TREES in the CITY Horticultural Derelicts Or Unsung Heroes?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Experimental Test of Assisted Migration for Conservation of Locally Range-Restricted Plants in Alberta, Canada
Global Ecology and Conservation 17 (2019) e00572 Contents lists available at ScienceDirect Global Ecology and Conservation journal homepage: http://www.elsevier.com/locate/gecco Original Research Article Experimental test of assisted migration for conservation of locally range-restricted plants in Alberta, Canada Yuzhuo Wang a, b, 1, Jennine L.M. Pedersen c, 1, S. Ellen Macdonald c, * ** Scott E. Nielsen c, , Jian Zhang a, b, a Zhejiang Tiantong Forest Ecosystem National Observation and Research Station & Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, PR China b Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China c Department of Renewable Resources, University of Alberta, Edmonton, Canada article info abstract Article history: Given projected rates of climate change, species with limited dispersal may be unable to Received 10 October 2018 migrate at the pace necessary to maintain their current climate niches. This could lead to Received in revised form 19 February 2019 increased risk of extirpation or extinction, especially for locally range-restricted species Accepted 19 February 2019 within fragmented landscapes. Assisted migration has been suggested as a proactive conservation tool to mitigate these risks. We tested assisted migration for Liatris ligulistylis Keywords: and Houstonia longifolia, two perennial forbs considered ‘vulnerable’ and ‘imperilled’, Assisted migration respectively, in Alberta, Canada, where they are at their northern and western range limits. Range-restricted species Climate change Both mature plants and seeds were translocated to replicate sites at four geographic lo- Range shift cations along a north-south gradient representing the current ranges of the species Vulnerability (central) and areas south (warmer) and north (cooler) of their current range. -
Halesia Spp. Family: Styracaceae Silverbell
Halesia spp. Family: Styracaceae Silverbell The genus Halesia is composed of about 4 species native to: the United States [3] and China [1]. The word halesia is named after Stephen Hales (1677-1761), British clergyman and author of Vegetable Staticks (1722). Halesia carolina-Bell-tree, Bell Olivetree, Bellwood, Box-elder, Carolina Silverbell, Catbell, Florida Silverbell, Four-winged Halesia, Little Silverbell, No-name-tree, Opossum, Opossumwood, Mountain Silverbell, Rattle-box, Silverbell-tree, Silver-tree, Snowdrop-tree, Tisswood, Wild Olivetree Halesia diptera-Cowlicks, Silverbell-tree, Snowdrop-tree, Southern Silverbell-tree, Two Wing Silverbell Halesia parviflora-Florida Silverbell, Little Silverbell. Distribution Southeastern United States and China. The Tree Silverbells are shrubs or trees with scaly reddish brown bark. The leaves and small branches are covered with stellate (star shaped) hairs. The showy white flowers are produced in small, pendulous clusters. They produce dry, winged fruits (samara). Silverbells can reach a height of 100 feet, although they normally grow to 40 feet. The bark is thin, separating into slightly ridged, reddish brown scales. The Wood General The wood of Silverbell is brown, strong, dense and close grained. It has a wide white sapwood and a pale brown heartwood. The luster is medium and it has no odor or taste. The texture is fine and uniform, with a straight grain. Mechanical Properties (2-inch standard) Compression Specific MOE MOR Parallel Perpendicular WMLa Hardness Shear gravity GPa MPa MPa MPa kJ/m3 N MPa Green .42 8.0 11.8 19.5 3.0 60.7 2090 6.4 Dry .48 9.1 59.3 35.4 4.7 47.6 2624 8.1 aWML = Work to maximum load. -
Pages 121-166
Cost Analysis Figure 21. Estimated Unit Costs for Installation and Maintenance Procedures (2004) Costs are based on average conditions calculated from research plot applications. Costs can vary considerably depending on specific site conditions. These examples are intended for comparison purposes and should not be used as bid prices. Note: Estimated costs do not include bark mulch applied as a continuous bed. If that is the desired treatment, an additional mulch materials and application cost would apply. Estimated costs do not include plant or installation warranties. Enhancing Delaware Highways Cost Analysis 122 Figure 21. Estimated Costs for Installation and Maintenance, for comparison (2004) Drilling holes prior to planting quart containers. Note: Estimated costs do not include bark mulch applied as a continuous bed. If that is the desired treatment, an additional mulch materials and application cost would apply. Estimated costs do not include plant or installation warranties. Enhancing Delaware Highways Cost Analysis 124 Appendix A: Checklists–Inventory of Site Conditions 2. Roadway Limitations Checklist Check the roadside zone(s) included in the location to be landscaped: J Back slope or cut slope J Swale or ditch zone 1. Climate and Growth Conditions Checklist J Approach or shoulder zone J Edge or border zone J Front or fill slope Check the appropriate clear zone requirement: Check the appropriate cold hardiness zone: J Standard 30 feet J Other ( feet) J Zone 6 or J Zone 7 Presence of guard rail and/or barrier curb: Guard rail -
Photos from the 48Th Annual Pilgrimage ISSUE
Volume 92 Number 3 May 2017 Georgia Botanical Society IN THIS Photos from the 48th Annual Pilgrimage ISSUE: Trip Reports - P3, P5 Upcoming Field Trips - P7-11 From Shakerag Hollow (#2): Dutchman’s britches (Dicentra cucullaria) on left, and, on right: Trillium grandiflorum with large-flowered bellwort (Uvularia grandiflora;) photos by Charles Seabrook. Above: the group at Big Soddy Creek Gulf #16 (Photo: Mitchell Kent); Below: the group at Shirley Miller Wildflower Trail #17 (Photo: Jim Drake) Above: Shooting star (Dodecatheon meadia) on trip #23 (Photo:E. Honeycutt) 2 BotSoc News, May 2017 President’s Perspective We have just had another fantastic pilgrimage at our first out-of-state location—Chattanooga. Our program was enriched with sites, field trip leaders, and participants from Tennessee. The weather was gorgeous and the wildflowers on time. Facilities for the social and banquet were excellent—I loved the towing museum and train station venues. This year we had three students receiving scholarships to attend the pilgrimage: Ashley DeSensi from Columbus State, Bridget Piatt from Gordon State, and Loy Xingwen from Emory. If you see any of these students on future field trips, be sure to welcome them. They were joined by Brandi Griffin from Valdosta State University, who was a scholarship recipient in 2015 and who has attended every pilgrimage and several field trips since. It is encouraging to see students continuing to participate. These scholarships are a great way to recruit young professionals BotSoc News into BotSoc. If you know students taking botany-type courses, please encourage is published seven times a year them to apply for scholarships to attend the pilgrimage. -
Phylogenetic Analyses of Juniperus Species in Turkey and Their Relations with Other Juniperus Based on Cpdna Supervisor: Prof
MOLECULAR PHYLOGENETIC ANALYSES OF JUNIPERUS L. SPECIES IN TURKEY AND THEIR RELATIONS WITH OTHER JUNIPERS BASED ON cpDNA A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY BY AYSUN DEMET GÜVENDİREN IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN BIOLOGY APRIL 2015 Approval of the thesis MOLECULAR PHYLOGENETIC ANALYSES OF JUNIPERUS L. SPECIES IN TURKEY AND THEIR RELATIONS WITH OTHER JUNIPERS BASED ON cpDNA submitted by AYSUN DEMET GÜVENDİREN in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Department of Biological Sciences, Middle East Technical University by, Prof. Dr. Gülbin Dural Ünver Dean, Graduate School of Natural and Applied Sciences Prof. Dr. Orhan Adalı Head of the Department, Biological Sciences Prof. Dr. Zeki Kaya Supervisor, Dept. of Biological Sciences METU Examining Committee Members Prof. Dr. Musa Doğan Dept. Biological Sciences, METU Prof. Dr. Zeki Kaya Dept. Biological Sciences, METU Prof.Dr. Hayri Duman Biology Dept., Gazi University Prof. Dr. İrfan Kandemir Biology Dept., Ankara University Assoc. Prof. Dr. Sertaç Önde Dept. Biological Sciences, METU Date: iii I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work. Name, Last name : Aysun Demet GÜVENDİREN Signature : iv ABSTRACT MOLECULAR PHYLOGENETIC ANALYSES OF JUNIPERUS L. SPECIES IN TURKEY AND THEIR RELATIONS WITH OTHER JUNIPERS BASED ON cpDNA Güvendiren, Aysun Demet Ph.D., Department of Biological Sciences Supervisor: Prof. -
Meadows Farms Nurseries Japanese Aucuba
Japanese Aucuba Aucuba japonica Height: 8 feet Spread: 8 feet Sunlight: Hardiness Zone: 6b Other Names: Spotted Laurel Japanese Aucuba foliage Description: Photo courtesy of NetPS Plant Finder An interesting evergreen shrub that solves the problem of the most shaded garden areas; female plants produce berries; ideal as a dense screen; drought tolerant once established Ornamental Features Japanese Aucuba has attractive yellow-spotted dark green foliage. The glossy pointy leaves are highly ornamental and remain dark green throughout the winter. Neither the flowers nor the fruit are ornamentally significant. Landscape Attributes Japanese Aucuba is a dense multi-stemmed evergreen shrub with a more or less rounded form. Its average texture blends into the landscape, but can be balanced by one or two finer or coarser trees or shrubs for an effective composition. This is a relatively low maintenance shrub, and can be pruned at anytime. It has no significant negative characteristics. Japanese Aucuba is recommended for the following landscape applications; - Accent - Mass Planting - Hedges/Screening - General Garden Use Planting & Growing Japanese Aucuba will grow to be about 8 feet tall at maturity, with a spread of 8 feet. It has a low canopy, and is suitable for planting under power lines. It grows at a fast rate, and under ideal conditions can be expected to live for approximately 20 years. This shrub does best in partial shade to shade. It does best in average to evenly moist conditions, but will not tolerate standing water. It is not particular as to soil pH, but grows best in rich soils. It is somewhat tolerant of urban pollution, and will benefit from being planted in a relatively sheltered location. -
Morphology and Morphogenesis of the Seed Cones of the Cupressaceae - Part II Cupressoideae
1 2 Bull. CCP 4 (2): 51-78. (10.2015) A. Jagel & V.M. Dörken Morphology and morphogenesis of the seed cones of the Cupressaceae - part II Cupressoideae Summary The cone morphology of the Cupressoideae genera Calocedrus, Thuja, Thujopsis, Chamaecyparis, Fokienia, Platycladus, Microbiota, Tetraclinis, Cupressus and Juniperus are presented in young stages, at pollination time as well as at maturity. Typical cone diagrams were drawn for each genus. In contrast to the taxodiaceous Cupressaceae, in Cupressoideae outgrowths of the seed-scale do not exist; the seed scale is completely reduced to the ovules, inserted in the axil of the cone scale. The cone scale represents the bract scale and is not a bract- /seed scale complex as is often postulated. Especially within the strongly derived groups of the Cupressoideae an increased number of ovules and the appearance of more than one row of ovules occurs. The ovules in a row develop centripetally. Each row represents one of ascending accessory shoots. Within a cone the ovules develop from proximal to distal. Within the Cupressoideae a distinct tendency can be observed shifting the fertile zone in distal parts of the cone by reducing sterile elements. In some of the most derived taxa the ovules are no longer (only) inserted axillary, but (additionally) terminal at the end of the cone axis or they alternate to the terminal cone scales (Microbiota, Tetraclinis, Juniperus). Such non-axillary ovules could be regarded as derived from axillary ones (Microbiota) or they develop directly from the apical meristem and represent elements of a terminal short-shoot (Tetraclinis, Juniperus). -
A Note on Magnolia, Mainly of Sections Manglietia and Michelia Subgenus
A note on Magnolia, mainly of sections Manglietia and Michelia subgenus Magnolia (Magnoliaceae) A note of caution concerning the ultimate heights that may be achieved in cultivation by numerous of the newer evergreen magnolias from Asia, is the theme of this article by CHRIS CALLAGHAN and S. K. PNG of the Australian Bicentennial Arboretum (ABA). Following Thomas Methuen-Campbell’s interesting report in the 2011 IDS Yearbook concerning the study weekend held in June of that year at RHS Wisley, Surrey, to discuss “summer” flowering magnolias (see Endnote), the authors thought they should write to mention an important consideration before contemplating planting of these trees in gardens, or indeed any tree in a garden, particularly the average small garden. We are not sure if the ultimate size of many of these magnolias was discussed with those attending the study weekend, since most of their maximum known heights were not mentioned in the article. However, we believe any readers tempted by the article to purchase and plant out most of the evergreen magnolias featured (previously in the genera Manglietia, Michelia or Parakmeria) in a normal suburban front or backyard in relatively 46 warm, sheltered, near frost-free areas, will be ultimately dismayed by the sizes they reach (see Figlar 2009 for reasons behind the reduction of genera). Even allowing that these predominantly warm-temperate to sub-tropical forest trees may not achieve their maximum potential sizes in the milder regions of temperate Europe, most are still likely to overtop (and overshadow!) two or three storey homes or apartments, especially with a warming climate. -
Pennsylvania Natural Heritage Program Plant Species List
Plant Species Page 1 of 19 Home ER Feedback What's New More on PNHP slpecies Lit't~s• " All Species Types " Plants " Vertebrates " Invertebrates Plant Species List " Geologic Features Species " Natural By Community Types Coun ty.FiN Watershed I * Rank and ý7hOW all Species: Status Definitions Records Can Be Sorted By Clicking Column Name * Species Fact Export list to Text Sheets Proposed Global State State Federal Scientific Name Common Name State Rank Rank Status Status * County Natural Status Three-seeded Heritage Acalypha dearnii G4? Sx N PX Mercury Inventories Aconitum reclinatum White Monkshood G3 S1 PE PE (PDF) Aconitum uncinaturn Blue Monkshood G4 S2 PT PT Acorus americanus Sweet Flag G5 S1 PE PE Aleutian Adiantum aleuticum G5? SNR TU TU * Plant Maidenhair Fern Community Aeschynomene Sensitive Joint- G2 Sx PX PX LT Information virginica vetch (PDF)' Eared False- Agalinis auriculata G3 $1 PE PE foxglove Blue-ridge False- Agalinis decemloba G4Q Sx PX PX foxglove o PNDI Project Small-flowered Agalinis paupercula G5 S1 PE PE Planning False-foxglove Environmental Agrostis altissima Tall Bentgrass G4 Sx PX PX Review Aletris farinosa Colic-root G5 S1 TU PE Northern Water- Alisma triviale G5 S1 PE PE NOTE:Clicking plantain this link opens a Alnus viridis Mountain Alder G5 S1 PE PE new browser Alopecurus aequalis Short-awn Foxtail G5 S3 N TU PS window Amaranthus Waterhemp G5 S3 PR PR cannabinus Ragweed Amelanchier Oblong-fruited G5 $1 PE PE bartramiana Serviceberry Amelanchier Serviceberry G5 SNR N UEF canadensis http://www.naturalheritage.state.pa.us/PlantsPage.aspx -
Banana Shrub Scientific Name: Michelia Figo Order
Common Name: Banana Shrub Scientific Name: Michelia figo Order: Magnoliales Family: Magnoliaceae Description The Banana Shrub’s evergreen leaves are simple and develop in an alternate pattern. The leaves’ shapes are narrowly oval or slightly obovate. They are 1½ to 4 inches long and have a width of ½ to 2 inches. In the younger stages the leaves are covered with brownish pubescence. At the mature stage, the leaves are lustrous and rich, dark green with an entire leaf margin. It has a ½ inch long, brown pubescent petiole. The Banana Shrub’s flowers are large and ovoid, ranging from ½ to 1 inch long when mature. They are 6 to 9 tepaled, cup-shaped flowers and are extremely fragrant. They are covered with greenish to silky brown hairs and diverge from a rusty brown peduncular stalk at approximately a 30 degree angle. In the vegetative stage, the flowers 1 are not as plump, /8 to ¼ inch long, and are covered with dark brown, rusty pubescence. The flowers bloom in April through June. Growth Habit 1 1 At a very early stage, the stem of the banana shrub is /16 to /8 inch in diameter covered in short rusty brown pubescence. As the plant matures the stem gets much larger but keeps its gray- brown color. The plant is tends to be a slow grower with a rounded, open habit. It can grow to be 10 to 15 feet tall if it is left unpruned. Hardiness Zone(s) Banana shrub can grow in zones 7 to 10, though Zone 8 is the best because of the warmer temperatures. -
"Plant Anatomy". In: Encyclopedia of Life Sciences
Plant Anatomy Introductory article Gregor Barclay, University of the West Indies, St Augustine, Trinidad and Tobago Article Contents . Introduction Plant anatomy describes the structure and organization of the cells, tissues and organs . Meristems of plants in relation to their development and function. Dermal Layers . Ground Tissues Introduction . Vascular Tissues . The Organ System Higher plants differ enormously in their size and appear- . Acknowledgements ance, yet all are constructed of tissues classed as dermal (delineating boundaries created at tissue surfaces), ground (storage, support) or vascular (transport). These are meristems arise in the embryo, the ground meristem, which organized to form three vegetative organs: roots, which produces cortex and pith, and the procambium, which function mainly to provide anchorage, water, and nutri- produces primary vascular tissues. In shoot and root tips, ents;stems, which provide support;and leaves, which apical meristems add length to the plant, and axillary buds produce food for growth. Organs are variously modified to give rise to branches. Intercalary meristems, common in perform functions different from those intended, and grasses, are found at the nodes of stems (where leaves arise) indeed the flowers of angiosperms are merely collections of and in the basal regions of leaves, and cause these organs to leaves highly modified for reproduction. The growth and elongate. All of these are primary meristems, which development of tissues and organs are controlled in part by establish the pattern of primary growth in plants. groups of cells called meristems. This introduction to plant Stems and roots add girth through the activity of anatomy begins with a description of meristems, then vascular cambium and cork cambium, lateral meristems describes the structure and function of the tissues and that arise in secondary growth, a process common in organs, modifications of the organs, and finally describes dicotyledonous plants (Figure 2). -
Florida Installation Guide
Hedgerow Planting (422) for Pollinators Florida Installation Guide February 2015 The Xerces Society for Invertebrate Conservation Brown-belted bumble bee (Bombus griseocollis) heading to highbush blueberry (Vaccinium corymbosum). (Photograph by www.xerces.org Nancy Lee Adamson, The Xerces Society.) Acknowledgements This material is based upon work supported by the Natural Resources Conservation Service, U.S. Department of Agriculture, under number 69-3A75-12-253. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the U.S. Department of Agriculture. Financial support to the Xerces Society for the development of this guide was provided by the Audrey & J.J. Martindale Foundation, Aveda, Cascadian Farm, Ceres Trust, CS Fund, Disney Worldwide Conservation Fund, The Dudley Foundation, The Elizabeth Ordway Dunn Foundation, Endangered Species Chocolate, General Mills, SeaWorld & Busch Gardens Conservation Fund, Turner Foundation, Inc., The White Pine Fund, Whole Foods Market and its vendors, Whole Systems Foundation, the Natural Resources Conservation Service (NRCS), and Xerces Society members. The authors would like to thank Bob Glennon, Ernst Conservation Seed Company, Gil Nelson, Mark Garland (USDA–NRCS), Drs. Cory Stanley-Stahr, Jamie Ellis, and Jaret Daniels (University of Florida–Gainesville), Straughn Farms, and the USDA–NRCS Brooksville Plant Materials Center. Authors This guide was written in November 2012 by Mace Vaughan, Eric Lee-Mäder, Jessa Kay Cruz, Jolie Goldenetz-Dollar, and Brianna Borders of the Xerces Society for Invertebrate Conservation. Please contact Mace Vaughan ([email protected]) to improve this publication. Revised edition Updated in November 2014 by Dr.