Appell Matrices

Total Page:16

File Type:pdf, Size:1020Kb

Appell Matrices Appell Matrices Tom Copeland, Cheviot Hills, Los Angeles, Ca., Sept. 23, 2020 Each polynomial in an Appell sequence has the form where I use the umbral notation and maneuver . I’ll refer to the as the base, or moment, sequence of the Appell sequence. The coefficients of the -th degree Appell polynomial are The only restriction on the constants is that to ensure a canonical raising op for the sequence. The binomial coefficients in this identity are the elements of the Pascal matrix. (All matrices are lower triangular matrices in this presentation unless otherwise indicated.) They play a central role in the Appell formalism and in umbral calculus in general. The associated exponential generating function for an Appell sequence is with and the base/moment sequence The coefficient matrix for the the Appell polynomials has the elements and, therefore, can be formed by multiplying the -th diagonal of the Pascal matrix by as in Developing an infinitesimal generator (infinigen) for the Pascal matrix enables us to easily characterize the inversion and product of the coefficient matrices of Appell sequences and to generalize the formalism to factorial matrices other than the Pascal. The infinigen for the Pascal matrix is, of course, an infinite matrix, but the truncation of the infinigen to rank (the n-jet of the infinigen, so to speak) is nilpotent of order , allowing us to deal only with finite matrices, or, equivalently, a graded algebra for the first polynomials of an Appell sequence. We could take the log of the Pascal matrix to obtain its infinigen, but to elucidate the connections to a broader calculus (or indeed easily justify taking the log), let's approach the infinigen via differential operators. The action of the derivative on a polynomial lowers the degree of the polynomial by one. The rank four matrix, , representing the operator for action in the power basis on the polynomial is, with zeros above the diagonal suppressed, Since repeating the differentiation again and again eventually annihilates the polynomial, the truncated infinigen rank must be nilpotent of order , i.e., in this instance, . Squaring the matrix gives the operator for twice differentiating the polynomial (or a 3-jet) and cubing (or thrice differentiating), We obtain the rank 4 submatrix of the Pascal matrix with the exponential The truncated Pascal matrix at any rank is generated in this manner by the infinigen with the only nonvanishing diagonal the first subdiagonal . The same is true for any factorial matrix, i.e., one with an infinigen with the only nonvanishing diagonal the first subdiagonal , so I want to present the results for the Pascal matrix in more general notation. The nonvanishing -th subdiagonal of is up to the last element terminating with the factor , a sliding product of equal number of factors for a given subdiagonal--one factor for the first subdiagonal; two, for the second; three, for the third, etc. just as we obtain for successive differentiation of . For the Pascal matrix, the exponential of this infinigen then has elements that can be represented as the binomial coefficients with the convention so that the binomial coefficient vanishes for . For generalized factorial matrices, an umbralized binomial coefficient can be used to represent each element concisely as vanishing for . (For an even more generalized binomial coefficient, see the Narayana numbers A001263.) ​ ​ Inspecting the binomial convolution formula in the introductory sentence, we see that the coefficient matrix for the first polynomials of an Appell sequence can be expressed as Therefore, multiplication of the coefficient matrices of two Appell sequences of rank is commutative and given by This consistently translates into the umbral composition of the Appell polynomials where the resulting Appell sequence has the base/moment sequence i.e., the binomial convolution of the base/moment sequences of the two Appells, which can also be obtained by multiplication of the e.g.f.s of the moment sequences Then the e.g.f. for the product of the coefficient matrices of two Appell sequences, or, the umbral composition of the two sequences is given by Now introduce a dual Appell sequence , the umbral compositional inverse (UCI), defined by the property implying for , This gives an intertwined recursion relation for the two sequences. The UCI relations also imply the e.g.f. identity which is the e.g.f. of the row polynomials of the identity matrix , the coefficient matrix for the prototypical self-umbrally-inverse Appell sequence of simple monomial powers for which . Consequently, the moment e.g.f.s of an Appell sequence and its unique Appell UCI are a pair of multiplicative inverses; i.e., and, equivalently (when considering only Appell coefficient matrices), the Appell coefficient matrices of the duo are a matrix inverse pair, i.e. Reprising, the group of Appell sequences is closed and Abelian under umbral composition, and the umbral composition of two Appells has the three equivalent reps 1) polynomials: ​ ​ 2) e.g.f.s: ​ ​ 3) coefficient matrices: ​ ​ with comprised of the binomial convolutions . The UCI relationship has the three manifestations 1) polynomials are umbral compositional inverses: ​ ​ 2) moment e.g.f.s are multiplicative inverses: ​ ​ ​ ​ 2) coefficient matrices are multiplicative inverses: ​ with the column vector with components resulting from the binomial convolutions . There are more relations presented in OEIS A133314, including connections to permutahedra ​ ​ and surjective mappings, and in previous posts on the Appell and other Sheffer sequences. One that I have alluded to in several OEIS entries, but not elsewhere, is that between production ​ matrices for Riordan arrays and matrix reps of the raising operator for an Appell sequence ​ incorporating and its powers. The raising op is defined by A derivation of diff op reps of follows from the interplay of the Appell sequence and its umbral inverse. With , so implying The last two equalities can be derived from the Pincherle derivative as in my posts "The ​ Pincherle Derivative and the Appell Raising Operator" and "Bernoulli Appells" and “The ​ ​ ​ ​ Creation / Raising Operators for Appell Sequences”, but here's yet another proof for the reduced ​ conjugation: Since the lowering op for Appells is the derivative op, i.e., , the action of the commutator on the power polynomials is so indeed More than one way to skin a cat though. Here’s an earlier, simpler derivation.. therefore, so for an analytic function Finally, the production matrix mentioned above is the transpose of the matrix rep for the raising operator. The more general Graves-Pincherle derivative for any two associated lowering and ​ ​ raising operators and for a polynomial/function sequence is Other factorial matrices can be found in OEIS (search for infingen in the OEIS). For example, the Lah matrix of OEIS A105278, a generalized factorial matrix whose infinigen is A132710, can ​ ​ ​ ​ be used to generate the generalized Appell polynomial sequence with the coefficient matrix Inverting and extracting diagonal constants gives This is a graded algebra, and contains the first four coefficients of the formal Taylor series of . (I say formal since as a graded algebra, it works for the formal e.g.f. of divergent series equally well.) The partition polynomials are the general Euler characteristic classes for the permutahedra (see A133314 for more on this). ​ ​ Since and are an inverse pair, the pair of polynomial sequences represented by their coefficients are an UCI pair. These are not Sheffer polynomial sequences but can be related to the Lah binomial Sheffer sequences. For an infingen that does not generate a factorial matrix, see A238385. For infingens, for the ​ ​ associated Laguerre polynomials, examples of general Sheffer sequences emerging from a binomial Sheffer sequence, see A132681. Several of my other posts that have Infinigen, Appell, ​ ​ or raising op in the titles contain related material. The representation of a matrix as where is a nilpotent infinigen with only the second subdiagonal nonvanishing allows for the definition of generalized Appell sequences in terms of a base/moment sequence with e.g.f. and the coefficient matrix in the power basis These polynomials share some of the properties of the canonical Appell sequences; for example, given the infinigen and the -th degree polynomial, all the lower degree polynomials are easily determined through the diagonal multiplication illustrated above that the coefficient matrix manifests. In addition, the umbral composition properties are isomorphic since If we change the basis set from. say, the powers to the divided power , we have a different set of infinigens with coefficient matrices formed by and convolutions of moment vectors defined by ordinary generating functions rather than e.g.f.s; where and the convolution of the two vectors is defined by multiplication of o.g.f.s, i.e., For example, the infingin associated with differentiation of divided powers in the divided powers basis has the nonvanishing subdiagonal of all ones reflecting . For more on this, see “Infinigens, the Pascal Triangle, and the Witt and Virasoro Algebras.” ​ ​ The recent MathOverflow question and answer “Are any interesting classes of polynomial ​ sequences Sheffer sequences groups under umbral composition?” presents some discussion ​ ​ of umbral composition along with a link to some generalizations in “Generalized Riordan groups ​ and operators on polynomials” by Zemei. ​ (By the way, umbral as coined by Sylvester
Recommended publications
  • Stirling Matrix Via Pascal Matrix
    LinearAlgebraanditsApplications329(2001)49–59 www.elsevier.com/locate/laa StirlingmatrixviaPascalmatrix Gi-SangCheon a,∗,Jin-SooKim b aDepartmentofMathematics,DaejinUniversity,Pocheon487-711,SouthKorea bDepartmentofMathematics,SungkyunkwanUniversity,Suwon440-746,SouthKorea Received11May2000;accepted17November2000 SubmittedbyR.A.Brualdi Abstract ThePascal-typematricesobtainedfromtheStirlingnumbersofthefirstkinds(n,k)and ofthesecondkindS(n,k)arestudied,respectively.Itisshownthatthesematricescanbe factorizedbythePascalmatrices.AlsotheLDU-factorizationofaVandermondematrixof theformVn(x,x+1,...,x+n−1)foranyrealnumberxisobtained.Furthermore,some well-knowncombinatorialidentitiesareobtainedfromthematrixrepresentationoftheStirling numbers,andthesematricesaregeneralizedinoneortwovariables.©2001ElsevierScience Inc.Allrightsreserved. AMSclassification:05A19;05A10 Keywords:Pascalmatrix;Stirlingnumber;Stirlingmatrix 1.Introduction Forintegersnandkwithnk0,theStirlingnumbersofthefirstkinds(n,k) andofthesecondkindS(n,k)canbedefinedasthecoefficientsinthefollowing expansionofavariablex(see[3,pp.271–279]): n n−k k [x]n = (−1) s(n,k)x k=0 and ∗ Correspondingauthor. E-mailaddresses:[email protected](G.-S.Cheon),[email protected](J.-S.Kim). 0024-3795/01/$-seefrontmatter2001ElsevierScienceInc.Allrightsreserved. PII:S0024-3795(01)00234-8 50 G.-S. Cheon, J.-S. Kim / Linear Algebra and its Applications 329 (2001) 49–59 n n x = S(n,k)[x]k, (1.1) k=0 where x(x − 1) ···(x − n + 1) if n 1, [x] = (1.2) n 1ifn = 0. It is known that for an n, k 0, the s(n,k), S(n,k) and [n]k satisfy the following Pascal-type recurrence relations: s(n,k) = s(n − 1,k− 1) + (n − 1)s(n − 1,k), S(n,k) = S(n − 1,k− 1) + kS(n − 1,k), (1.3) [n]k =[n − 1]k + k[n − 1]k−1, where s(n,0) = s(0,k)= S(n,0) = S(0,k)=[0]k = 0ands(0, 0) = S(0, 0) = 1, and moreover the S(n,k) satisfies the following formula known as ‘vertical’ recur- rence relation: n− 1 n − 1 S(n,k) = S(l,k − 1).
    [Show full text]
  • Pascal Matrices Alan Edelman and Gilbert Strang Department of Mathematics, Massachusetts Institute of Technology [email protected] and [email protected]
    Pascal Matrices Alan Edelman and Gilbert Strang Department of Mathematics, Massachusetts Institute of Technology [email protected] and [email protected] Every polynomial of degree n has n roots; every continuous function on [0, 1] attains its maximum; every real symmetric matrix has a complete set of orthonormal eigenvectors. “General theorems” are a big part of the mathematics we know. We can hardly resist the urge to generalize further! Remove hypotheses, make the theorem tighter and more difficult, include more functions, move into Hilbert space,. It’s in our nature. The other extreme in mathematics might be called the “particular case”. One specific function or group or matrix becomes special. It obeys the general rules, like everyone else. At the same time it has some little twist that connects familiar objects in a neat way. This paper is about an extremely particular case. The familiar object is Pascal’s triangle. The little twist begins by putting that triangle of binomial coefficients into a matrix. Three different matrices—symmetric, lower triangular, and upper triangular—can hold Pascal’s triangle in a convenient way. Truncation produces n by n matrices Sn and Ln and Un—the pattern is visible for n = 4: 1 1 1 1 1 1 1 1 1 1 2 3 4 1 1 1 2 3 S4 = L4 = U4 = . 1 3 6 10 1 2 1 1 3 1 4 10 20 1 3 3 1 1 We mention first a very specific fact: The determinant of every Sn is 1. (If we emphasized det Ln = 1 and det Un = 1, you would write to the Editor.
    [Show full text]
  • Arxiv:1904.01037V3 [Math.GR]
    AN EFFECTIVE LIE–KOLCHIN THEOREM FOR QUASI-UNIPOTENT MATRICES THOMAS KOBERDA, FENG LUO, AND HONGBIN SUN Abstract. We establish an effective version of the classical Lie–Kolchin Theo- rem. Namely, let A, B P GLmpCq be quasi–unipotent matrices such that the Jordan Canonical Form of B consists of a single block, and suppose that for all k ě 0 the matrix ABk is also quasi–unipotent. Then A and B have a common eigenvector. In particular, xA, Byă GLmpCq is a solvable subgroup. We give applications of this result to the representation theory of mapping class groups of orientable surfaces. 1. Introduction Let V be a finite dimensional vector space over an algebraically closed field. In this paper, we study the structure of certain subgroups of GLpVq which contain “sufficiently many” elements of a relatively simple form. We are motivated by the representation theory of the mapping class group of a surface of hyperbolic type. If S be an orientable surface of genus 2 or more, the mapping class group ModpS q is the group of homotopy classes of orientation preserving homeomor- phisms of S . The group ModpS q is generated by certain mapping classes known as Dehn twists, which are defined for essential simple closed curves of S . Here, an essential simple closed curve is a free homotopy class of embedded copies of S 1 in S which is homotopically essential, in that the homotopy class represents a nontrivial conjugacy class in π1pS q which is not the homotopy class of a boundary component or a puncture of S .
    [Show full text]
  • The Pascal Matrix Function and Its Applications to Bernoulli Numbers and Bernoulli Polynomials and Euler Numbers and Euler Polynomials
    The Pascal Matrix Function and Its Applications to Bernoulli Numbers and Bernoulli Polynomials and Euler Numbers and Euler Polynomials Tian-Xiao He ∗ Jeff H.-C. Liao y and Peter J.-S. Shiue z Dedicated to Professor L. C. Hsu on the occasion of his 95th birthday Abstract A Pascal matrix function is introduced by Call and Velleman in [3]. In this paper, we will use the function to give a unified approach in the study of Bernoulli numbers and Bernoulli poly- nomials. Many well-known and new properties of the Bernoulli numbers and polynomials can be established by using the Pascal matrix function. The approach is also applied to the study of Euler numbers and Euler polynomials. AMS Subject Classification: 05A15, 65B10, 33C45, 39A70, 41A80. Key Words and Phrases: Pascal matrix, Pascal matrix func- tion, Bernoulli number, Bernoulli polynomial, Euler number, Euler polynomial. ∗Department of Mathematics, Illinois Wesleyan University, Bloomington, Illinois 61702 yInstitute of Mathematics, Academia Sinica, Taipei, Taiwan zDepartment of Mathematical Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada, 89154-4020. This work is partially supported by the Tzu (?) Tze foundation, Taipei, Taiwan, and the Institute of Mathematics, Academia Sinica, Taipei, Taiwan. The author would also thank to the Institute of Mathematics, Academia Sinica for the hospitality. 1 2 T. X. He, J. H.-C. Liao, and P. J.-S. Shiue 1 Introduction A large literature scatters widely in books and journals on Bernoulli numbers Bn, and Bernoulli polynomials Bn(x). They can be studied by means of the binomial expression connecting them, n X n B (x) = B xn−k; n ≥ 0: (1) n k k k=0 The study brings consistent attention of researchers working in combi- natorics, number theory, etc.
    [Show full text]
  • Q-Pascal and Q-Bernoulli Matrices, an Umbral Approach Thomas Ernst
    U.U.D.M. Report 2008:23 q-Pascal and q-Bernoulli matrices, an umbral approach Thomas Ernst Department of Mathematics Uppsala University q- PASCAL AND q-BERNOULLI MATRICES, AN UMBRAL APPROACH THOMAS ERNST Abstract A q-analogue Hn,q ∈ Mat(n)(C(q)) of the Polya-Vein ma- trix is used to define the q-Pascal matrix. The Nalli–Ward–AlSalam (NWA) q-shift operator acting on polynomials is a commutative semi- group. The q-Cauchy-Vandermonde matrix generalizing Aceto-Trigiante is defined by the NWA q-shift operator. A new formula for a q-Cauchy- Vandermonde determinant with matrix elements equal to q-Ward num- bers is found. The matrix form of the q-derivatives of the q-Bernoulli polynomials can be expressed in terms of the Hn,q. With the help of a new q-matrix multiplication certain special q-analogues of Aceto- Trigiante and Brawer-Pirovino are found. The q-Cauchy-Vandermonde matrix can be expressed in terms of the q-Bernoulli matrix. With the help of the Jackson-Hahn-Cigler (JHC) q-Bernoulli polynomials, the q-analogue of the Bernoulli complementary argument theorem is ob- tained. Analogous results for q-Euler polynomials are obtained. The q-Pascal matrix is factorized by the summation matrices and the so- called q-unit matrices. 1. Introduction In this paper we are going to find q-analogues of matrix formulas from two pairs of authors: L. Aceto, & D. Trigiante [1], [2] and R. Brawer & M.Pirovino [5]. The umbral method of the author [11] is used to find natural q-analogues of the Pascal- and the Cauchy-Vandermonde matrices.
    [Show full text]
  • Relation Between Lah Matrix and K-Fibonacci Matrix
    International Journal of Mathematics Trends and Technology Volume 66 Issue 10, 116-122, October 2020 ISSN: 2231 – 5373 /doi:10.14445/22315373/IJMTT-V66I10P513 © 2020 Seventh Sense Research Group® Relation between Lah matrix and k-Fibonacci Matrix Irda Melina Zet#1, Sri Gemawati#2, Kartini Kartini#3 #Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Riau Bina Widya Campus, Pekanbaru 28293, Indonesia Abstract. - The Lah matrix is represented by 퐿푛, is a matrix where each entry is Lah number. Lah number is count the number of ways a set of n elements can be partitioned into k nonempty linearly ordered subsets. k-Fibonacci matrix, 퐹푛(푘) is a matrix which all the entries are k-Fibonacci numbers. k-Fibonacci numbers are consist of the first term being 0, the second term being 1 and the next term depends on a natural number k. In this paper, a new matrix is defined namely 퐴푛 where it is not commutative to multiplicity of two matrices, so that another matrix 퐵푛 is defined such that 퐴푛 ≠ 퐵푛. The result is two forms of factorization from those matrices. In addition, the properties of the relation of Lah matrix and k- Fibonacci matrix is yielded as well. Keywords — Lah numbers, Lah matrix, k-Fibonacci numbers, k-Fibonacci matrix. I. INTRODUCTION Guo and Qi [5] stated that Lah numbers were introduced in 1955 and discovered by Ivo. Lah numbers are count the number of ways a set of n elements can be partitioned into k non-empty linearly ordered subsets. Lah numbers [9] is denoted by 퐿(푛, 푘) for every 푛, 푘 are elements of integers with initial value 퐿(0,0) = 1.
    [Show full text]
  • Factorizations for Q-Pascal Matrices of Two Variables
    Spec. Matrices 2015; 3:207–213 Research Article Open Access Thomas Ernst Factorizations for q-Pascal matrices of two variables DOI 10.1515/spma-2015-0020 Received July 15, 2015; accepted September 14, 2015 Abstract: In this second article on q-Pascal matrices, we show how the previous factorizations by the sum- mation matrices and the so-called q-unit matrices extend in a natural way to produce q-analogues of Pascal matrices of two variables by Z. Zhang and M. Liu as follows 0 ! 1n−1 i Φ x y xi−j yi+j n,q( , ) = @ j A . q i,j=0 We also find two different matrix products for 0 ! 1n−1 i j Ψ x y i j + xi−j yi+j n,q( , ; , ) = @ j A . q i,j=0 Keywords: q-Pascal matrix; q-unit matrix; q-matrix multiplication 1 Introduction Once upon a time, Brawer and Pirovino [2, p.15 (1), p. 16(3)] found factorizations of the Pascal matrix and its inverse by the summation and difference matrices. In another article [7] we treated q-Pascal matrices and the corresponding factorizations. It turns out that an analoguous reasoning can be used to find q-analogues of the two variable factorizations by Zhang and Liu [13]. The purpose of this paper is thus to continue the q-analysis- matrix theme from our earlier papers [3]-[4] and [6]. To this aim, we define two new kinds of q-Pascal matrices, the lower triangular Φn,q matrix and the Ψn,q, both of two variables. To be able to write down addition and subtraction formulas for the most important q-special functions, i.e.
    [Show full text]
  • Euler Matrices and Their Algebraic Properties Revisited
    Appl. Math. Inf. Sci. 14, No. 4, 1-14 (2020) 1 Applied Mathematics & Information Sciences An International Journal http://dx.doi.org/10.18576/amis/AMIS submission quintana ramirez urieles FINAL VERSION Euler Matrices and their Algebraic Properties Revisited Yamilet Quintana1,∗, William Ram´ırez 2 and Alejandro Urieles3 1 Department of Pure and Applied Mathematics, Postal Code: 89000, Caracas 1080 A, Simon Bol´ıvar University, Venezuela 2 Department of Natural and Exact Sciences, University of the Coast - CUC, Barranquilla, Colombia 3 Faculty of Basic Sciences - Mathematics Program, University of Atl´antico, Km 7, Port Colombia, Barranquilla, Colombia Received: 2 Sep. 2019, Revised: 23 Feb. 2020, Accepted: 13 Apr. 2020 Published online: 1 Jul. 2020 Abstract: This paper addresses the generalized Euler polynomial matrix E (α)(x) and the Euler matrix E . Taking into account some properties of Euler polynomials and numbers, we deduce product formulae for E (α)(x) and define the inverse matrix of E . We establish some explicit expressions for the Euler polynomial matrix E (x), which involves the generalized Pascal, Fibonacci and Lucas matrices, respectively. From these formulae, we get some new interesting identities involving Fibonacci and Lucas numbers. Also, we provide some factorizations of the Euler polynomial matrix in terms of Stirling matrices, as well as a connection between the shifted Euler matrices and Vandermonde matrices. Keywords: Euler polynomials, Euler matrix, generalized Euler matrix, generalized Pascal matrix, Fibonacci matrix,
    [Show full text]
  • An Effective Lie–Kolchin Theorem for Quasi-Unipotent Matrices
    Linear Algebra and its Applications 581 (2019) 304–323 Contents lists available at ScienceDirect Linear Algebra and its Applications www.elsevier.com/locate/laa An effective Lie–Kolchin Theorem for quasi-unipotent matrices Thomas Koberda a, Feng Luo b,∗, Hongbin Sun b a Department of Mathematics, University of Virginia, Charlottesville, VA 22904-4137, USA b Department of Mathematics, Rutgers University, Hill Center – Busch Campus, 110 Frelinghuysen Road, Piscataway, NJ 08854, USA a r t i c l e i n f oa b s t r a c t Article history: We establish an effective version of the classical Lie–Kolchin Received 27 April 2019 Theorem. Namely, let A, B ∈ GLm(C)be quasi-unipotent Accepted 17 July 2019 matrices such that the Jordan Canonical Form of B consists Available online 23 July 2019 of a single block, and suppose that for all k 0the Submitted by V.V. Sergeichuk matrix ABk is also quasi-unipotent. Then A and B have a A, B < C MSC: common eigenvector. In particular, GLm( )is a primary 20H20, 20F38 solvable subgroup. We give applications of this result to the secondary 20F16, 15A15 representation theory of mapping class groups of orientable surfaces. Keywords: © 2019 Elsevier Inc. All rights reserved. Lie–Kolchin theorem Unipotent matrices Solvable groups Mapping class groups * Corresponding author. E-mail addresses: [email protected] (T. Koberda), fl[email protected] (F. Luo), [email protected] (H. Sun). URLs: http://faculty.virginia.edu/Koberda/ (T. Koberda), http://sites.math.rutgers.edu/~fluo/ (F. Luo), http://sites.math.rutgers.edu/~hs735/ (H.
    [Show full text]
  • Package 'Matrixcalc'
    Package ‘matrixcalc’ July 28, 2021 Version 1.0-5 Date 2021-07-27 Title Collection of Functions for Matrix Calculations Author Frederick Novomestky <[email protected]> Maintainer S. Thomas Kelly <[email protected]> Depends R (>= 2.0.1) Description A collection of functions to support matrix calculations for probability, econometric and numerical analysis. There are additional functions that are comparable to APL functions which are useful for actuarial models such as pension mathematics. This package is used for teaching and research purposes at the Department of Finance and Risk Engineering, New York University, Polytechnic Institute, Brooklyn, NY 11201. Horn, R.A. (1990) Matrix Analysis. ISBN 978-0521386326. Lancaster, P. (1969) Theory of Matrices. ISBN 978-0124355507. Lay, D.C. (1995) Linear Algebra: And Its Applications. ISBN 978-0201845563. License GPL (>= 2) Repository CRAN Date/Publication 2021-07-28 08:00:02 UTC NeedsCompilation no R topics documented: commutation.matrix . .3 creation.matrix . .4 D.matrix . .5 direct.prod . .6 direct.sum . .7 duplication.matrix . .8 E.matrices . .9 elimination.matrix . 10 entrywise.norm . 11 1 2 R topics documented: fibonacci.matrix . 12 frobenius.matrix . 13 frobenius.norm . 14 frobenius.prod . 15 H.matrices . 17 hadamard.prod . 18 hankel.matrix . 19 hilbert.matrix . 20 hilbert.schmidt.norm . 21 inf.norm . 22 is.diagonal.matrix . 23 is.idempotent.matrix . 24 is.indefinite . 25 is.negative.definite . 26 is.negative.semi.definite . 28 is.non.singular.matrix . 29 is.positive.definite . 31 is.positive.semi.definite . 32 is.singular.matrix . 34 is.skew.symmetric.matrix . 35 is.square.matrix . 36 is.symmetric.matrix .
    [Show full text]
  • [Math.NT] 3 Dec 2016 Fractal Generalized Pascal Matrices
    Fractal generalized Pascal matrices E. Burlachenko Abstract Set of generalized Pascal matrices whose elements are generalized binomial coef- ficients is considered as an integral object. The special system of generalized Pascal matrices, based on which we are building fractal generalized Pascal matrices, is in- troduced. Pascal matrix (Pascal triangle) is the Hadamard product of the fractal generalized Pascal matrices whose elements equal to pk, where p is a fixed prime number, k = 0, 1, 2,... The concept of zero generalized Pascal matrices, an example of which is the Pascal triangle modulo 2, arise in connection with the system of matrices introduced. 1 Introduction Consider the following generalization of the binomial coefficients [1]. For the coefficients of the formal power series b (x), b0 =0; bn =06 , n> 0, denote n n bn! n b0!=1, bn!= bm, = ; =0, m > n. m b !b − ! m m=1 b m n m b Y Then n n − 1 b − b n − 1 = + n m . m m − 1 b − m b b n m b n-th coefficient of the series a (x), (n, m)-th element of the matrix A, n-th row and n-th column of the matrixA will be denoted respectively by n [x ] a (x) , (A)n,m, [n, →] A, [↑, n] A. We associate rows and columns of matrices with the generating functions of their elements. For the elements of the lower triangular matrices will be appreciated that (A)n,m = 0, if n < m. Consider matrix arXiv:1612.00970v1 [math.NT] 3 Dec 2016 c0c0 0 0 0 0 ..
    [Show full text]
  • ZERO COMMUTING MATRIX with PASCAL MATRIX Eunmi Choi* 1
    JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 33, No. 4, November 2020 http://dx.doi.org/10.14403/jcms.2020.33.4.413 ZERO COMMUTING MATRIX WITH PASCAL MATRIX Eunmi Choi* Abstract. In this work we study 0-commuting matrix C(0) under relationships with the Pascal matrix C(1). Like kth power C(1)k is an arithmetic matrix of (kx + y)n with yx = xy (k ≥ 1), we express C(0)k as an arithmetic matrix of certain polynomial with yx = 0. 1. Introduction An arithmetic matrix of a polynomial f(x) is a matrix consisting of coefficients of f(x). The Pascal matrix is a famous arithmetic matrix n n P n k n−k of (x + y) = k x y , in which the commutativity yx = xy is k=0 assumed tacitly. As a generalization, with two q-commuting variables x n and y satisfying yx = qxy (q 2 Z), the arithmetic matrix of (x + y) is called a q-commuting matrix denoted by C(q) [1]. The C(q) is composed hii (1−qi)(1−qi−1)···(1−qi−j+1) of q-binomials = 2 j [7]. When q = ±1, C(1) j q (1−q)(1−q )···(1−q ) is the Pascal matrix and C(−1) is the Pauli Pascal matrix [4]. A block 2i 3 i i h1 i matrix form C(−1) = 4i2i i 5 with a 2 × 2 matrix i = 11 looks very i3i 3i i ··· "1 # 11 similar to C(1) [5]. In particular if q = 0 then C(0) = 111 .
    [Show full text]