The GNU Plotting Utilities Programs and Functions for Vector Graphics and Data Plotting Version 2.4.1

Total Page:16

File Type:pdf, Size:1020Kb

The GNU Plotting Utilities Programs and Functions for Vector Graphics and Data Plotting Version 2.4.1 The GNU Plotting Utilities Programs and functions for vector graphics and data plotting Version 2.4.1 Robert S. Maier and Nicholas B. Tufillaro Copyright ­c 1989–2000 Free Software Foundation, Inc. Permission is granted to make and distribute verbatim copies of this manual provided the copy- right notice and this permission notice are preserved on all copies. Permission is granted to copy and distribute modified versions of this manual under the condi- tions for verbatim copying, provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one. Permission is granted to copy and distribute translations of this manual into another language, under the above conditions for modified versions, except that this permission notice may be stated in a translation approved by the Foundation. i Short Contents 1 The GNU Plotting Utilities ..................................... 1 2 The graph Application ........................................ 4 3 The plot Program .......................................... 26 4 The pic2plot Program ....................................... 34 5 The tek2plot Program ....................................... 42 6 The plotfont Utility ........................................ 49 7 The spline Program ........................................ 56 8 The ode Program ........................................... 62 9 libplot, a 2-D Vector Graphics Library ........................... 78 A Fonts, Strings, and Symbols ................................... 125 B Specifying Colors by Name.................................... 145 C Page Sizes and Viewport Sizes ................................. 146 D The Graphics Metafile Format ................................. 148 E Obtaining Auxiliary Software .................................. 150 History and Acknowledgements .................................... 151 Reporting Bugs .............................................. 152 ii Table of Contents 1 The GNU Plotting Utilities ............................. 1 2 The graph Application .................................. 4 2.1 Simple examples using graph ................................................... 4 2.2 Non-square, displaced, and rotated plots ........................................ 8 2.3 Preparing a plot from more than one dataset .................................... 9 2.4 Multiplotting: placing multiple plots on a single page ........................... 10 2.5 Reading binary and other data formats ........................................ 11 2.6 graph command-line options .................................................. 12 2.6.1 Plot options ............................................................. 13 2.6.2 Dataset options .......................................................... 19 2.6.3 Multiplot options ........................................................ 22 2.6.4 Raw graph options....................................................... 22 2.6.5 Informational options .................................................... 22 2.7 Environment variables ........................................................ 23 3 The plot Program..................................... 26 3.1 How to use plot ............................................................. 26 3.2 plot command-line options ................................................... 27 3.3 Environment variables ........................................................ 32 4 The pic2plot Program ................................. 34 4.1 What pic2plot is used for .................................................... 34 4.2 pic2plot command-line options ............................................... 35 4.3 Environment variables ........................................................ 39 5 The tek2plot Program ................................. 42 5.1 What tek2plot is used for .................................................... 42 5.2 tek2plot command-line options ............................................... 42 5.3 Environment variables ........................................................ 46 6 The plotfont Utility ................................... 49 6.1 How to use plotfont ......................................................... 49 6.2 plotfont command-line options ............................................... 50 6.3 Environment variables ........................................................ 54 7 The spline Program ................................... 56 7.1 How to use spline ........................................................... 56 7.2 Advanced use of spline ...................................................... 57 7.3 spline command-line options ................................................. 59 iii 8 The ode Program...................................... 62 8.1 Mathematical basics .......................................................... 62 8.2 Simple examples using ode .................................................... 63 8.3 Additional examples using ode ................................................ 66 8.4 ode command-line options .................................................... 68 8.5 Diagnostic messages .......................................................... 70 8.6 Numerical error and how to avoid it ........................................... 71 8.7 Running time ................................................................ 74 8.8 The ode input language formally specified ...................................... 74 8.9 Bibliography on ode and solving differential equations ........................... 77 9 libplot, a 2-D Vector Graphics Library ................. 78 9.1 Programming with libplot: An overview ...................................... 78 9.2 C Programming with libplot ................................................. 81 9.2.1 The C application programming interface .................................. 81 9.2.2 Older C application programming interfaces................................ 82 9.2.3 C compiling and linking .................................................. 83 9.2.4 Sample drawings in C .................................................... 84 9.2.5 Simple paths and compound paths ........................................ 88 9.2.6 Drawing on a physical page ............................................... 90 9.2.7 Animated GIFs in C ..................................................... 92 9.2.8 X Window System animations in C........................................ 94 9.2.9 Advanced X Window System programming ................................ 97 9.3 C++ Programming with libplotter .......................................... 100 9.3.1 The Plotter class ...................................................... 100 9.3.2 C++ compiling and linking ............................................... 101 9.3.3 Sample drawings in C++ ................................................. 102 9.4 The functions in libplot: A detailed listing................................... 103 9.4.1 Control functions ....................................................... 103 9.4.2 Object-drawing functions ................................................ 106 9.4.3 Attribute-setting functions .............................................. 110 9.4.4 Mapping functions ...................................................... 117 9.5 Plotter parameters .......................................................... 118 Appendix A Fonts, Strings, and Symbols................ 125 A.1 Available text fonts ......................................................... 125 A.2 Cyrillic and Japanese fonts .................................................. 130 A.3 Available text fonts for the X Window System ................................ 131 A.4 Text string format and escape sequences ...................................... 132 A.5 Available marker symbols ................................................... 142 Appendix B Specifying Colors by Name ................ 145 Appendix C Page Sizes and Viewport Sizes ............. 146 Appendix D The Graphics Metafile Format ............. 148 Appendix E Obtaining Auxiliary Software .............. 150 E.1 How to get idraw ........................................................... 150 E.2 How to get xfig ............................................................ 150 iv History and Acknowledgements .......................... 151 Reporting Bugs ......................................... 152 Chapter 1: The GNU Plotting Utilities 1 1 The GNU Plotting Utilities The GNU plotting utilities consist of eight command-line programs: the graphics programs graph, plot, pic2plot, tek2plot, and plotfont, and the mathematical programs spline, ode, and double. Distributed with these programs is GNU libplot, the library on which the graphics programs are based. GNU libplot is a function library for device-independent two- dimensional vector graphics, including vector graphics animations under the X Window System. It has bindings for both C and C++. The graphics programs and GNU libplot can export vector graphics in the following formats. X If this output option is selected, there is no output file. Output is directed to a popped-up window on an X Window System display. PNG This is “portable network graphics” format, which is increasingly popular on the Web. Unlike GIF format, it is unencumbered by patents. Files in PNG format may be viewed or edited with many applications, such as the free image display application xv and the free ImageMagick package. PNM This is “portable anymap” format. There are three types of portable anymap: PBM (portable bitmap, for monochrome images), PGM (portable graymap), and PPM (portable
Recommended publications
  • "Graph" Program
    Physics 305 Introduction to Computational Physics Fall 2010 The graph program Unfortunately, graphics programs are not as universal as we would like. These notes discuss one simple graphics program, unimaginatively called “graph”. While it is not a part of the standard Linux setup, it is universally available (and free) from the GNU software project. In fact, it is written and maintained by Robert Maier in the UA Math department. More importantly for you, it is already installed on faraday. Before you try out “graph”, make a couple of data files to practice on. These should be just two columns of number, where each line is an (x, y) pair. For example, file “data1” might look like: 0.0 0.123 0.5 0.2245 0.7 0.3145 1.1 0.224 Note that the x values don’t have to be evenly spaced. graph can make several kinds of output. The two that are important to us are X-windows output, which makes plots appear on the screen in front of you, and PostScript output, which you can email as part of your homework assignment. (You can, and should, also view the PostScript on your screen by using the “gv” (short for “ghostview”) command. Now try it out. Suppose “data1” is the name of one our your practice data files. Type graph -T X data1 WATCH OUT. Upper and lower case matters. Spacing and punctuation matter. “-T” and “X” must be upper case, and there must be a space between them. This should produce a graph of your data file on your screen.
    [Show full text]
  • GNU Libredwg for Version 0.12.4, 30 December 2020
    GNU LibreDWG for version 0.12.4, 30 December 2020 GNU LibreDWG Developers and Thien-Thi Nguyen This manual is for GNU LibreDWG (version 0.12.4, 30 December 2020). Copyright c 2010-2020 Free Software Foundation, Inc. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, with no Front-Cover Texts, and with no Back-Cover Texts. A copy of the license is included in the section entitled \GNU Free Documentation License". i Table of Contents 1 Overview ::::::::::::::::::::::::::::::::::::::::: 1 1.1 API/ABI version ::::::::::::::::::::::::::::::::::::::::::::::: 1 1.2 Coverage ::::::::::::::::::::::::::::::::::::::::::::::::::::::: 1 1.3 Related projects :::::::::::::::::::::::::::::::::::::::::::::::: 3 2 Usage ::::::::::::::::::::::::::::::::::::::::::::: 5 3 Types::::::::::::::::::::::::::::::::::::::::::::: 6 4 Objects ::::::::::::::::::::::::::::::::::::::::::: 8 4.1 HEADER :::::::::::::::::::::::::::::::::::::::::::::::::::::: 8 4.2 ENTITIES :::::::::::::::::::::::::::::::::::::::::::::::::::: 22 4.3 OBJECTS :::::::::::::::::::::::::::::::::::::::::::::::::::: 92 5 Sections:::::::::::::::::::::::::::::::::::::::: 259 5.1 HEADER Section :::::::::::::::::::::::::::::::::::::::::::: 259 5.2 OBJECTS Section ::::::::::::::::::::::::::::::::::::::::::: 259 5.3 CLASSES Section :::::::::::::::::::::::::::::::::::::::::::: 259 5.4 HANDLES Section :::::::::::::::::::::::::::::::::::::::::::
    [Show full text]
  • Latexsample-Thesis
    INTEGRAL ESTIMATION IN QUANTUM PHYSICS by Jane Doe A dissertation submitted to the faculty of The University of Utah in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Mathematics The University of Utah May 2016 Copyright c Jane Doe 2016 All Rights Reserved The University of Utah Graduate School STATEMENT OF DISSERTATION APPROVAL The dissertation of Jane Doe has been approved by the following supervisory committee members: Cornelius L´anczos , Chair(s) 17 Feb 2016 Date Approved Hans Bethe , Member 17 Feb 2016 Date Approved Niels Bohr , Member 17 Feb 2016 Date Approved Max Born , Member 17 Feb 2016 Date Approved Paul A. M. Dirac , Member 17 Feb 2016 Date Approved by Petrus Marcus Aurelius Featherstone-Hough , Chair/Dean of the Department/College/School of Mathematics and by Alice B. Toklas , Dean of The Graduate School. ABSTRACT Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah.
    [Show full text]
  • GNU Octave a High-Level Interactive Language for Numerical Computations Edition 3 for Octave Version 2.0.13 February 1997
    GNU Octave A high-level interactive language for numerical computations Edition 3 for Octave version 2.0.13 February 1997 John W. Eaton Published by Network Theory Limited. 15 Royal Park Clifton Bristol BS8 3AL United Kingdom Email: [email protected] ISBN 0-9541617-2-6 Cover design by David Nicholls. Errata for this book will be available from http://www.network-theory.co.uk/octave/manual/ Copyright c 1996, 1997John W. Eaton. This is the third edition of the Octave documentation, and is consistent with version 2.0.13 of Octave. Permission is granted to make and distribute verbatim copies of this man- ual provided the copyright notice and this permission notice are preserved on all copies. Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided that the en- tire resulting derived work is distributed under the terms of a permission notice identical to this one. Permission is granted to copy and distribute translations of this manual into another language, under the same conditions as for modified versions. Portions of this document have been adapted from the gawk, readline, gcc, and C library manuals, published by the Free Software Foundation, 59 Temple Place—Suite 330, Boston, MA 02111–1307, USA. i Table of Contents Publisher’s Preface ...................... 1 Author’s Preface ........................ 3 Acknowledgements ........................................ 3 How You Can Contribute to Octave ........................ 5 Distribution .............................................. 6 1 A Brief Introduction to Octave ....... 7 1.1 Running Octave...................................... 7 1.2 Simple Examples ..................................... 7 Creating a Matrix ................................. 7 Matrix Arithmetic ................................. 8 Solving Linear Equations..........................
    [Show full text]
  • Module 4: Household Surveys for Monitoring SDG 4
    Module 4: Household Surveys for Monitoring SDG 4 Module overview – objectives, topics and learning outcomes Although many education indicators are available from Education Management Information System (EMIS) data and annual school censuses, these systems are not capable of capturing all relevant data, particularly regarding populations that have never entered the formal school system, or those that have dropped out indefinitely, such as adults, children with disabilities, ethnic minorities, migrants, out-of-school children and other marginalized populations. It is essential to take note of this circumstance because Sustainable Development Goal (SDG) 4 emphasizes paying particular attention to marginalized populations. With this in mind, household surveys have the unique reach to include these populations. Adopting household surveys enables interested parties to capture a wider spectrum – and therefore greater coverage of data for the world education agenda. The objective of this module is to familiarize the reader with household surveys for education policies and programmes and monitoring. Understanding the usefulness of household survey data will aid in establishing better collaborations between survey designers and education specialists. The ultimate aim is to confer and decide on the 151 types of data which are of highest relevance in monitoring education. After providing brief background information on the importance of household surveys, this module will present which current education indicators can be retrieved from surveys; what types of household surveys collect education data; as well as challenges in collecting education-related data through household surveys. Finally, this module will provide an outline for the creation of institutional mechanisms – for collaboration with interested parties – so household surveys can be utilized effectively to yield the most significant SDG 4 indicator data.
    [Show full text]
  • Pipenightdreams Osgcal-Doc Mumudvb Mpg123-Alsa Tbb
    pipenightdreams osgcal-doc mumudvb mpg123-alsa tbb-examples libgammu4-dbg gcc-4.1-doc snort-rules-default davical cutmp3 libevolution5.0-cil aspell-am python-gobject-doc openoffice.org-l10n-mn libc6-xen xserver-xorg trophy-data t38modem pioneers-console libnb-platform10-java libgtkglext1-ruby libboost-wave1.39-dev drgenius bfbtester libchromexvmcpro1 isdnutils-xtools ubuntuone-client openoffice.org2-math openoffice.org-l10n-lt lsb-cxx-ia32 kdeartwork-emoticons-kde4 wmpuzzle trafshow python-plplot lx-gdb link-monitor-applet libscm-dev liblog-agent-logger-perl libccrtp-doc libclass-throwable-perl kde-i18n-csb jack-jconv hamradio-menus coinor-libvol-doc msx-emulator bitbake nabi language-pack-gnome-zh libpaperg popularity-contest xracer-tools xfont-nexus opendrim-lmp-baseserver libvorbisfile-ruby liblinebreak-doc libgfcui-2.0-0c2a-dbg libblacs-mpi-dev dict-freedict-spa-eng blender-ogrexml aspell-da x11-apps openoffice.org-l10n-lv openoffice.org-l10n-nl pnmtopng libodbcinstq1 libhsqldb-java-doc libmono-addins-gui0.2-cil sg3-utils linux-backports-modules-alsa-2.6.31-19-generic yorick-yeti-gsl python-pymssql plasma-widget-cpuload mcpp gpsim-lcd cl-csv libhtml-clean-perl asterisk-dbg apt-dater-dbg libgnome-mag1-dev language-pack-gnome-yo python-crypto svn-autoreleasedeb sugar-terminal-activity mii-diag maria-doc libplexus-component-api-java-doc libhugs-hgl-bundled libchipcard-libgwenhywfar47-plugins libghc6-random-dev freefem3d ezmlm cakephp-scripts aspell-ar ara-byte not+sparc openoffice.org-l10n-nn linux-backports-modules-karmic-generic-pae
    [Show full text]
  • Midasplus User's Manual
    Additional copies of this manual are available for $10 each, including postage, by writing to MIDAS Software Distribution, Computer Graphics Laboratory, School of Pharmacy, University of California, San Francisco, CA 94143-0446. Please include a check or money order payable to The Regents of the Univer- sity of California with your request. Sorry, but purchase orders cannot be accepted. Orders received without payment enclosed will be returned unprocessed. Copyright 1983, 1985, 1989, 1991, 1994, 1997 by The Regents of the University of California. All rights reserved. Introduction Background The MidasPlus molecular visualization system is a collection of programs developed by the Computer Graphics Laboratory at the University of California, San Francisco (UCSF). The major component of the MidasPlus system is an interactive graphics display program, MIDAS (Molecular Interactive Display and Simulation), designed for the display and manipulation of macromolecules such as proteins and nucleic acids. Many ancillary programs are also part of the system and allow for such features as computing the solvent-accessible surface of a molecule, calculating electrostatic potentials, and so on. MidasPlus is the most recent in a series of interactive molecular graphics systems whose direct lineage extends back to the first developments in molecular graphics at Project MAC, Massachusetts Institute of Technology, in 1964.1,2 National Institutes of Health (NIH) support began with the formation of the Computer Graphics Labora- tory at Princeton University in 1969 under the leadership of Prof. Robert Langridge and resulted in a number of pioneering developments including CAAPS (Computer Aided Analysis of Protein Structure).3 In 1976 Langridge moved this NIH research resource to UCSF.
    [Show full text]
  • Integral Estimation in Quantum Physics
    INTEGRAL ESTIMATION IN QUANTUM PHYSICS by Jane Doe A dissertation submitted to the faculty of The University of Utah in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematical Physics Department of Mathematics The University of Utah May 2016 Copyright c Jane Doe 2016 All Rights Reserved The University of Utah Graduate School STATEMENT OF DISSERTATION APPROVAL The dissertation of Jane Doe has been approved by the following supervisory committee members: Cornelius L´anczos , Chair(s) 17 Feb 2016 Date Approved Hans Bethe , Member 17 Feb 2016 Date Approved Niels Bohr , Member 17 Feb 2016 Date Approved Max Born , Member 17 Feb 2016 Date Approved Paul A. M. Dirac , Member 17 Feb 2016 Date Approved by Petrus Marcus Aurelius Featherstone-Hough , Chair/Dean of the Department/College/School of Mathematics and by Alice B. Toklas , Dean of The Graduate School. ABSTRACT Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah.
    [Show full text]
  • An Introduction to R Notes on R: a Programming Environment for Data Analysis and Graphics Version 4.1.1 (2021-08-10)
    An Introduction to R Notes on R: A Programming Environment for Data Analysis and Graphics Version 4.1.1 (2021-08-10) W. N. Venables, D. M. Smith and the R Core Team This manual is for R, version 4.1.1 (2021-08-10). Copyright c 1990 W. N. Venables Copyright c 1992 W. N. Venables & D. M. Smith Copyright c 1997 R. Gentleman & R. Ihaka Copyright c 1997, 1998 M. Maechler Copyright c 1999{2021 R Core Team Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are preserved on all copies. Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one. Permission is granted to copy and distribute translations of this manual into an- other language, under the above conditions for modified versions, except that this permission notice may be stated in a translation approved by the R Core Team. i Table of Contents Preface :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 1 1 Introduction and preliminaries :::::::::::::::::::::::::::::::: 2 1.1 The R environment :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 2 1.2 Related software and documentation ::::::::::::::::::::::::::::::::::::::::::::::: 2 1.3 R and statistics :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 2 1.4 R and the window system ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    [Show full text]
  • Preparazione E Visione Generale « Installazionedialml
    Preparazione e visione generale « InstallazionediAlml ................................ .....397 Gettext ............................................ 398 Esempioiniziale .................................... .....398 Cosasigeneraconlacomposizione ...................... 401 Sintassi nell’uso del programma frontale ............... .... 402 Codificadelsorgente ................................. ....406 Organizzare unfile-make o uno script .................... .406 Formatiparticolari ................................. ...... 408 Progetti di documentazione che utilizzano il formato di Alml 409 Alml è costituito principalmente da un programma Perl (‘alml’) che controlla l’analizzatore SGML e altri programmi necessari per ar- rivare alla composizione finale del documento. Tuttavia, per poter comprendere tale meccanismo, sarebbe opportuno prima conoscere quanto descritto a proposito dell’SGML, di TeX e dei sistemi comuni di composizione basati su SGML. Alml si avvale di altri programmi per l’analisi SGML e per la gene- razione di alcuni formati finali. In particolare, è necessario disporre di ‘nsgmls’ che fa parte generalmente del pacchetto SP (anche se la propria distribuzione GNU potrebbe nominarlo in modo differente); inoltre è fondamentale la presenza di LaTeX per generare i formati da stampare. La tabella u64.1 riepiloga gli applicativi principali da cui dipende il buon funzionamento di Alml. Tabella| u64.1. Applicativi principali da cui dipende Alml. Applicativo Compito Perl Alml è scritto in Perl. Perl-gettext Modulo Perl per l’utilizzo di Gettext. Verifica la validità SGML e genera una SP prima conversione. Sistema di composizione che comprende distribuzione TeX TeX, LaTeX e altri lavori derivati. Riorganizza, ingrandisce e riduce un file PSUtils PostScript. Dvipdfm Consente una conversione in PDF a partire dal file DVI. Estrae le immagini incorporate da file Uuencode esterni. GraphicsMagick o Image- Converte i file delle immagini nei formati Magick appropriati, adattando le dimensioni. Serve a ImageMagick per la conversione di Ghostscript file PostScript in altri formati.
    [Show full text]
  • Open Source Software and Its Role in Space Exploration
    Open Source Software and its Role in Space Exploration AFS/Kerberos Best Practices Workshop June 14, 2006 djbyrne @ jpl.nasa.gov Jet Propulsion Laboratory California Institute of Technology Common Goals • FOSS (Free/Open Source Software) developers and NASA have a lot in common – Dedicated to expanding the pool of information floating freely through society • 1958 NASA Charter ”...for the full and open dissemination of the conduct of human spaceflight." – Focused on the cutting edge, creating tools and capabilities which did not previously exist – I like to think that the FOSS community's donations of code are reciprocated with knowledge about weather systems, climate, and basic science June 14, 2006 AFS&K BPW 2 Open Source in Space • Explores our solar system • Observes the Universe • Is used to develop new algorithms and code • Is used to move and analyze data by flight operations on the ground June 14, 2006 AFS&K BPW 3 The Open Advantage • Faster – Procurement cycles alone... Oy! – Bug fix turn-around times, or we can do ‘em ourselves and give ‘em back – Feature additions - ditto, but we can only give back after a lot of paperwork (or contract for them) • Reliability – We tend to find bugs which don’t bother other customers. We live at or beyond the border cases – Full system visibility is key to characterization and resolution June 14, 2006 AFS&K BPW 4 Open Advantage, cont • Interoperability and Portability – Our industry, academic, and international partners can use their favorite platforms – Final production environments can be too scarce to pass around for development – Operational lifetimes can be decades on old platforms • Openness – ITAR (International Traffic in Arms Regulations) and IP (Intellectual Property) are non-problems for existing Open code • ‘Though Adaptations and changes for mission details can be controlled and limited June 14, 2006 AFS&K BPW 5 The Cost Question • Cost of getting a product isn’t a big factor • TCO (Total Cost of Ownership) is dominated by learning curve, testing, reviews, writing procedures, etc.
    [Show full text]
  • Opensolaris Presentation
    Open source for the enterprise Marco Colombo Sun Microsystems Italia S.p.A. What is Open Source? Distribute binaries + source code Open Source and/or Free software license Freely: modifiable, redistributable, forkable Non-discriminatory Consensus driven projects Meritocracy Peer review and public discussion OK to make money - but not for access to code 2 OpenSolaris: Open Source for the Enterprise | Marco Colombo – Sun Microsystems Italia Why Open Source? Good For Customers Good For Sun & Partners Community drives choice, Innovation happens competition, value everywhere Accelerates unexpected, Creates new opportunities by disruptive innovation growing the market 3 OpenSolaris: Open Source for the Enterprise | Marco Colombo – Sun Microsystems Italia Community Participation 4 CopyrightOpenSolaris: © 2004 SomersetOpen Source Historical for Centerthe Enterprise | Marco Colombo – Sun Microsystems Italia Sun: A History of Community J2EE, J2ME NFS Jini UNIX SVR4 XML Sun 1 with TCP/IP 1980 1990 2000 2005 5 OpenSolaris: Open Source for the Enterprise | Marco Colombo – Sun Microsystems Italia Benefit Of Open Communities Shared vision, goals Access to Technology Open Agreed sharing and Ideas Development (license) Agreed relationships Open Communities (governance) Committed members Broad Inclusive Participation Process It’s About Both People and Technologies 6 OpenSolaris: Open Source for the Enterprise | Marco Colombo – Sun Microsystems Italia Expect the Unexpected Bright, well-known people contribute code regularly Community finds new uses Jini™
    [Show full text]