Lisa Randall

Total Page:16

File Type:pdf, Size:1020Kb

Lisa Randall Focus: Small Science Exclusive Interview: Harvard Theoretical Physicist Lisa Randall By Jennifer Gao and Limor Spector arvard Professor of Physics Lisa Ran- level, even protons and neutrons have is string theory. Theoretical particle Hdall’s work on the fundamental nature quarks. But at some level you think physics is trying to understand what is of particles, the Standard Model observables, you’ve reached the smallest ingredient, really going on at these deeper levels, supersymmetry, and other aspects of particle which is the particle. And we’re try- what underlies what we see. physics has earned her widespread recognition ing to understand physics at the most LQWKHÀHOGRI WKHRUHWLFDOSK\VLFVLQFOXGLQJ fundamental level and understand what HSR: Can you describe the basic most recently the Klopsted Award, presented by everything is made up of and what the research you’re conducting and inter- the American Association of Physics Teachers fundamental ingredients and interac- ested in? in 2006. She recently spoke to the Harvard tions are. That’s what our goal is. String Science Review about her research and her theory is the idea that particles aren’t the LR: I’m interested in a couple of dif- recent book, Warped Passages: Unraveling most fundamental – that instead, strings ferent directions [of research]. Most re- The Mysteries of The Universe’s Hid- are the most fundamental matter, and cently, my research focuses on extra di- den Dimensions, which was named a New particles are the oscillation modes of mensions of space and the implications York Times notable book of 2005. these fundamental oscillating strings. of extra dimensions in space, should The reason that people have proposed they exist in the universe. Basically, Harvard Science Review: The Har- this might be the case – we don’t know we’re trying to understand fundamental vard Science Review targets audiences if it’s the case – is that in standard particles and their interactions, what from a variety of backgrounds, includ- particle physics, we don’t fully under- gives mass to fundamental particles, ing humanities and science concen- stand gravity. We don’t know how to why gravity is as weak as it is. We’re trators. For students unfamiliar with combine together quantum mechanics trying to understand cosmological is- theoretical physics, could you give a and gravity at all distances. At large sues, how the universe came to be what brief description of what particle phys- distances, we can use Einstein’s theory it is. And those could all tie in with this ics, string theory, and theoretical physics of general relativity; we understand physics of extra dimensions of space. is all about? how that works. Quantum mechanics In particular, I’m trying to see whether just doesn’t play a big role [at these there are experimental consequences to Lisa Randall: Particle physics is based large distances]. At atomic distances, some of these theories I’ve worked on, on the idea that at a fundamental level, we use quantum mechanics, and rela- especially for particle physics accelera- everything is composed of elementary tivity doesn’t play a big role. But there tor experiments, in which particles get particles. That is, if you keep digging are distances, far beyond what we can accelerated to high energies and collide deeper [into the internal structure of see experimentally, where the theories together to make new particles. Also YLVLEOHPDWWHU@\RXÀQGWKDWWKLQJVDUH become incompatible, and that tells us I’m thinking about possible [experi- composite: an atom has neutrons, pro- theoretically that there should be some- mental consequences] for gravity wave tons, electrons. Of course, at a deeper thing else – and the proposed solution detectors, which are going to be better spring 2006 • Harvard Science Review 59 Focus: Small Science and better in the future. We can see gravitational signals from the sky that tell us things like if there was a phase transition in the early universe. We’re also thinking about what black holes would look like in the sorts of higher- dimensional theories that interest me at the moment. That’s the direction I’m JRLQJLQQRZWU\LQJWRÁHVKRXWVRPH of these theories better as well as their H[SHULPHQWDOFRQVHTXHQFHVWRÀQGRXW if they’re really right—that is, if the universe is as we propose. HSR: Your new book is entitled Warped Passages: Unraveling the Mysteries of The Universe’s Hidden Dimensions. What are warped passages, hidden dimensions, and how do these two concepts cor- relate with each other? LR: Passages was a word I made up to refer to extra dimensions of space. Dimensions are independent directions of space. The number of dimensions is the number of quantities you would need to pinpoint an object in space. We don’t really have a name for them once we get beyond the third dimension, so I called them passages. “Warped” has to do with the spacetime geometry that I’ve worked with, and it’s actually what we’ve found to be the solution to Einstein’s theory of general relativity in the particular context in which we studied it. In other words, we had a setup of objects in higher dimensions and we found that the solution was highly warped. Basically, it was really dramatically curved —and in ways that necessarily go straight there, you take two dimensions are analogous to our have very interesting consequences. some warped routes, so “warped” has three dimensions—that was all they The title is derived from the research many meanings. saw and experienced. So how would in the technical sense of the word they conceptualize a third dimension?” “warped.” It’s not just a Star Trek term. Hidden dimensions… we’re really talk- For them, a third dimension would be It’s actually called “warped,” the type ing about the idea of hidden dimen- an extra [unseen] dimension. So, for of geometry we found. But I was also sions of space, the idea that there is a example, if you imagine what they see sort of punning a little bit, because it’s sense of space beyond that which we when a sphere passed through their P\ÀUVWERRN²VR,FDOOHGLW´:DUSHG see. You can understand it in many two-dimensional world, you would see Passages” [laughs], which most people different ways; probably the best way that a sphere would look like a series seem to miss. It [the word “warped”] is the way Edwin A. Abbott in the of disks that increased in size and also helps to describe the way people late 19th century understood it. He then decreased in size. But the two arrive at physics results, both in doing asked the question, “Suppose you had dimensional creatures wouldn’t be able it and understanding it. You don’t two dimensional creatures. For them, to put it together and say they saw a credit: Scott D. Kominers. 60 Harvard Science Review • spring 2006 Focus: Small Science sphere—except mathematically. They a bead on a wire: a bead on a wire can wouldn’t be able to envision it—but travel, but only in the one dimension of “We’re trying to they could do it in their imagination, the wire, even though it might be on a or in words, or with math. In the same two-dimensional table in a three-dimen- understand physics at way, we don’t necessarily perceive extra sional room. In the same way, we might the most fundamental dimensions, but they could exist. We be stuck on branes so that the stuff level… what everything don’t know for sure if they do exist, but we’re made of, our universe, is stuck is made up of and they could exist. For example, if a hy- on a three-dimensional brane—even what the fundamental persphere passed through our universe, though there might be more [dimen- ingredients and it would look like a series of spheres sions]. Gravity would still [have to] that increased in size and decreased in travel [and operate] through all these interactions are… size. And again, it’s hard to visualize, but dimensions; [it would still have to be] cosmological issues, we can still imagine it and understand it spread throughout those dimensions. how the universe came mathematically. The idea is that there But we and the stuff we’re made of and to be what it is.” really might be dimensions of space the galaxy and universe in which we live beyond those that we see. The warping might be stuck on a lower dimensional [comes as a] consequence to Einstein’s object called a brane. theory of general relativity: if there is energy in these extra dimensions, it can HSR: Are there other aspects of your warp space, curve space, in very dra- work you want to highlight? matic ways which turn out to have very interesting implications. They can help LR: We [Randall and collaborator “Particle physicists us understand the weakness of gravity Raman Sundrum] found a couple would… predict that relative to other forces in our universe. of radically new consequences of gravity is about the Another revolutionary thing we found warped geometry. One was quite dra- same strength as the was that warping could explain why matic, because since the 1920s, people extra dimensions are hidden. thought that extra dimensions, if they other forces we know existed, would have to be extremely about, yet in reality HSR: Nima Arkani-Hamed, a theo- WLQ\²FXUOHGXSWRDPLQXVFXOHVL]H it is many orders of retical physics professor at Harvard or as was later postulated, bound up magnitude weaker in University, has stated that you are most between branes. We found you could strength.” well-known for your research on the DFWXDOO\KDYHDQLQÀQLWHH[WUDGLPHQ- concept of branes.
Recommended publications
  • Dark Matter and the Dinosaurs: the Astounding Interconnectedness of the Universe Pdf, Epub, Ebook
    DARK MATTER AND THE DINOSAURS: THE ASTOUNDING INTERCONNECTEDNESS OF THE UNIVERSE PDF, EPUB, EBOOK Lisa Randall | 432 pages | 05 Jan 2017 | Vintage Publishing | 9780099593560 | English | London, United Kingdom Dark Matter and the Dinosaurs: The Astounding Interconnectedness of the Universe PDF Book Randall rebuts such criticism by noting that it could be "simpler to say that dark matter is like our matter, in that it's different particles with different forces", adding "the other answer is that the world's complicated, so Occam's razor isn't always the best way to go about things. There was a problem filtering reviews right now. Creo que su lectura es muy recomendable. So if, in fact, there is this dense, dark disk, there should be evidence for it in this data, which will be really exciting. Amazon Second Chance Pass it on, trade it in, give it a second life. Retrieved 12 December Or, if you are already a subscriber Sign in. Randall: I mean there is, of course, also the richness of how the pieces fit together, which is the wonderful stuff that we observe in the world. And second, once we have them, what are all the consequences? Randall conjectures that dark matter may have indirectly led to the extinction of dinosaurs. And those are worth drilling down and really focusing on. Introduction is nice and smooth. And we can see how that fits together and then how that came about and try to understand that with science, over time. Baird, Jr. Although I am left confused to wether there is evidence for periodicity or not.
    [Show full text]
  • Search for New Physics with Top Quark Pairs in the Fully Hadronic Final State at the ATLAS Experiment
    Dissertation submitted to the Combined Faculties of the Natural Sciences and Mathematics of the Ruperto-Carola-University of Heidelberg, Germany for the degree of Doctor of Natural Sciences Put forward by Mathis Kolb born in Heidelberg Oral examination: November 21, 2018 Search for new physics with top quark pairs in the fully hadronic final state at the ATLAS experiment Referees: Prof. Dr. André Schöning Prof. Dr. Tilman Plehn Search for new physics with top quark pairs in the fully hadronic final state at the ATLAS experiment Fully hadronic final states containing top quark pairs (tt) are investigated using proton- proton collision data at a center of mass energy of 13 TeV recorded in 2015 and 2016 by the ATLAS experiment at the Large Hadron Collider at CERN. The bucket algorithm suppresses the large combinatorial background and is used to identify and reconstruct the tt system. It is applied in three analyses. A model independent search for new heavy particles decaying to tt using 36 fb−1 of data is presented. The analysis concentrates on an optimization of sensitivity at tt masses below 1:3 TeV. No excess from the Standard Model prediction is observed. Thus, upper limits at 95% C.L. are set on the production cross section times branching ratio of 0 benchmark signal models excluding e.g. a topcolor assisted technicolor ZTC2 in the mass range from 0:59 TeV to 1:25 TeV. The prospects of a search for the production of the Higgs boson in association with tt using 33 fb−1 of data recorded solely in 2016 are studied.
    [Show full text]
  • Understanding a Warped Cosmos
    Lisa Randall. “One challenge today is to see what you can do with large amounts of data, to study fundamental properties, not just questions of how electromagnetism gives rise to certain things. Can we actually see deviations from what you would predict in conventional theories?” Rami Shllush Understanding a warped cosmos What’s the connection between dinosaurs and dark matter? What is the glue that holds the universe together? Is there a fourth - and fifth - dimension? These are just some of the questions that occupy Lisa Randall, the first female physicist to get tenure at Princeton, Harvard and MIT ■ ״ ״r* י •• 1 י׳ The CERN facility, near Geneva. “We need higher-energy machines and particle Illustration of a large asteroid colliding with Earth over the Yucatan Peninsula, in accelerators,” says Randall, “but to really see new things, we need even more Mexico. The impact of such occurrences are thought to have led to the death of the powerful machines.” Richard Juillian/AFP dinosaurs some 65 million years ago. Mark Garlick/Science Photo Libra Ido Efrati in the sciences. In 2016 he mystery of the universe,be seen as evidence that dark matter Over the years, studies have specializes interview with The New she and the many riddles that re- interacted in some way with hydrogen mapped the presence of dark matter Yorker, related that in her teens she had fre- main open about itcan be ex- atoms, thus leadingto the loweringof in various placesin the universe,in- the of the dark matter. our emplifiedin myriad ways. temperature eludingin the center of galaxy,the quent confrontations with her mother, to One of the most frustratingPhysicistsresponding the article Milky Way.
    [Show full text]
  • Extraordinary Year for Gates Graduate Awards P.3 Staff Awards & Luncheon P.4 in January, President Obama Named Sylvester James Gates, Jr
    the ONLINE PHOTONNEWSLETTER FROM UMD DEPARTMENT OF PHYSICS 2012‐2013 Ryan K Morris/Naonal Science & Technology Medals Foundaon this issue AAAS Fellows P.2 Extraordinary Year for Gates Graduate Awards P.3 Staff Awards & Luncheon P.4 In January, President Obama named Sylvester James Gates, Jr. as one of this New Faces P.5 year's recipients of the Naonal Medal of Science. The Naonal Medal of Science and the Naonal Medal of Technology and Innovaon are the highest honors be‐ stowed by the United States Government upon sciensts, engineers and inven‐ Gates on C‐SPAN’s Q & A tors. The honor was one of four in an extraordinary year for Gates. Most recently, Gates was awarded the 2013 Mendel Medal by Villanova Universi‐ Jim Gates discusses science educaon, string theory, working ty. The honor recognizes pioneering sciensts who have demonstrated, by their with the President almost becom‐ lives and their standing before the world as sciensts, that there is no intrinsic ing an astronaut and being mistak‐ conflict between science and religion. Addionally, Gates was one of 84 U.S. re‐ en for Morgan Freeman on C‐ searchers and 21 foreign associates elected to the Naonal Academy of Science. SPAN’s Q & A The interview Elecon to the academy is considered one of the highest honors that can be ac‐ transcript is available on the Q & A website or watch the video at corded a U.S. scienst or engineer. And in January he was named a University Sys‐ tem of Maryland (USM) Regents Professor, the System's most prominent faculty hp://www.c‐spanvideo.org/ recognion.
    [Show full text]
  • N = 1 Field Theory Duality from M-Theory
    hep-th/9708015 BUHEP-97-23 N = 1 Field Theory Duality from M-theory Martin Schmaltz and Raman Sundrum Department of Physics Boston University Boston, MA 02215, USA [email protected], [email protected] Abstract We investigate Seiberg’s N = 1 field theory duality for four-dimensional super- symmetric QCD with the M-theory 5-brane. We find that the M-theory configuration for the magnetic dual theory arises via a smooth deformation of the M-theory config- arXiv:hep-th/9708015v2 27 Aug 1997 uration for the electric theory. The creation of Dirichlet 4-branes as Neveu-Schwarz 5-branes are passed through each other in Type IIA string theory is given a nice derivation from M-theory. 1 Introduction In the last few years there has been tremendous progress in understanding supersym- metric gauge dynamics and the remarkable phenomenon of electric-magnetic duality [1, 2]. Most of the results were first guessed at within field theory and then checked to satisfy many non-trivial consistency conditions. However, the organizing principle behind these dualities has always been somewhat mysterious from the field theoretic perspective. Recently there has arisen a fascinating connection between supersymmetric gauge dynamics and string theory brane dynamics [3] which has the potential for unifying our understanding of these dualities [4-13]. This stems from our ability to set up configurations of branes in string theory with supersymmetric gauge field theories living on the world-volumes of branes in the low-energy limit. The moduli spaces of the gauge field theories are thereby encoded geometrically in the brane set-up.
    [Show full text]
  • Minutes High Energy Physics Advisory Panel October 22–23, 2009 Hilton Embassy Row Washington, D.C
    Draft Minutes High Energy Physics Advisory Panel October 22–23, 2009 Hilton Embassy Row Washington, D.C. HEPAP members present: Hiroaki Aihara Wim Leemans Marina Artuso Daniel Marlow Alice Bean Ann Nelson Patricia Burchat Paris Sphicas Lance Dixon Kate Scholberg Graciela Gelmini Melvyn J. Shochet, Chair Larry Gladney Henry Sobel Boris Kayser Maury Tigner Robert Kephart William Trischuk Steven Kettell Herman White HEPAP members absent: Priscilla Cushman Lisa Randall Sarah Eno Sally Seidel Stephen Olson Also participating: Barry Barish, Director, Global Design Effort, International Linear Collider Frederick Bernthal, President, Universities Research Association Glen Crawford, HEPAP Designated Federal Officer, Office of High Energy Physics, Office of Science, Department of Energy Joseph Dehmer, Director, Division of Physics, National Science Foundation Cristinel Diaconu, Directeur de Recherche, IN2P3/CNRS, France Robert Diebold, Diebold Consulting Marvin Goldberg, Program Director, Division of Physics, National Science Foundation Judith Jackson, Director, Office of Communication, Fermi National Accelerator Laboratory Young-Kee Kim, Deputy Director, Fermi National Accelerator Laboratory John Kogut, HEPAP Executive Secretary, Office of High Energy Physics, Office of Science, Department of Energy Dennis Kovar, Associate Director, Office of High Energy Physics, Office of Science, Department of Energy Kevin Lesko, Nuclear Science Division, Lawrence Berkeley National Laboratory Marsha Marsden, Office of High Energy Physics, Office of Science,
    [Show full text]
  • January 26, 2009
    INFORMATION Texting, blogging and the like might yet prove beneficial, 3 BIOLOGICAL SCIENCE Avian dads learned doting ways from the dinosaurs, 4 CENTER FOR TEACHING AND LEARNING Lectures, workshops and The Faculty-Staff Bulletin of The Florida State University consultations, 6 and 7 VolumeSTATE 43 • Number 10 January 26 - February 15, 2009 Florida State pays tribute to ‘Year of Science’ ORIGINS ’09 Two-time Pulitzer Prize-winning au- Wilson will join acclaimed Harvard NPR’s “Science Friday,” among many thor and world-renowned biologist E.O. University cosmologist Lisa Randall, others for the program, which begins Wilson will be among the headliners of famed anthropologist Don Johanson (co- March 16. a two-week celebration of what discov- discoverer of “Lucy”, the world’s most Named “Origins ’09: A Celebration eries in science and the humanities have famous fossil), Sean B. Carroll, noted of the Birth and Life of Beginnings,” the meant to modern civilization. biologist and author, and Ira Flatow of event is being sponsored by the Florida State University Office of Research and co-sponsored by the FSU College of Medicine and the Tallahassee Scientific Conference headliners will Society. It’s all part of a tribute to 2009 include, clockwise, E.O. as the Year of Science, a national desig- Wilson, the world’s leading nation inspired by the 200th birthday of Charles Darwin (Feb. 12). naturalist, Harvard physicist Unlike many tributes scheduled Lisa Randall and Ira Flatow, around the nation and world, Florida host of “Science Friday” on State’s program is designed to go be- National Public Radio.
    [Show full text]
  • Curriculum Vitae
    CURRICULUM VITAE Raman Sundrum July 26, 2019 CONTACT INFORMATION Physical Sciences Complex, University of Maryland, College Park, MD 20742 Office - (301) 405-6012 Email: [email protected] CAREER John S. Toll Chair, Director of the Maryland Center for Fundamental Physics, 2012 - present. Distinguished University Professor, University of Maryland, 2011-present. Elkins Chair, Professor of Physics, University of Maryland, 2010-2012. Alumni Centennial Chair, Johns Hopkins University, 2006- 2010. Full Professor at the Department of Physics and Astronomy, The Johns Hopkins University, 2001- 2010. Associate Professor at the Department of Physics and Astronomy, The Johns Hop- kins University, 2000- 2001. Research Associate at the Department of Physics, Stanford University, 1999- 2000. Advisor { Prof. Savas Dimopoulos. 1 Postdoctoral Fellow at the Department of Physics, Boston University. 1996- 1999. Postdoc advisor { Prof. Sekhar Chivukula. Postdoctoral Fellow in Theoretical Physics at Harvard University, 1993-1996. Post- doc advisor { Prof. Howard Georgi. Postdoctoral Fellow in Theoretical Physics at the University of California at Berke- ley, 1990-1993. Postdoc advisor { Prof. Stanley Mandelstam. EDUCATION Yale University, New-Haven, Connecticut Ph.D. in Elementary Particle Theory, May 1990 Thesis Title: `Theoretical and Phenomenological Aspects of Effective Gauge Theo- ries' Thesis advisor: Prof. Lawrence Krauss Brown University, Providence, Rhode Island Participant in the 1988 Theoretical Advanced Summer Institute University of Sydney, Australia B.Sc with First Class Honours in Mathematics and Physics, Dec. 1984 AWARDS, DISTINCTIONS J. J. Sakurai Prize in Theoretical Particle Physics, American Physical Society, 2019. Distinguished Visiting Research Chair, Perimeter Institute, 2012 - present. 2 Moore Fellow, Cal Tech, 2015. American Association for the Advancement of Science, Fellow, 2011.
    [Show full text]
  • Supergravity on the Brane
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server Supergravity on the Brane A. Chamblin∗∗ & G.W. Gibbons DAMTP, Silver Street, Cambridge, CB3 9EW, England (November 23, 1999) We show that smooth domain wall spacetimes supported by a scalar field separating two anti- de-Sitter like regions admit a single graviton bound state. Our analysis yields a fully non-linear supergravity treatment of the Randall-Sundrum model. Our solutions describe a pp-wave propa- gating in the domain wall background spacetime. If the latter is BPS, our solutions retain some supersymmetry. Nevertheless, the Kaluza-Klein modes generate \pp curvature" singularities in the bulk located where the horizon of AdS would ordinarily be. 12.10.-g, 11.10.Kk, 11.25.M, 04.50.+h DAMTP-1999-126 I. INTRODUCTION full dynamics of the domain wall is not treated in detail in the Randall-Sundrum model. In fact gravitating domain walls have a drastic effect on the curvature of the ambi- It has long been thought that any attempt to model ent spacetime and it is not obvious that a simple model the Universe as a single brane embedded in a higher- involving a single collective coordinate representing the dimensional bulk spacetime must inevitably fail because transverse displacement of the domain wall is valid. the gravitational forces experienced by matter on the For these reasons it seems desirable to have a simple brane, being mediated by gravitons travelling in the non-singular model which is exactly solvable. It is the bulk, are those appropriate to the higher dimensional purpose of this note to provide that.
    [Show full text]
  • The Interplay Between Natural and Accidental Supersymmetry
    THE INTERPLAY BETWEEN NATURAL AND ACCIDENTAL SUPERSYMMETRY by Christopher P. Brust A dissertation submitted to The Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy. Baltimore, Maryland February, 2014 c Christopher P. Brust 2014 ⃝ All rights reserved Abstract In this thesis, we will explore the subject of the little hierarchy problem which plagues solutions to the big hierarchy problem of the Standard Model of particle physics. In the first half of this thesis, we study the theoretical framework for a supersym- metric resolution of the little hierarchy problem, known as natural supersymmetry, and argue that regions of the parameter space of this model have been missed by search strategies employed at the large hadron collider, but could be searched for with new search strategies. In the second half of this thesis, we explore the possibility of embedding natural supersymmetry in models of warped extra dimensions in order to UV-complete them by utilizing a mechanism known as accidental supersymmetry. We study the mech- anism of accidental supersymmetry in the Randall-Sundrum framework by focusing on a toy model, and argue that accidental supersymmetry is capable solving the little hierarchy problem in that toy model. Finally, as models in the Randall-Sundrum framework themselves require UV completions, we demonstrate that it is possible to ii ABSTRACT realize the mechanism of accidental supersymmetry within the UV-complete frame- work of type IIB superstring theory. iii Acknowledgments I would first like to thank my advisor, Raman Sundrum, for his continual support, useful advice, collaboration and friendship over the duration of my time at Johns Hopkins.
    [Show full text]
  • Abstract a Natural Extension of Standard Warped Higher
    ABSTRACT Title of dissertation: A NATURAL EXTENSION OF STANDARD WARPED HIGHER-DIMENSIONAL COMPACTIFICATIONS: THEORY AND PHENOMENOLOGY Sungwoo Hong, Doctor of Philosophy, 2017 Dissertation directed by: Professor Kaustubh Agashe Department of Physics Warped higher-dimensional compactifications with \bulk" standard model, or their AdS/CFT dual as the purely 4D scenario of Higgs compositeness and par- tial compositeness, offer an elegant approach to resolving the electroweak hierar- chy problem as well as the origins of flavor structure. However, low-energy elec- troweak/flavor/CP constraints and the absence of non-standard physics at LHC Run 1 suggest that a \little hierarchy problem" remains, and that the new physics underlying naturalness may lie out of LHC reach. Assuming this to be the case, we show that there is a simple and natural extension of the minimal warped model in the Randall-Sundrum framework, in which matter, gauge and gravitational fields propagate modestly different degrees into the IR of the warped dimension, resulting in rich and striking consequences for the LHC (and beyond). The LHC-accessible part of the new physics is AdS/CFT dual to the mecha- nism of \vectorlike confinement", with TeV-scale Kaluza-Klein excitations of the gauge and gravitational fields dual to spin-0,1,2 composites. Unlike the mini- mal warped model, these low-lying excitations have predominantly flavor-blind and flavor/CP-safe interactions with the standard model. In addition, the usual leading decay modes of the lightest KK gauge bosons into top and Higgs bosons are sup- pressed. This effect permits erstwhile subdominant channels to become significant.
    [Show full text]
  • Extra Dimensions and Warped Geometries Lisa Randall
    S PACETIME REVIEW Extra Dimensions and Warped Geometries Lisa Randall The field of extra dimensions, as well as the hypothesized sizes of extra area of a sphere drawn at the distance r dimensions, have grown by leaps and bounds over the past few years. I (because all force lines penetrate the sphere’s summarize the new results and the reasons for the recent activity in this surface). Because the gravitational force be- field. These include the observations that extra dimensions can be mac- tween two masses is proportional to the prod- roscopic or even infinite in size. Another new development is the appli- uct of their masses, the 1/r 2 form of the force cation of extra dimensions to the determination of particle physics pa- law has important consequences for heavy rameters and properties. macroscopic objects, such as planets. The force law is also measured on very small We generally take it for granted that we live balls (compactification) or the more recent scales with much smaller objects. Here, the in a world where there are three infinite spa- proposal by Sundrum and myself of focusing weakness of gravity is in evidence, and other, tial dimensions. In fact, we rarely give this of the gravitational potential in a lower di- stronger forces can interfere with the mea- fact much thought; we readily refer to left- mensional subspace (localization) (3, 4). surement. The best measurement to date right, forward-backward, and up-down. These ideas are important in and of them- comes from an impressively accurate exper- Yet the most exciting developments in selves; one or the other would be the reason iment by Adelberger’s group at the Universi- particle physics in the past few years have we so far haven’t observed evidence for extra ty of Washington (6), where it has been involved the recognition that additional di- dimensions, should they exist.
    [Show full text]