, The Unified Software Development Process, Model Tracing Tutors, Rational Rose. ÖZET: Uygulama iskelet yapıları çok umut vaadeden bir yeniden kullanım yazılım teknolojisidir. Uygulama iskelet yapılarının geliştirilmesi karmaşık bir süreci gerektirir. Bu karmaşık süreci minimize etmek amacıyla birçok yöntem ve yaklaşım önerilmiştir. Birleşik Yazılım Geliştirme Süreci bugünkü yazılım uygulamalarındaki karmaşıklık engelini direkt olarak hedefleyen bir yöntemdir. Bu yazıda uygulama iskelet yapılarındaki karmaşıklığın yönetimi konusunda Birleşik Yazılım Geliştirme Süreci'nin rolü yaygın olarak kullanılan bir CASE (Bilgisayar Destekli Yazılım Mühendisliği) aracı olan "Rational Rose" ile birlikte araştırılmaya çalışılmıştır. Anahtar Kelimeler: Uygulama Geliştirme Yapıları, Birleşik Yazılım Geliştirme Süreci, Model İzleme Öğretmeni, Rational Rose. 1. Introduction The reuse of software components is recognized as an important way to increase productivity in software development (Jacobson, Griss and Jonsson, 1997). Application frameworks are a very promising softvvare reuse technology. The concept of framevvorks makes it possible to reuse not just code, but also analysis and design (Fayad, Schmidt and Johnson, 1999; Fayad and Schmidt, 1997).
    [Show full text]
  • An Analysis on Waterfall and RUP Models
    Journal of Engineering, Computing and Architecture ISSN NO: 1934-7197 An Analysis on Waterfall and RUP Models Dr. K. Sunil Manohar Reddy Associate Professor, Department of CSE, Matrusri Engineering College, Hyderabad, Telangana. [email protected] Abstract: Two of the vastly used software engineering processes are Waterfall model and Rational Unified Process (RUP) model. The waterfall model is a classical model of software engineering. It is used in governmental projects as well as many major companies associated with software engineering. RUP is a unified model used for large business applications. The main concern in this research is to represent the mentioned models of software development and compare them to show pros and cons of each model. Keywords: Waterfall Model, Unified Process Model, Agile Models 1. Introduction Computer is considered as a time saving mechanism and its progress helps in executing long, complex, repeated processes at a high speed and short time. Noticeably, the number of companies that produce software programs for the purpose of facilitating works of offices, administrations, banks, etc., has increased recently which results in the difficulty of enumerating such companies. During the last five decades, software has been developed from a tool used for solving a problem to a product in itself. Software consists of instructions and programs that contain a collection that has been established to be a part of software engineering procedures [1]. Moreover, the aim of software engineering is to create a suitable work
    [Show full text]
  • Index Images Download 2006 News Crack Serial Warez Full 12 Contact
    index images download 2006 news crack serial warez full 12 contact about search spacer privacy 11 logo blog new 10 cgi-bin faq rss home img default 2005 products sitemap archives 1 09 links 01 08 06 2 07 login articles support 05 keygen article 04 03 help events archive 02 register en forum software downloads 3 security 13 category 4 content 14 main 15 press media templates services icons resources info profile 16 2004 18 docs contactus files features html 20 21 5 22 page 6 misc 19 partners 24 terms 2007 23 17 i 27 top 26 9 legal 30 banners xml 29 28 7 tools projects 25 0 user feed themes linux forums jobs business 8 video email books banner reviews view graphics research feedback pdf print ads modules 2003 company blank pub games copyright common site comments people aboutus product sports logos buttons english story image uploads 31 subscribe blogs atom gallery newsletter stats careers music pages publications technology calendar stories photos papers community data history arrow submit www s web library wiki header education go internet b in advertise spam a nav mail users Images members topics disclaimer store clear feeds c awards 2002 Default general pics dir signup solutions map News public doc de weblog index2 shop contacts fr homepage travel button pixel list viewtopic documents overview tips adclick contact_us movies wp-content catalog us p staff hardware wireless global screenshots apps online version directory mobile other advertising tech welcome admin t policy faqs link 2001 training releases space member static join health
    [Show full text]
  • The IBM Rational Unified Process for System Z
    Front cover The IBM Rational Unified Process for System z RUP for System z includes a succinct end-to-end process for z practitioners RUP for System z includes many examples of various deliverables RUP for System z is available as an RMC/RUP plug-in Cécile Péraire Mike Edwards Angelo Fernandes Enrico Mancin Kathy Carroll ibm.com/redbooks International Technical Support Organization The IBM Rational Unified Process for System z July 2007 SG24-7362-00 Note: Before using this information and the product it supports, read the information in “Notices” on page vii. First Edition (July 2007) This edition applies to the IBM Rational Method Composer Version 7.1 © Copyright International Business Machines Corporation 2007. All rights reserved. Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents Notices . vii Trademarks . viii Preface . ix The team that wrote this IBM Redbooks publication . .x Become a published author . xii Comments welcome. xii Part 1. Introduction to the IBM Rational Unified Process for System z. 1 Chapter 1. Introduction. 3 1.1 Purpose. 4 1.2 Audience . 4 1.3 Rationale . 4 1.4 Scope . 5 1.5 Overview . 5 Part 2. The IBM Rational Unified Process for System z for Beginners . 9 Chapter 2. Introduction to the IBM Rational Unified Process and its extension to Service-Oriented Architecture. 11 2.1 Overview . 12 2.2 Introduction to RUP. 13 2.2.1 The heart of RUP . 13 2.2.2 The IBM Rational Method Composer (RMC) platform . 13 2.3 Key principles for successful software development.
    [Show full text]
  • An Overview of Security in the Freebsd Kernel 131 Dr
    AsiaBSDCon 2014 Proceedings March 13-16, 2014 Tokyo, Japan Copyright c 2014 BSD Research. All rights reserved. Unauthorized republication is prohibited. Published in Japan, March 2014 INDEX P1A: Bold, fast optimizing linker for BSD — Luba Tang P1B: Visualizing Unix: Graphing bhyve, ZFS and PF with Graphite 007 Michael Dexter P2A: LLVM in the FreeBSD Toolchain 013 David Chisnall P2B: NPF - progress and perspective 021 Mindaugas Rasiukevicius K1: OpenZFS: a Community of Open Source ZFS Developers 027 Matthew Ahrens K2: Bambi Meets Godzilla: They Elope 033 Eric Allman P3A: Snapshots, Replication, and Boot-Environments—How new ZFS utilities are changing FreeBSD & PC-BSD 045 Kris Moore P3B: Netmap as a core networking technology 055 Luigi Rizzo, Giuseppe Lettieri, and Michio Honda P4A: ZFS for the Masses: Management Tools Provided by the PC-BSD and FreeNAS Projects 065 Dru Lavigne P4B: OpenBGPD turns 10 years - Design, Implementation, Lessons learned 077 Henning Brauer P5A: Introduction to FreeNAS development 083 John Hixson P5B: VXLAN and Cloud-based networking with OpenBSD 091 Reyk Floeter INDEX P6A: Nested Paging in bhyve 097 Neel Natu and Peter Grehan P6B: Developing CPE Routers based on NetBSD: Fifteen Years of SEIL 107 Masanobu SAITOH and Hiroki SUENAGA P7A: Deploying FreeBSD systems with Foreman and mfsBSD 115 Martin Matuška P7B: Implementation and Modification for CPE Routers: Filter Rule Optimization, IPsec Interface and Ethernet Switch 119 Masanobu SAITOH and Hiroki SUENAGA K3: Modifying the FreeBSD kernel Netflix streaming servers — Scott Long K4: An Overview of Security in the FreeBSD Kernel 131 Dr. Marshall Kirk McKusick P8A: Transparent Superpages for FreeBSD on ARM 151 Zbigniew Bodek P8B: Carve your NetBSD 165 Pierre Pronchery and Guillaume Lasmayous P9A: How FreeBSD Boots: a soft-core MIPS perspective 179 Brooks Davis, Robert Norton, Jonathan Woodruff, and Robert N.
    [Show full text]