Gnuplot 4.4 an Interactive Plotting Program Thomas Williams & Colin Kelley

Total Page:16

File Type:pdf, Size:1020Kb

Gnuplot 4.4 an Interactive Plotting Program Thomas Williams & Colin Kelley gnuplot 4.4 An Interactive Plotting Program Thomas Williams & Colin Kelley Version 4.4 organized by: Hans-Bernhard Br¨oker, Ethan A Merritt, and others Major contributors (alphabetic order): Hans-Bernhard Br¨oker John Campbell Robert Cunningham David Denholm Gershon Elber Roger Fearick Carsten Grammes Lucas Hart Lars Hecking Thomas Koenig David Kotz Ed Kubaitis Russell Lang Timoth´eeLecomte Alexander Lehmann Alexander Mai Ethan A Merritt Petr Mikul´ık Carsten Steger Tom Tkacik Jos Van der Woude Alex Woo James R. Van Zandt Johannes Zellner Copyright c 1986 - 1993, 1998, 2004 Thomas Williams, Colin Kelley Copyright c 2004 - 2011 various authors Mailing list for comments: [email protected] Mailing list for bug reports: [email protected] Web access (preferred): http://sourceforge.net/projects/gnuplot This manual was originally prepared by Dick Crawford. 12 Nov 2011 Version 4.4.4 2 gnuplot 4.4 CONTENTS Contents I Gnuplot 15 1 Copyright 15 2 Introduction 15 3 Seeking-assistance 17 4 New features introduced in version 4.4 17 4.1 Internationalization . 17 4.2 Transparency . 17 4.3 Volatile Data . 17 4.4 Canvas size . 18 4.5 New plot elements . 18 4.6 New or revised terminal drivers . 18 4.7 New smoothing algorithms . 18 5 Backwards compatibility 19 6 Batch/Interactive Operation 19 7 Command-line-editing 20 8 Comments 20 9 Coordinates 20 10 Datastrings 21 11 Enhanced text mode 21 12 Environment 22 13 Expressions 23 13.1 Functions . 24 13.1.1 Elliptic integrals . 26 13.1.2 Random number generator . 26 13.1.3 Value . 27 13.2 Operators . 27 13.2.1 Unary . 27 13.2.2 Binary . 27 13.2.3 Ternary . 28 13.3 Gnuplot-defined variables . 29 13.4 User-defined variables and functions . 29 CONTENTS gnuplot 4.4 3 14 Fonts 30 14.1 Cairo (pdfcairo, pngcairo, wxt terminals) . 30 14.2 Gd (png, gif, jpeg terminals) . 30 14.3 Postscript (also encapsulated postscript *.eps) . 31 15 Glossary 31 16 Linetype, colors, and styles 32 16.1 Colorspec . 33 16.1.1 Rgbcolor variable . 33 16.1.2 Linecolor variable . 34 17 Mouse input 34 17.1 Bind . 34 17.1.1 Bind space . 35 17.2 Mouse variables . 36 18 Plotting 36 19 Start-up 37 20 String constants and string variables 37 21 Substitution and Command line macros 37 21.1 Substitution of system commands in backquotes . 38 21.2 Substitution of string variables as macros . 38 21.3 String variables, macros, and command line substitution . 38 22 Syntax 39 22.1 Quote Marks . 40 23 Time/Date data 40 II Plotting styles 41 24 Boxerrorbars 41 25 Boxes 42 26 Boxxyerrorbars 43 27 Candlesticks 43 28 Circles 44 29 Dots 44 30 Filledcurves 45 4 gnuplot 4.4 CONTENTS 31 Financebars 45 32 Fsteps 46 33 Histeps 46 34 Histograms 46 34.1 Newhistogram . 49 34.2 Automated iteration over multiple columns . 49 35 Image 49 35.1 Transparency . 50 35.2 Image failsafe . 51 36 Impulses 51 37 Labels 51 38 Lines 52 39 Linespoints 52 40 Points 52 41 Steps 52 42 Rgbalpha 53 43 Rgbimage 53 44 Vectors 53 45 Xerrorbars 53 46 Xyerrorbars 54 47 Yerrorbars 54 48 Xerrorlines 54 49 Xyerrorlines 55 50 Yerrorlines 55 51 3D (surface) plots 55 III Commands 56 52 Cd 56 CONTENTS gnuplot 4.4 5 53 Call 57 54 Clear 57 55 Evaluate 57 56 Exit 58 57 Fit 58 57.1 Adjustable parameters . 60 57.2 Short introduction . 60 57.3 Error estimates . 61 57.3.1 Statistical overview . 61 57.3.2 Practical guidelines . 62 57.4 Control . 63 57.4.1 Control variables . 63 57.4.2 Environment variables . 63 57.5 Multi-branch . 63 57.6 Starting values . 64 57.7 Tips . 64 58 Help 65 59 History 65 60 If 65 61 Iteration 66 62 Load 66 63 Lower 67 64 Pause 67 65 Plot 68 65.1 Axes . 68 65.2 Data . 69 65.2.1 Binary . 70 65.2.2 Binary general . 70 65.2.3 Array . 71 65.2.4 Record . 71 65.2.5 Skip . 71 65.2.6 Format . 72 65.2.7 Endian . 72 65.2.8 Filetype . 72 65.2.8.1 Avs . 72 6 gnuplot 4.4 CONTENTS 65.2.8.2 Edf . 72 65.2.8.3 Png . 73 65.2.9 Keywords . 73 65.2.9.1 Scan . 73 65.2.9.2 Transpose . 73 65.2.9.3 Dx, dy, dz . 73 65.2.9.4 Flipx, flipy, flipz . 73 65.2.9.5 Origin . 73 65.2.9.6 Center . 73 65.2.9.7 Rotate . 74 65.2.9.8 Perpendicular . 74 65.2.9.9 Binary examples . 74 65.2.10 Every . 74 65.2.11 Example datafile . 75 65.2.12 Index . 75 65.2.13 Smooth . 76 65.2.13.1 Acsplines . 76 65.2.13.2 Bezier . 77 65.2.13.3 Csplines . 77 65.2.13.4 Sbezier . 77 65.2.13.5 Unique . 77 65.2.13.6 Frequency . ..
Recommended publications
  • "Graph" Program
    Physics 305 Introduction to Computational Physics Fall 2010 The graph program Unfortunately, graphics programs are not as universal as we would like. These notes discuss one simple graphics program, unimaginatively called “graph”. While it is not a part of the standard Linux setup, it is universally available (and free) from the GNU software project. In fact, it is written and maintained by Robert Maier in the UA Math department. More importantly for you, it is already installed on faraday. Before you try out “graph”, make a couple of data files to practice on. These should be just two columns of number, where each line is an (x, y) pair. For example, file “data1” might look like: 0.0 0.123 0.5 0.2245 0.7 0.3145 1.1 0.224 Note that the x values don’t have to be evenly spaced. graph can make several kinds of output. The two that are important to us are X-windows output, which makes plots appear on the screen in front of you, and PostScript output, which you can email as part of your homework assignment. (You can, and should, also view the PostScript on your screen by using the “gv” (short for “ghostview”) command. Now try it out. Suppose “data1” is the name of one our your practice data files. Type graph -T X data1 WATCH OUT. Upper and lower case matters. Spacing and punctuation matter. “-T” and “X” must be upper case, and there must be a space between them. This should produce a graph of your data file on your screen.
    [Show full text]
  • A Quick Guide to Gnuplot
    A Quick Guide to Gnuplot Andrea Mignone Physics Department, University of Torino AA 2020-2021 What is Gnuplot ? • Gnuplot is a free, command-driven, interactive, function and data plotting program, providing a relatively simple environment to make simple 2D plots (e.g. f(x) or f(x,y)); • It is available for all platforms, including Linux, Mac and Windows (http://www.gnuplot.info) • To start gnuplot from the terminal, simply type > gnuplot • To produce a simple plot, e.g. f(x) = sin(x) and f(x) = cos(x)^2 gnuplot> plot sin(x) gnuplot> replot (cos(x))**2 # Add another plot • By default, gnuplot assumes that the independent, or "dummy", variable for the plot command is "x” (or “t” in parametric mode). Mathematical Functions • In general, any mathematical expression accepted by C, FORTRAN, Pascal, or BASIC may be plotted. The precedence of operators is determined by the specifications of the C programming language. • Gnuplot supports the same operators of the C programming language, except that most operators accept integer, real, and complex arguments. • Exponentiation is done through the ** operator (as in FORTRAN) Using set/unset • The set/unset commands can be used to controls many features, including axis range and type, title, fonts, etc… • Here are some examples: Command Description set xrange[0:2*pi] Limit the x-axis range from 0 to 2*pi, set ylabel “f(x)” Sets the label on the y-axis (same as “set xlabel”) set title “My Plot” Sets the plot title set log y Set logarithmic scale on the y-axis (same as “set log x”) unset log y Disable log scale on the y-axis set key bottom left Position the legend in the bottom left part of the plot set xlabel font ",18" Change font size for the x-axis label (same as “set ylabel”) set tic font ",18" Change the major (labelled) tics font size on all axes.
    [Show full text]
  • Python Data Plotting and Visualisation Extravaganza 1 Introduction
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by The Python Papers Anthology The Python Papers Monograph, Vol. 1 (2009) 1 Available online at http://ojs.pythonpapers.org/index.php/tppm Python Data Plotting and Visualisation Extravaganza Guy K. Kloss Computer Science Institute of Information & Mathematical Sciences Massey University at Albany, Auckland, New Zealand [email protected] This paper tries to dive into certain aspects of graphical visualisation of data. Specically it focuses on the plotting of (multi-dimensional) data us- ing 2D and 3D tools, which can update plots at run-time of an application producing or acquiring new or updated data during its run time. Other visual- isation tools for example for graph visualisation, post computation rendering and interactive visual data exploration are intentionally left out. Keywords: Linear regression; vector eld; ane transformation; NumPy. 1 Introduction Many applications produce data. Data by itself is often not too helpful. To generate knowledge out of data, a user usually has to digest the information contained within the data. Many people have the tendency to extract patterns from information much more easily when the data is visualised. So data that can be visualised in some way can be much more accessible for the purpose of understanding. This paper focuses on the aspect of data plotting for these purposes. Data stored in some more or less structured form can be analysed in multiple ways. One aspect of this is post-analysis, which can often be organised in an interactive exploration fashion. One may for example import the data into a spreadsheet or otherwise suitable software tool which allows to present the data in various ways.
    [Show full text]
  • Sage Tutorial (Pdf)
    Sage Tutorial Release 9.4 The Sage Development Team Aug 24, 2021 CONTENTS 1 Introduction 3 1.1 Installation................................................4 1.2 Ways to Use Sage.............................................4 1.3 Longterm Goals for Sage.........................................5 2 A Guided Tour 7 2.1 Assignment, Equality, and Arithmetic..................................7 2.2 Getting Help...............................................9 2.3 Functions, Indentation, and Counting.................................. 10 2.4 Basic Algebra and Calculus....................................... 14 2.5 Plotting.................................................. 20 2.6 Some Common Issues with Functions.................................. 23 2.7 Basic Rings................................................ 26 2.8 Linear Algebra.............................................. 28 2.9 Polynomials............................................... 32 2.10 Parents, Conversion and Coercion.................................... 36 2.11 Finite Groups, Abelian Groups...................................... 42 2.12 Number Theory............................................. 43 2.13 Some More Advanced Mathematics................................... 46 3 The Interactive Shell 55 3.1 Your Sage Session............................................ 55 3.2 Logging Input and Output........................................ 57 3.3 Paste Ignores Prompts.......................................... 58 3.4 Timing Commands............................................ 58 3.5 Other IPython
    [Show full text]
  • Gnuplot Documentation and Sources
    gnuplot 5.0 An Interactive Plotting Program Thomas Williams & Colin Kelley Version 5.0 organized by: Ethan A Merritt and many others Major contributors (alphabetic order): Christoph Bersch, Hans-Bernhard Br¨oker, John Campbell, Robert Cunningham, David Denholm, Gershon Elber, Roger Fearick, Carsten Grammes, Lucas Hart, Lars Hecking, P´eterJuh´asz, Thomas Koenig, David Kotz, Ed Kubaitis, Russell Lang, Timoth´eeLecomte, Alexander Lehmann, J´er^omeLodewyck, Alexander Mai, Bastian M¨arkisch, Ethan A Merritt, Petr Mikul´ık, Carsten Steger, Shigeharu Takeno, Tom Tkacik, Jos Van der Woude, James R. Van Zandt, Alex Woo, Johannes Zellner Copyright c 1986 - 1993, 1998, 2004 Thomas Williams, Colin Kelley Copyright c 2004 - 2017 various authors Mailing list for comments: [email protected] Mailing list for bug reports: [email protected] Web access (preferred): http://sourceforge.net/projects/gnuplot This manual was originally prepared by Dick Crawford. Version 5.0.7 (August 2017) 2 gnuplot 5.0 CONTENTS Contents I Gnuplot 17 Copyright 17 Introduction 17 Seeking-assistance 18 New features in version 5 19 New commands............................................... 20 Changes in version 5 20 Deprecated syntax 21 Demos and Online Examples 21 Batch/Interactive Operation 21 Canvas size 22 Command-line-editing 22 Comments 23 Coordinates 23 Datastrings 24 Enhanced text mode 24 Environment 25 Expressions 26 Functions.................................................. 27 Elliptic integrals..........................................
    [Show full text]
  • GNU Libredwg for Version 0.12.4, 30 December 2020
    GNU LibreDWG for version 0.12.4, 30 December 2020 GNU LibreDWG Developers and Thien-Thi Nguyen This manual is for GNU LibreDWG (version 0.12.4, 30 December 2020). Copyright c 2010-2020 Free Software Foundation, Inc. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, with no Front-Cover Texts, and with no Back-Cover Texts. A copy of the license is included in the section entitled \GNU Free Documentation License". i Table of Contents 1 Overview ::::::::::::::::::::::::::::::::::::::::: 1 1.1 API/ABI version ::::::::::::::::::::::::::::::::::::::::::::::: 1 1.2 Coverage ::::::::::::::::::::::::::::::::::::::::::::::::::::::: 1 1.3 Related projects :::::::::::::::::::::::::::::::::::::::::::::::: 3 2 Usage ::::::::::::::::::::::::::::::::::::::::::::: 5 3 Types::::::::::::::::::::::::::::::::::::::::::::: 6 4 Objects ::::::::::::::::::::::::::::::::::::::::::: 8 4.1 HEADER :::::::::::::::::::::::::::::::::::::::::::::::::::::: 8 4.2 ENTITIES :::::::::::::::::::::::::::::::::::::::::::::::::::: 22 4.3 OBJECTS :::::::::::::::::::::::::::::::::::::::::::::::::::: 92 5 Sections:::::::::::::::::::::::::::::::::::::::: 259 5.1 HEADER Section :::::::::::::::::::::::::::::::::::::::::::: 259 5.2 OBJECTS Section ::::::::::::::::::::::::::::::::::::::::::: 259 5.3 CLASSES Section :::::::::::::::::::::::::::::::::::::::::::: 259 5.4 HANDLES Section :::::::::::::::::::::::::::::::::::::::::::
    [Show full text]
  • Latexsample-Thesis
    INTEGRAL ESTIMATION IN QUANTUM PHYSICS by Jane Doe A dissertation submitted to the faculty of The University of Utah in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Mathematics The University of Utah May 2016 Copyright c Jane Doe 2016 All Rights Reserved The University of Utah Graduate School STATEMENT OF DISSERTATION APPROVAL The dissertation of Jane Doe has been approved by the following supervisory committee members: Cornelius L´anczos , Chair(s) 17 Feb 2016 Date Approved Hans Bethe , Member 17 Feb 2016 Date Approved Niels Bohr , Member 17 Feb 2016 Date Approved Max Born , Member 17 Feb 2016 Date Approved Paul A. M. Dirac , Member 17 Feb 2016 Date Approved by Petrus Marcus Aurelius Featherstone-Hough , Chair/Dean of the Department/College/School of Mathematics and by Alice B. Toklas , Dean of The Graduate School. ABSTRACT Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah.
    [Show full text]
  • Snap.Py SNAP for Python
    An Introduction to Snap.py SNAP for Python Author: Rok Sosic Created: Sep 26, 2013 Content Introduction to Snap.py Tutorial Plotting Q&A What is SNAP? Stanford Network Analysis Project (SNAP) General purpose, high performance system for analysis and manipulation of large networks Scales to massive networks with hundreds of millions of nodes, and billions of edges Manipulates large networks, calculates structural properties, generates graphs, and supports attributes on nodes and edges Software is C++ based Web site at http://snap.stanford.edu What is Snap.py? Snap.py: SNAP for Python Provides SNAP functionality in Python C++ Good - fast program execution Downside - complex language, needs compilation Python Downside – slow program execution Good – simple language, interactive use Snap.py Good – fast program execution Good – simple language, interactive use Web site at http://snap.stanford.edu/snap/snap.py.html Snap.py Documentation Check out Snap.py at: http://snap.stanford.edu/snap/snap.py.html Packages for Mac OS X, Windows, Linux Quick Introduction and Tutorial SNAP documentation (snap.stanford.edu) User Reference Manual Top level graph classes TUNGraph, TNGraph, TNEANet Namespace TSnap Developer resources Developer Reference Manual GitHub repository SNAP C++ Programming Guide Snap.py Installation Download the Snap.py package for your platform: http://snap.stanford.edu/snap/snap.py.html Packages for Mac OS X, Windows, Linux (CentOS) 64-bit only – OS, Python Mac OS X, 10.7.5 or later Windows, install
    [Show full text]
  • GNU Octave a High-Level Interactive Language for Numerical Computations Edition 3 for Octave Version 2.0.13 February 1997
    GNU Octave A high-level interactive language for numerical computations Edition 3 for Octave version 2.0.13 February 1997 John W. Eaton Published by Network Theory Limited. 15 Royal Park Clifton Bristol BS8 3AL United Kingdom Email: [email protected] ISBN 0-9541617-2-6 Cover design by David Nicholls. Errata for this book will be available from http://www.network-theory.co.uk/octave/manual/ Copyright c 1996, 1997John W. Eaton. This is the third edition of the Octave documentation, and is consistent with version 2.0.13 of Octave. Permission is granted to make and distribute verbatim copies of this man- ual provided the copyright notice and this permission notice are preserved on all copies. Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided that the en- tire resulting derived work is distributed under the terms of a permission notice identical to this one. Permission is granted to copy and distribute translations of this manual into another language, under the same conditions as for modified versions. Portions of this document have been adapted from the gawk, readline, gcc, and C library manuals, published by the Free Software Foundation, 59 Temple Place—Suite 330, Boston, MA 02111–1307, USA. i Table of Contents Publisher’s Preface ...................... 1 Author’s Preface ........................ 3 Acknowledgements ........................................ 3 How You Can Contribute to Octave ........................ 5 Distribution .............................................. 6 1 A Brief Introduction to Octave ....... 7 1.1 Running Octave...................................... 7 1.2 Simple Examples ..................................... 7 Creating a Matrix ................................. 7 Matrix Arithmetic ................................. 8 Solving Linear Equations..........................
    [Show full text]
  • Using Gretl for Principles of Econometrics, 4Th Edition Version 1.0411
    Using gretl for Principles of Econometrics, 4th Edition Version 1.0411 Lee C. Adkins Professor of Economics Oklahoma State University April 7, 2014 1Visit http://www.LearnEconometrics.com/gretl.html for the latest version of this book. Also, check the errata (page 459) for changes since the last update. License Using gretl for Principles of Econometrics, 4th edition. Copyright c 2011 Lee C. Adkins. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.1 or any later version published by the Free Software Foundation (see AppendixF for details). i Preface The previous edition of this manual was about using the software package called gretl to do various econometric tasks required in a typical two course undergraduate or masters level econo- metrics sequence. This version tries to do the same, but several enhancements have been made that will interest those teaching more advanced courses. I have come to appreciate the power and usefulness of gretl's powerful scripting language, now called hansl. Hansl is powerful enough to do some serious computing, but simple enough for novices to learn. In this version of the book, you will find more information about writing functions and using loops to obtain basic results. The programs have been generalized in many instances so that they could be adapted for other uses if desired. As I learn more about hansl specifically and programming in general, I will no doubt revise some of the code contained here. Stay tuned for further developments. As with the last edition, the book is written specifically to be used with a particular textbook, Principles of Econometrics, 4th edition (POE4 ) by Hill, Griffiths, and Lim.
    [Show full text]
  • Module 4: Household Surveys for Monitoring SDG 4
    Module 4: Household Surveys for Monitoring SDG 4 Module overview – objectives, topics and learning outcomes Although many education indicators are available from Education Management Information System (EMIS) data and annual school censuses, these systems are not capable of capturing all relevant data, particularly regarding populations that have never entered the formal school system, or those that have dropped out indefinitely, such as adults, children with disabilities, ethnic minorities, migrants, out-of-school children and other marginalized populations. It is essential to take note of this circumstance because Sustainable Development Goal (SDG) 4 emphasizes paying particular attention to marginalized populations. With this in mind, household surveys have the unique reach to include these populations. Adopting household surveys enables interested parties to capture a wider spectrum – and therefore greater coverage of data for the world education agenda. The objective of this module is to familiarize the reader with household surveys for education policies and programmes and monitoring. Understanding the usefulness of household survey data will aid in establishing better collaborations between survey designers and education specialists. The ultimate aim is to confer and decide on the 151 types of data which are of highest relevance in monitoring education. After providing brief background information on the importance of household surveys, this module will present which current education indicators can be retrieved from surveys; what types of household surveys collect education data; as well as challenges in collecting education-related data through household surveys. Finally, this module will provide an outline for the creation of institutional mechanisms – for collaboration with interested parties – so household surveys can be utilized effectively to yield the most significant SDG 4 indicator data.
    [Show full text]
  • Pipenightdreams Osgcal-Doc Mumudvb Mpg123-Alsa Tbb
    pipenightdreams osgcal-doc mumudvb mpg123-alsa tbb-examples libgammu4-dbg gcc-4.1-doc snort-rules-default davical cutmp3 libevolution5.0-cil aspell-am python-gobject-doc openoffice.org-l10n-mn libc6-xen xserver-xorg trophy-data t38modem pioneers-console libnb-platform10-java libgtkglext1-ruby libboost-wave1.39-dev drgenius bfbtester libchromexvmcpro1 isdnutils-xtools ubuntuone-client openoffice.org2-math openoffice.org-l10n-lt lsb-cxx-ia32 kdeartwork-emoticons-kde4 wmpuzzle trafshow python-plplot lx-gdb link-monitor-applet libscm-dev liblog-agent-logger-perl libccrtp-doc libclass-throwable-perl kde-i18n-csb jack-jconv hamradio-menus coinor-libvol-doc msx-emulator bitbake nabi language-pack-gnome-zh libpaperg popularity-contest xracer-tools xfont-nexus opendrim-lmp-baseserver libvorbisfile-ruby liblinebreak-doc libgfcui-2.0-0c2a-dbg libblacs-mpi-dev dict-freedict-spa-eng blender-ogrexml aspell-da x11-apps openoffice.org-l10n-lv openoffice.org-l10n-nl pnmtopng libodbcinstq1 libhsqldb-java-doc libmono-addins-gui0.2-cil sg3-utils linux-backports-modules-alsa-2.6.31-19-generic yorick-yeti-gsl python-pymssql plasma-widget-cpuload mcpp gpsim-lcd cl-csv libhtml-clean-perl asterisk-dbg apt-dater-dbg libgnome-mag1-dev language-pack-gnome-yo python-crypto svn-autoreleasedeb sugar-terminal-activity mii-diag maria-doc libplexus-component-api-java-doc libhugs-hgl-bundled libchipcard-libgwenhywfar47-plugins libghc6-random-dev freefem3d ezmlm cakephp-scripts aspell-ar ara-byte not+sparc openoffice.org-l10n-nn linux-backports-modules-karmic-generic-pae
    [Show full text]