Crowdflow: Integrating Machine Learning with Mechanical Turk for Speed-Cost-Quality Flexibility
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Data-Driven Analysis of Workers' Earnings on Amazon Mechanical Turk
A Data-Driven Analysis of Workers’ Earnings on Amazon Mechanical Turk Kotaro Hara1,2, Abi Adams3, Kristy Milland4,5, Saiph Savage6, Chris Callison-Burch7, Jeffrey P. Bigham1 1Carnegie Mellon University, 2Singapore Management University, 3University of Oxford 4McMaster University, 5TurkerNation.com, 6West Virginia University, 7University of Pennsylvania [email protected] ABSTRACT temporarily out-of-work engineers to work [1,4,39,46,65]. A growing number of people are working as part of on-line crowd work. Crowd work is often thought to be low wage Yet, despite the potential for crowdsourcing platforms to work. However, we know little about the wage distribution extend the scope of the labor market, many are concerned in practice and what causes low/high earnings in this that workers on crowdsourcing markets are treated unfairly setting. We recorded 2,676 workers performing 3.8 million [19,38,39,42,47,59]. Concerns about low earnings on crowd tasks on Amazon Mechanical Turk. Our task-level analysis work platforms have been voiced repeatedly. Past research revealed that workers earned a median hourly wage of only has found evidence that workers typically earn a fraction of ~$2/h, and only 4% earned more than $7.25/h. While the the U.S. minimum wage [34,35,37–39,49] and many average requester pays more than $11/h, lower-paying workers report not being paid for adequately completed requesters post much more work. Our wage calculations are tasks [38,51]. This is problematic as income generation is influenced by how unpaid work is accounted for, e.g., time the primary motivation of workers [4,13,46,49]. -
Amazon Mechanical Turk Developer Guide API Version 2017-01-17 Amazon Mechanical Turk Developer Guide
Amazon Mechanical Turk Developer Guide API Version 2017-01-17 Amazon Mechanical Turk Developer Guide Amazon Mechanical Turk: Developer Guide Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved. Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to, or sponsored by Amazon. Amazon Mechanical Turk Developer Guide Table of Contents What is Amazon Mechanical Turk? ........................................................................................................ 1 Mechanical Turk marketplace ....................................................................................................... 1 Marketplace rules ............................................................................................................... 2 The sandbox marketplace .................................................................................................... 2 Tasks that work well on Mechanical Turk ...................................................................................... 3 Tasks can be completed within a web browser ....................................................................... 3 Work can be broken into distinct, bite-sized tasks ................................................................. -
Dspace Cover Page
Human-powered sorts and joins The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Adam Marcus, Eugene Wu, David Karger, Samuel Madden, and Robert Miller. 2011. Human-powered sorts and joins. Proc. VLDB Endow. 5, 1 (September 2011), 13-24. As Published http://www.vldb.org/pvldb/vol5.html Publisher VLDB Endowment Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/73192 Terms of Use Creative Commons Attribution-Noncommercial-Share Alike 3.0 Detailed Terms http://creativecommons.org/licenses/by-nc-sa/3.0/ Human-powered Sorts and Joins Adam Marcus Eugene Wu David Karger Samuel Madden Robert Miller {marcua,sirrice,karger,madden,rcm}@csail.mit.edu ABSTRACT There are several reasons that systems like MTurk are of interest Crowdsourcing marketplaces like Amazon’s Mechanical Turk (MTurk) database researchers. First, MTurk workflow developers often imple- make it possible to task people with small jobs, such as labeling im- ment tasks that involve familiar database operations such as filtering, ages or looking up phone numbers, via a programmatic interface. sorting, and joining datasets. For example, it is common for MTurk MTurk tasks for processing datasets with humans are currently de- workflows to filter datasets to find images or audio on a specific sub- signed with significant reimplementation of common workflows and ject, or rank such data based on workers’ subjective opinion. Pro- ad-hoc selection of parameters such as price to pay per task. We de- grammers currently waste considerable effort re-implementing these scribe how we have integrated crowds into a declarative workflow operations because reusable implementations do not exist. -
Labeling Parts of Speech Using Untrained Annotators on Mechanical Turk THESIS Presented in Partial Fulfillment of the Requiremen
Labeling Parts of Speech Using Untrained Annotators on Mechanical Turk THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Jacob Emil Mainzer Graduate Program in Computer Science and Engineering The Ohio State University 2011 Master's Examination Committee: Professor Eric Fosler-Lussier, Advisor Professor Mikhail Belkin Copyright by Jacob Emil Mainzer 2011 Abstract Supervised learning algorithms often require large amounts of labeled data. Creating this data can be time consuming and expensive. Recent work has used untrained annotators on Mechanical Turk to quickly and cheaply create data for NLP tasks, such as word sense disambiguation, word similarity, machine translation, and PP attachment. In this experiment, we test whether untrained annotators can accurately perform the task of POS tagging. We design a Java Applet, called the Interactive Tagging Guide (ITG) to assist untrained annotators in accurately and quickly POS tagging words using the Penn Treebank tagset. We test this Applet on a small corpus using Mechanical Turk, an online marketplace where users earn small payments for the completion of short tasks. Our results demonstrate that, given the proper assistance, untrained annotators are able to tag parts of speech with approximately 90% accuracy. Furthermore, we analyze the performance of expert annotators using the ITG and discover nearly identical levels of performance as compared to the untrained annotators. ii Vita 2009................................................................B.S. Physics, University of Rochester September 2009 – August 2010 .....................Distinguished University Fellowship, The Ohio State University September 2010 – June 2011 .........................Graduate Teaching Assistant, The Ohio State University Fields of Study Major Field: Computer Science and Engineering iii Table of Contents Abstract .............................................................................................................................. -
Return of the Crowds: Mechanical Turk and Neoliberal States of Exception 79 Ayhan Aytes Vi Contents
DIGITAL LABOR The Internet as Playground and Factory Edited by Trebor Scholz First published 2013 by Routledge 711 Third Avenue, New York, NY 10017 Simultaneously published in the UK by Routledge 2 Park Square, Milton Park, Abingdon, Oxon OX14 4RN Routledge is an imprint of the Taylor & Francis Group, an informa business © 2013 Taylor & Francis The right of the editor to be identifi ed as the author of the editorial material, and of the authors for their individual chapters, has been asserted in accordance with sections 77 and 78 of the Copyright, Designs and Patents Act 1988. All rights reserved. No part of this book may be reprinted or reproduced or utilised in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying and recording, or in any information storage or retrieval system, without permission in writing from the publishers. Trademark notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identifi cation and explanation without intent to infringe. Library of Congress Cataloging-in-Publication Data Digital labor : the Internet as playground and factory / edited by Trebor Scholz. p. cm. Includes bibliographical references and index. 1. Internet–Social aspects. 2. Information society. I. Scholz, Trebor. HM851.D538 2013 302.23'1–dc23 2012012133 ISBN: 978-0-415-89694-8 (hbk) ISBN: 978-0-415-89695-5 (pbk) ISBN: 978-0-203-14579-1 (ebk) Typeset in ApexBembo by Apex CoVantage, LLC CONTENTS Acknowledgments vii Introduction: Why Does Digital -
I Found Work on an Amazon Website. I Made 97 Cents an Hour. - the New York Times Crossword Times Insider Newsletters the Learning Network
11/15/2019 I Found Work on an Amazon Website. I Made 97 Cents an Hour. - The New York Times Crossword Times Insider Newsletters The Learning Network Multimedia Photography Podcasts NYT Store NYT Wine Club nytEducation Times Journeys Meal Kits Subscribe Manage Account Today's Paper Tools & Services Jobs Classifieds Corrections More Site Mobile Navigation 12 I Found Work on an Amazon Website. I Made 97 Cents an Hour. By ANDY NEWMAN NOV. 15, 2019 Inside the weird, wild, low-wage world of Mechanical Turk. https://www.nytimes.com/interactive/2019/11/15/nyregion/amazon-mechanical-turk.html 2/15 11/15/2019 I Found Work on an Amazon Website. I Made 97 Cents an Hour. - The New York Times After turking for eight hours, the author had earned $7.83. Dave Sanders for The New York Times The computer showed a photo of what looked like a school board meeting. My job was to rate it on a scale of 1 to 5 for 23 different qualities: “patriotic,” “elitist,” “reassuring” and so on. I did the same for a photo of a woman wearing headphones — I gave her a 4 for “competent” and a 1 for “threatening” — and another of five smiling women flanking a smiling man in a blue windbreaker. I submitted my answers. I checked the clock. Three minutes had passed. I had just earned another 5 cents on a digital work marketplace run by Amazon called Mechanical Turk. At least I thought I had. Weeks later, I’m still not sure. There are lots of ways to make a little money in this world. -
Amazon Mechanical Turk Requester UI Guide Amazon Mechanical Turk Requester UI Guide
Amazon Mechanical Turk Requester UI Guide Amazon Mechanical Turk Requester UI Guide Amazon Mechanical Turk: Requester UI Guide Copyright © 2014 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. The following are trademarks of Amazon Web Services, Inc.: Amazon, Amazon Web Services Design, AWS, Amazon CloudFront, Cloudfront, Amazon DevPay, DynamoDB, ElastiCache, Amazon EC2, Amazon Elastic Compute Cloud, Amazon Glacier, Kindle, Kindle Fire, AWS Marketplace Design, Mechanical Turk, Amazon Redshift, Amazon Route 53, Amazon S3, Amazon VPC. In addition, Amazon.com graphics, logos, page headers, button icons, scripts, and service names are trademarks, or trade dress of Amazon in the U.S. and/or other countries. Amazon©s trademarks and trade dress may not be used in connection with any product or service that is not Amazon©s, in any manner that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to, or sponsored by Amazon. Amazon Mechanical Turk Requester UI Guide Table of Contents Welcome ..................................................................................................................................... 1 How Do I...? ......................................................................................................................... 1 Introduction to Mechanical Turk ....................................................................................................... -
Privacy Experiences on Amazon Mechanical Turk
113 “Our Privacy Needs to be Protected at All Costs”: Crowd Workers’ Privacy Experiences on Amazon Mechanical Turk HUICHUAN XIA, Syracuse University YANG WANG, Syracuse University YUN HUANG, Syracuse University ANUJ SHAH, Carnegie Mellon University Crowdsourcing platforms such as Amazon Mechanical Turk (MTurk) are widely used by organizations, researchers, and individuals to outsource a broad range of tasks to crowd workers. Prior research has shown that crowdsourcing can pose privacy risks (e.g., de-anonymization) to crowd workers. However, little is known about the specific privacy issues crowd workers have experienced and how they perceive the state ofprivacy in crowdsourcing. In this paper, we present results from an online survey of 435 MTurk crowd workers from the US, India, and other countries and areas. Our respondents reported different types of privacy concerns (e.g., data aggregation, profiling, scams), experiences of privacy losses (e.g., phishing, malware, stalking, targeted ads), and privacy expectations on MTurk (e.g., screening tasks). Respondents from multiple countries and areas reported experiences with the same privacy issues, suggesting that these problems may be endemic to the whole MTurk platform. We discuss challenges, high-level principles and concrete suggestions in protecting crowd workers’ privacy on MTurk and in crowdsourcing more broadly. CCS Concepts: • Information systems → Crowdsourcing; • Security and privacy → Human and societal aspects of security and privacy; • Human-centered computing → Computer supported cooperative work; Additional Key Words and Phrases: Crowdsourcing; Privacy; Amazon Mechanical Turk (MTurk) ACM Reference format: Huichuan Xia, Yang Wang, Yun Huang, and Anuj Shah. 2017. “Our Privacy Needs to be Protected at All Costs”: Crowd Workers’ Privacy Experiences on Amazon Mechanical Turk. -
Crowdsourcing for Speech: Economic, Legal and Ethical Analysis Gilles Adda, Joseph Mariani, Laurent Besacier, Hadrien Gelas
Crowdsourcing for Speech: Economic, Legal and Ethical analysis Gilles Adda, Joseph Mariani, Laurent Besacier, Hadrien Gelas To cite this version: Gilles Adda, Joseph Mariani, Laurent Besacier, Hadrien Gelas. Crowdsourcing for Speech: Economic, Legal and Ethical analysis. [Research Report] LIG lab. 2014. hal-01067110 HAL Id: hal-01067110 https://hal.archives-ouvertes.fr/hal-01067110 Submitted on 23 Sep 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Crowdsourcing for Speech: Economic, Legal and Ethical analysis Gilles Adda1, Joseph J. Mariani1,2, Laurent Besacier3, Hadrien Gelas3,4 (1) LIMSI-CNRS, (2) IMMI-CNRS, (3) LIG-CNRS, (4) DDL-CNRS September 19, 2014 1 Introduction With respect to spoken language resource production, Crowdsourcing – the process of distributing tasks to an open, unspecified population via the inter- net – offers a wide range of opportunities: populations with specific skills are potentially instantaneously accessible somewhere on the globe for any spoken language. As is the case for most newly introduced high-tech services, crowd- sourcing raises both hopes and doubts, certainties and questions. A general analysis of Crowdsourcing for Speech processing could be found in (Eskenazi et al., 2013). This article will focus on ethical, legal and economic issues of crowdsourcing in general (Zittrain, 2008a) and of crowdsourcing services such as Amazon Mechanical Turk (Fort et al., 2011; Adda et al., 2011), a major plat- form for multilingual language resources (LR) production. -
Using Amazon Mechanical Turk and Other Compensated Crowd Sourcing Sites Gordon B
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Opus: Research and Creativity at IPFW Indiana University - Purdue University Fort Wayne Opus: Research & Creativity at IPFW Organizational Leadership and Supervision Faculty Division of Organizational Leadership and Publications Supervision 7-2016 Using Amazon Mechanical Turk and Other Compensated Crowd Sourcing Sites Gordon B. Schmidt Indiana University - Purdue University Fort Wayne, [email protected] William Jettinghoff Indiana University - Bloomington Follow this and additional works at: http://opus.ipfw.edu/ols_facpubs Part of the Industrial and Organizational Psychology Commons, and the Organizational Behavior and Theory Commons Opus Citation Gordon B. Schmidt and William Jettinghoff (2016). sinU g Amazon Mechanical Turk and Other Compensated Crowd Sourcing Sites. Business Horizons.59 (4), 391-400. Elsevier. http://opus.ipfw.edu/ols_facpubs/91 This Article is brought to you for free and open access by the Division of Organizational Leadership and Supervision at Opus: Research & Creativity at IPFW. It has been accepted for inclusion in Organizational Leadership and Supervision Faculty Publications by an authorized administrator of Opus: Research & Creativity at IPFW. For more information, please contact [email protected]. Business Horizons (2016) 59, 391—400 Available online at www.sciencedirect.com ScienceDirect www.elsevier.com/locate/bushor Using Amazon Mechanical Turk and other compensated crowdsourcing sites a, b Gordon B. Schmidt *, William M. Jettinghoff a Division of Organizational Leadership and Supervision, Indiana University-Purdue University Fort Wayne, Neff 288D, 2101 East Coliseum Blvd., Fort Wayne, IN 46805, U.S.A. b Indiana University Bloomington, 8121 Deer Brook Place, Fort Wayne, IN 46825, U.S.A. -
Crowd Economy and Digital Precarity
Crowd Economy Denis Jaromil Roio Planetary Collegium / M-Node Plymouth, 10 July 2010 Plymouth, 10 July 2010 1 / Denis Jaromil Roio (2010) Crowd Economy 19 Outline 1 Crowdsourcing 2 Everyone is an Artist 3 Mechanical Turks 4 Conclusion Plymouth, 10 July 2010 2 / Denis Jaromil Roio (2010) Crowd Economy 19 Crowdsourcing Crowdsourcing The term crowdsourcing indicates the act of outsourcing tasks, traditionally performed by an employee or contractor, to a large group of people (a crowd): the trend of leveraging the mass collaboration enabled by Web 2.0 technologies to achieve business goals. Crowdsourcing constituted a new form of corporate outsourcing to largely amateur pools of “volunteer labor that create content, solve problems, and even do corporate R & D.1” 1Howe, 2006 Plymouth, 10 July 2010 3 / Denis Jaromil Roio (2010) Crowd Economy 19 Crowdsourcing ESP Games “5000 people playing simultaneously an ESP game on image recognition can label all images on google in 30 days. Individual games in Yahoo! and MSN average over 5000 players at a time.”2 To address the problem of creating difficult metadata, ESP uses the computational power of humans to perform a task that computers cannot yet do by packaging the task as a “game”. 2von Ahn, 2006 Plymouth, 10 July 2010 4 / Denis Jaromil Roio (2010) Crowd Economy 19 Crowdsourcing Massive Multiplayer Online RPG MMORPG World of Warcraft Second Life OpenSIM etc. Virtual reality architecture Virtual miners Plymouth, 10 July 2010 5 / Denis Jaromil Roio (2010) Crowd Economy 19 Crowdsourcing Electronic Design Automation When crowdsourcing EDA, complex problems can be broken up into modules where the I/O of logic circuits is tested against combinations computed by humans.3 3Romero, 2009 Plymouth, 10 July 2010 6 / Denis Jaromil Roio (2010) Crowd Economy 19 Crowdsourcing Functional transormation Interested in the liberation of the means of production, Berthold Brecht elaborated the concept of functional transormation (Umfunktionierung) for the transformation of the forms and instruments of production [by a progressive intelligentsia]. -
Employment and Labor Law in the Crowdsourcing Industry
Working the Crowd: Employment and Labor Law in the Crowdsourcing Industry Alek Felstinert This Article confronts the thorny questions that arise in attempting to apply traditional employment and labor law to "crowdsourcing," an emerging online labor model unlike any that has existed to this point. Crowdsourcing refers to the process of taking tasks that would normally be delegated to an employee and distributingthem to a large pool of online workers, the "crowd, " in the form of an open call. The Article describes how crowdsourcing works, its advantages and risks, and why workers in particularsubsections of the paid crowdsourcing industry may be denied the protection of employment laws without much recourse to vindicate their rights. Taking Amazon's Mechanical Turk platform as a case study, the Article explores the nature of this employment relationship in order to determine the legal status of the "crowd." The Article also details the complications that might arise in applying existing work laws to crowd labor. Finally, the Article presents a series of brief recommendations. It encourages legislatures to clarify and expand legal protections for crowdsourced employees, and suggests ways for courts and administrative agencies to pursue the same objective within our existing legalframework. It also offers voluntary "best practices" for firms and venues involved in crowdsourcing, along with examples of how crowd workers might begin to effectively organize and advocate on their own behalf I. INTRODUCTION ....................................... 144 II. CROWDSOURCING AND COGNITIVE PIECEWORK ...... ........ 146 A. The Crowdsourcing Industry.... .................... 149 B. Why Crowdsourcing? And Why Not?......... ................ 151 1. What Firms Get Out of Crowdsourcing ........ ........ 151 tJ.D.