Calculus Unit Plan

Total Page:16

File Type:pdf, Size:1020Kb

Calculus Unit Plan Calculus Unit Plan Title of Unit Pre-Calculus – Integrals Grade Level HS (11-12) Curriculum Area Calculus (Mathematics) Time Frame 3-4 weeks January February Materials Calculus AP* Edition Finney, Handouts Demana, Waits, Kennedy Learning Targets Chapter 6 and 7.1 to 7.3 Additional support Khan Academy https://www.khanacademy.org/ o Indefinite integral as antiderivative o Riemann sums and definite integration o Integration by parts o U-substitution o Definite integrals o Trigonometric substitution o Fundamental theorem of calculus Calculus videos: http://www.online.math.uh.edu/HoustonACT/videocalculus/ www.pkyonge.ufl.edu Calculus Unit Plan o The Area Under a Curve o The Integral o The Fundamental Theorem of Calculus o Antidifferentiation and Indefinite Integrals o Change of Variables (Substitution) o The Natural Logarithm o The Exponential Function o The Inverse Trigonometric Functions o Integration by Parts o Integration of Powers and Products of Sine and Cosine o Integration of Powers and Products of Secant and Tangent, Cosecant and Cotangent o Trigonometric Substitutions o Partial Fraction Expansions o Numerical Integration AP Calculus homepage at AP Central: http://apcentral.collegeboard.com Developed By Jim Bice www.pkyonge.ufl.edu Calculus Unit Plan Overview Integral calculus is the study of the area under the curve. The connection between differential calculus and integral calculus is the fundamental theorem of calculus. This unit will help explain that connection and how to use it to solve problems. Essential Questions What is the integral, how do I get it, and how is it used to solve problems? How is the derivative related to the definite interval as found in the fundamental theorem of calculus? Knowledge (Content Understanding) Skills (Processes and Understandings) Students will know… Students will be able to… Students will know… I can understand the concept of area under a curve using a Riemann sum over Absolute change equal subdivisions Area under a curve I can use the limit of a Riemann sum to calculate a definite integral Bounded function I can find definite integrals and Antiderivatives Definite integral I can describe and use the Fundamental Theorem of Calculus Dummy variable I can use the graphing calculator to compute definite integrals numerically Integrable function I can use techniques of antidifferentiation including integration by parts and Integral of f from a to b simple partial fractions Integrand I can integrate the trigonometric functions I can differentiate and integrate inverse trigonometric functions Mean value theorem I can use numerical Integration: Trapezoidal Rule and Simpson’s Rule Net area I can find general and particular solutions to differential equations with Partition separable variables Rectangular Approximation method www.pkyonge.ufl.edu Calculus Unit Plan (RAM) I can create Slope fields LRAM, MRAM,RRAM Riemann sum Simpson’s rule Subinterval Trapezoidal rule Upper bound Antidifferentiation by parts Antidifferentiation by substitution Arbitrary constant of integration Euler’s method Indefinite integral Leibniz notation for integrals Numerical solution Slope fields Plans for Adjusting Core to Meet the Needs of All Students Support Challenge Provide in class support Challenge problems during class Strategic partnering Chunking of assignments Practice problems vary by level of expertise Assessment Evidence (Stage 2) Self-assessment Formative Summative www.pkyonge.ufl.edu Calculus Unit Plan Learning targets for unit Homework Unit tests in AP Format Reflections 6 AP Questions Semester Exam Objective checks daily AP Study notes (prepared by Classroom Practice student) www.pkyonge.ufl.edu Calculus Unit Plan Content Standards Florida Standards MAFS.912.C.4.1: Use rectangle approximations to find approximate values of integrals. MAFS.912.C.4.2: Calculate the values of Riemann Sums over equal subdivisions using left, right, and midpoint evaluation points. MAFS.912.C.4.3: Interpret a definite integral as a limit of Riemann sums. MAFS.912.C.4.4: Interpret a definite integral of the rate of change of a quantity over an interval as the change of the quantity over the interval. That is, f'(x)dx = f(b) - f(a) (Fundamental Theorem of Calculus). MAFS.912.C.4.5: Use the Fundamental Theorem of Calculus to evaluate definite and indefinite integrals and to represent particular antiderivatives. Perform analytical and graphical analysis of functions so defined. MAFS.912.C.4.6: Use these properties of definite integrals: [f(x) + g(x)]dx = f(x)dx + g(x)dx k • f(x)dx = k f(x)dx f(x)dx = 0 f(x)dx = - f(x)dx f(x)dx + f(x)dx = f(x)dx If f(x) ≤ g(x) on [a, b], then f(x)dx ≤ g(x)dx MAFS.912.C.4.7: Use integration by substitution (or change of variable) to find values of integrals. MAFS.912.C.4.8: Use Riemann Sums, the Trapezoidal Rule, and technology to approximate definite integrals of functions represented algebraically, geometrically, and by tables of values. MAFS.912.C.5.1: Find specific antiderivatives using initial conditions, including finding velocity functions from acceleration functions, finding position functions from velocity functions, and solving applications MAFS.912.C.5.2: Solve separable differential equations, and use them in modeling. MAFS.912.C.5.4: Use slope fields to display a graphic representation of the solution to a differential equation, and locate particular solutions to the equation. Florida Math Standards MAFS.K12.MP.1.1 Make sense of problems and persevere in solving them. MAFS.K12.MP.2.1 Reason abstractly and quantitatively. www.pkyonge.ufl.edu Calculus Unit Plan MAFS.K12.MP.3.1 Construct viable arguments and critique the reasoning of others. MAFS.K12.MP.4.1 Model with mathematics. MAFS.K12.MP.5.1 Use appropriate tools strategically. MAFS.K12.MP.6.1 Attend to precision. MAFS.K12.MP.7.1 Look for and make use of structure. MAFS.K12.MP.8.1 Look for and express regularity in repeated reasoning. Florida Language Standards LAFS.1112.RST.1.3 Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks; analyze the specific results based on explanations in the text. LAFS.1112.RST.2.4 Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 1112 texts and topics. LAFS.1112.RST.3.7 Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem. LAFS.1112.SL.1.1 Initiate and participate effectively in a range of collaborative discussions (one-on-one, in groups, and teacher-led) with diverse partners on grades 1112 topics, texts, and issues, building on others ideas and expressing their own clearly and persuasively. LAFS.1112.SL.1.2 Integrate multiple sources of information presented in diverse formats and media (e.g., visually, quantitatively, orally) in order to make informed decisions and solve problems, evaluating the credibility and accuracy of each source and noting any discrepancies among the data. LAFS.1112.SL.1.3 Evaluate a speakers point of view, reasoning, and use of evidence and rhetoric, assessing the stance, premises, links among ideas, word choice, points of emphasis, and tone used. LAFS.1112.SL.2.4 Present information, findings, and supporting evidence, conveying a clear and distinct perspective, such that listeners can follow the line of reasoning, alternative or opposing perspectives are addressed, and the organization, development, substance, and style are appropriate to purpose, audience, and a range of formal and informal tasks. LAFS.1112.WHST.1.1 Write arguments focused on discipline-specific content. LAFS.1112.WHST.2.4 Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience. LAFS.1112.WHST.3.9 Draw evidence from informational texts to support analysis, reflection, and research. www.pkyonge.ufl.edu Calculus Unit Plan www.pkyonge.ufl.edu .
Recommended publications
  • Cloaking Via Change of Variables for Second Order Quasi-Linear Elliptic Differential Equations Maher Belgacem, Abderrahman Boukricha
    Cloaking via change of variables for second order quasi-linear elliptic differential equations Maher Belgacem, Abderrahman Boukricha To cite this version: Maher Belgacem, Abderrahman Boukricha. Cloaking via change of variables for second order quasi- linear elliptic differential equations. 2017. hal-01444772 HAL Id: hal-01444772 https://hal.archives-ouvertes.fr/hal-01444772 Preprint submitted on 24 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Cloaking via change of variables for second order quasi-linear elliptic differential equations Maher Belgacem, Abderrahman Boukricha University of Tunis El Manar, Faculty of Sciences of Tunis 2092 Tunis, Tunisia. Abstract The present paper introduces and treats the cloaking via change of variables in the framework of quasi-linear elliptic partial differential operators belonging to the class of Leray-Lions (cf. [14]). We show how a regular near-cloak can be obtained using an admissible (nonsingular) change of variables and we prove that the singular change- of variable-based scheme achieve perfect cloaking in any dimension d ≥ 2. We thus generalize previous results (cf. [7], [11]) obtained in the context of electric impedance tomography formulated by a linear differential operator in divergence form.
    [Show full text]
  • Chapter 8 Change of Variables, Parametrizations, Surface Integrals
    Chapter 8 Change of Variables, Parametrizations, Surface Integrals x0. The transformation formula In evaluating any integral, if the integral depends on an auxiliary function of the variables involved, it is often a good idea to change variables and try to simplify the integral. The formula which allows one to pass from the original integral to the new one is called the transformation formula (or change of variables formula). It should be noted that certain conditions need to be met before one can achieve this, and we begin by reviewing the one variable situation. Let D be an open interval, say (a; b); in R , and let ' : D! R be a 1-1 , C1 mapping (function) such that '0 6= 0 on D: Put D¤ = '(D): By the hypothesis on '; it's either increasing or decreasing everywhere on D: In the former case D¤ = ('(a);'(b)); and in the latter case, D¤ = ('(b);'(a)): Now suppose we have to evaluate the integral Zb I = f('(u))'0(u) du; a for a nice function f: Now put x = '(u); so that dx = '0(u) du: This change of variable allows us to express the integral as Z'(b) Z I = f(x) dx = sgn('0) f(x) dx; '(a) D¤ where sgn('0) denotes the sign of '0 on D: We then get the transformation formula Z Z f('(u))j'0(u)j du = f(x) dx D D¤ This generalizes to higher dimensions as follows: Theorem Let D be a bounded open set in Rn;' : D! Rn a C1, 1-1 mapping whose Jacobian determinant det(D') is everywhere non-vanishing on D; D¤ = '(D); and f an integrable function on D¤: Then we have the transformation formula Z Z Z Z ¢ ¢ ¢ f('(u))j det D'(u)j du1::: dun = ¢ ¢ ¢ f(x) dx1::: dxn: D D¤ 1 Of course, when n = 1; det D'(u) is simply '0(u); and we recover the old formula.
    [Show full text]
  • Introduction to the Modern Calculus of Variations
    MA4G6 Lecture Notes Introduction to the Modern Calculus of Variations Filip Rindler Spring Term 2015 Filip Rindler Mathematics Institute University of Warwick Coventry CV4 7AL United Kingdom [email protected] http://www.warwick.ac.uk/filiprindler Copyright ©2015 Filip Rindler. Version 1.1. Preface These lecture notes, written for the MA4G6 Calculus of Variations course at the University of Warwick, intend to give a modern introduction to the Calculus of Variations. I have tried to cover different aspects of the field and to explain how they fit into the “big picture”. This is not an encyclopedic work; many important results are omitted and sometimes I only present a special case of a more general theorem. I have, however, tried to strike a balance between a pure introduction and a text that can be used for later revision of forgotten material. The presentation is based around a few principles: • The presentation is quite “modern” in that I use several techniques which are perhaps not usually found in an introductory text or that have only recently been developed. • For most results, I try to use “reasonable” assumptions, not necessarily minimal ones. • When presented with a choice of how to prove a result, I have usually preferred the (in my opinion) most conceptually clear approach over more “elementary” ones. For example, I use Young measures in many instances, even though this comes at the expense of a higher initial burden of abstract theory. • Wherever possible, I first present an abstract result for general functionals defined on Banach spaces to illustrate the general structure of a certain result.
    [Show full text]
  • 7. Transformations of Variables
    Virtual Laboratories > 2. Distributions > 1 2 3 4 5 6 7 8 7. Transformations of Variables Basic Theory The Problem As usual, we start with a random experiment with probability measure ℙ on an underlying sample space. Suppose that we have a random variable X for the experiment, taking values in S, and a function r:S→T . Then Y=r(X) is a new random variabl e taking values in T . If the distribution of X is known, how do we fin d the distribution of Y ? This is a very basic and important question, and in a superficial sense, the solution is easy. 1. Show that ℙ(Y∈B) = ℙ ( X∈r −1( B)) for B⊆T. However, frequently the distribution of X is known either through its distribution function F or its density function f , and we would similarly like to find the distribution function or density function of Y . This is a difficult problem in general, because as we will see, even simple transformations of variables with simple distributions can lead to variables with complex distributions. We will solve the problem in various special cases. Transformed Variables with Discrete Distributions 2. Suppose that X has a discrete distribution with probability density function f (and hence S is countable). Show that Y has a discrete distribution with probability density function g given by g(y)=∑ f(x), y∈T x∈r −1( y) 3. Suppose that X has a continuous distribution on a subset S⊆ℝ n with probability density function f , and that T is countable.
    [Show full text]
  • The Laplace Operator in Polar Coordinates in Several Dimensions∗
    The Laplace operator in polar coordinates in several dimensions∗ Attila M´at´e Brooklyn College of the City University of New York January 15, 2015 Contents 1 Polar coordinates and the Laplacian 1 1.1 Polar coordinates in n dimensions............................. 1 1.2 Cartesian and polar differential operators . ............. 2 1.3 Calculating the Laplacian in polar coordinates . .............. 2 2 Changes of variables in harmonic functions 4 2.1 Inversionwithrespecttotheunitsphere . ............ 4 1 Polar coordinates and the Laplacian 1.1 Polar coordinates in n dimensions Let n ≥ 2 be an integer, and consider the n-dimensional Euclidean space Rn. The Laplace operator Rn n 2 2 in is Ln =∆= i=1 ∂ /∂xi . We are interested in solutions of the Laplace equation Lnf = 0 n 2 that are spherically symmetric,P i.e., is such that f depends only on r=1 xi . In order to do this, we need to use polar coordinates in n dimensions. These can be definedP as follows: for k with 1 ≤ k ≤ n 2 k 2 define rk = i=1 xi and put for 2 ≤ k ≤ n write P (1) rk−1 = rk sin φk and xk = rk cos φk. rk−1 = rk sin φk and xk = rk cos φk. The polar coordinates of the point (x1,x2,...,xn) will be (rn,φ2,φ3,...,φn). 2 2 2 In case n = 2, we can write y = x1, x = x2. The polar coordinates (r, θ) are defined by r = x + y , (2) x = r cos θ and y = r sin θ, so we can take r2 = r and φ2 = θ.
    [Show full text]
  • Part IA — Vector Calculus
    Part IA | Vector Calculus Based on lectures by B. Allanach Notes taken by Dexter Chua Lent 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures. They are nowhere near accurate representations of what was actually lectured, and in particular, all errors are almost surely mine. 3 Curves in R 3 Parameterised curves and arc length, tangents and normals to curves in R , the radius of curvature. [1] 2 3 Integration in R and R Line integrals. Surface and volume integrals: definitions, examples using Cartesian, cylindrical and spherical coordinates; change of variables. [4] Vector operators Directional derivatives. The gradient of a real-valued function: definition; interpretation as normal to level surfaces; examples including the use of cylindrical, spherical *and general orthogonal curvilinear* coordinates. Divergence, curl and r2 in Cartesian coordinates, examples; formulae for these oper- ators (statement only) in cylindrical, spherical *and general orthogonal curvilinear* coordinates. Solenoidal fields, irrotational fields and conservative fields; scalar potentials. Vector derivative identities. [5] Integration theorems Divergence theorem, Green's theorem, Stokes's theorem, Green's second theorem: statements; informal proofs; examples; application to fluid dynamics, and to electro- magnetism including statement of Maxwell's equations. [5] Laplace's equation 2 3 Laplace's equation in R and R : uniqueness theorem and maximum principle. Solution of Poisson's equation by Gauss's method (for spherical and cylindrical symmetry) and as an integral. [4] 3 Cartesian tensors in R Tensor transformation laws, addition, multiplication, contraction, with emphasis on tensors of second rank. Isotropic second and third rank tensors.
    [Show full text]
  • The Jacobian and Change of Variables
    The Jacobian and Change of Variables Icon Placement: Section 3.3, p. 204 This set of exercises examines how a particular determinant called the Jacobian may be used to allow us to change variables in double and triple integrals. First, let us review how a change of variables is done in a single integral: this change is usually called a substitution. If we are attempting to integrate f(x) over the interval a ≤ x ≤ b,we can let x = g(u) and substitute u for x, giving us Z b Z d f(x) dx = f(g(u))g0(u) du a c 0 dx where a = g(c)andb = g(d). Notice the presence of the factor g (u)= du . A similar factor will be introduced when we study substitutions in double and triple integrals, and this factor will involve the Jacobian. We will now study changing variables in double and triple integrals. These intergrals are typically studied in third or fourth semester calculus classes. For more information on these integrals, consult your calculus text; e.g., Reference 2, Chapter 13, \Multiple Integrals." We assume that the reader has a passing familiarity with these concepts. To change variables in double integrals, we will need to change points (u; v)topoints(x; y). 2 2 → Ê That is, we will have a transformation T : Ê with T (u; v)=(x; y). Notice that x and y are functions of u and v;thatis,x = x(u; v)andy = y(u; v). This transformation T may or may not be linear.
    [Show full text]
  • 3 Laplace's Equation
    3 Laplace’s Equation We now turn to studying Laplace’s equation ∆u = 0 and its inhomogeneous version, Poisson’s equation, ¡∆u = f: We say a function u satisfying Laplace’s equation is a harmonic function. 3.1 The Fundamental Solution Consider Laplace’s equation in Rn, ∆u = 0 x 2 Rn: Clearly, there are a lot of functions u which satisfy this equation. In particular, any constant function is harmonic. In addition, any function of the form u(x) = a1x1 +:::+anxn for constants ai is also a solution. Of course, we can list a number of others. Here, however, we are interested in finding a particular solution of Laplace’s equation which will allow us to solve Poisson’s equation. Given the symmetric nature of Laplace’s equation, we look for a radial solution. That is, we look for a harmonic function u on Rn such that u(x) = v(jxj). In addition, to being a natural choice due to the symmetry of Laplace’s equation, radial solutions are natural to look for because they reduce a PDE to an ODE, which is generally easier to solve. Therefore, we look for a radial solution. If u(x) = v(jxj), then x u = i v0(jxj) jxj 6= 0; xi jxj which implies 1 x2 x2 u = v0(jxj) ¡ i v0(jxj) + i v00(jxj) jxj 6= 0: xixi jxj jxj3 jxj2 Therefore, n ¡ 1 ∆u = v0(jxj) + v00(jxj): jxj Letting r = jxj, we see that u(x) = v(jxj) is a radial solution of Laplace’s equation implies v satisfies n ¡ 1 v0(r) + v00(r) = 0: r Therefore, 1 ¡ n v00 = v0 r v00 1 ¡ n =) = v0 r =) ln v0 = (1 ¡ n) ln r + C C =) v0(r) = ; rn¡1 1 which implies ½ c1 ln r + c2 n = 2 v(r) = c1 (2¡n)rn¡2 + c2 n ¸ 3: From these calculations, we see that for any constants c1; c2, the function ½ c1 ln jxj + c2 n = 2 u(x) ´ c1 (3.1) (2¡n)jxjn¡2 + c2 n ¸ 3: for x 2 Rn, jxj 6= 0 is a solution of Laplace’s equation in Rn ¡ f0g.
    [Show full text]
  • Gradient Vector Tangent Plane and Normal Line Flux and Surface
    Gradient vector • The gradient of f(x; y; z) is the vector rf = hfx; fy; fzi. This gives the direction of most rapid increase at each point and the rate of change in that direction is jjrfjj. • The direction of most rapid decrease is given by −∇f and the rate of change in that direction is −||∇fjj. Tangent plane and normal line • The tangent plane to the graph of z = f(x; y) at the point (x0; y0; z0) is the plane z − f(x0; y0) = fx(x0; y0) · (x − x0) + fy(x0; y0) · (y − y0): • The normal line to the graph of z = f(x; y) at the point (x0; y0; z0) has direction n = hfx(x0; y0); fy(x0; y0); −1i : Flux and surface integrals • The flux of the vector field F (x; y; z) through a surface σ in R3 is given by ¨ Flux = F · n dS; σ where n is the unit normal vector depending on the orientation of the surface. If σ is the graph of z = f(x; y) oriented upwards, then n dS = ⟨−fx; −fy; 1i dx dy. • The surface integral of a function H(x; y; z) over the graph of z = f(x; y) is given by ¨ ¨ q · 2 2 H(x; y; z) dS = H(x; y; f(x; y)) 1 + fx + fy dx dy; σ R where σ denotes the graph of z = f(x; y) and R is its projection onto the xy-plane. Change of variables • Cylindrical coordinates. These are defined by the formulas x = r cos θ; y = r sin θ; x2 + y2 = r2; dV = r dz dr dθ: • Spherical coordinates.
    [Show full text]
  • VECTOR CALCULUS I Mathematics 254 Study Guide
    VECTOR CALCULUS I Mathematics 254 Study Guide By Harold R. Parks Department of Mathematics Oregon State University and Dan Rockwell Dean C. Wills Dec 2014 MTH 254 STUDY GUIDE Summary of topics Lesson 1 (p. 1): Coordinate Systems, §10.2, 13.5 Lesson 2 (p. 9): Vectors in the Plane and in 3-Space, §11.1, 11.2 Lesson 3 (p. 17): Dot Products, §11.3 Lesson 4 (p. 21): Cross Products, §11.4 Lesson 5 (p. 23): Calculus on Curves, §11.5 & 11.6 Lesson 6 (p. 27): Motion in Space, §11.7 Lesson 7 (p. 29): Lengths of Curves, §11.8 Lesson 8 (p. 31): Curvature and Normal Vectors, §11.9 Lesson 9 (p. 33): Planes and Surfaces, §12.1 Lesson 10 (p. 37): Graphs and Level Curves, §12.2 Lesson 11 (p. 39): Limits and Continuity, §12.3 Lesson 12 (p. 43): Partial Derivatives, §12.4 Lesson 13 (p. 45): The Chain Rule, §12.5 Lesson 14 (p. 49): Directional Derivatives and the Gradient, §12.6 Lesson 15 (p. 53): Tangent Planes, Linear Approximation, §12.7 Lesson 16 (p. 57): Maximum/Minimum Problems, §12.8 Lesson 17 (p. 61): Lagrange Multipliers, §12.9 Lesson 18 (p. 63): Double Integrals: Rectangular Regions, §13.1 Lesson 19 (p. 67): Double Integrals over General Regions, §13.2 Lesson 20 (p. 73): Double Integrals in Polar Coordinates, §13.3 Lesson 21 (p. 75): Triple Integrals, §13.4 Lesson 22 (p. 77): Triple Integrals: Cylindrical & Spherical, §13.4 Lesson 23 (p. 79): Integrals for Mass Calculations, §13.6 Lesson 24 (p. 81): Change of Multiple Variables, §13.7 HRP, Summary of Suggested Problems § 10.2 (p.
    [Show full text]
  • On the Change of Variables Formula for Multiple Integrals 1 Introduction
    J. Math. Study Vol. 50, No. 3, pp. 268-276 doi: 10.4208/jms.v50n3.17.04 September 2017 On the Change of Variables Formula for Multiple Integrals Shibo Liu1,∗and Yashan Zhang2 1 Department of Mathematics, Xiamen University, Xiamen 361005, P.R. China; 2 Department of Mathematics, University of Macau, Macau, P.R. China. Received January 7, 2017; Accepted (revised) May 17, 2017 Abstract. We develop an elementary proof of the change of variables formula in multi- ple integrals. Our proof is based on an induction argument. Assuming the formula for (m−1)-integrals, we define the integral over hypersurface in Rm, establish the diver- gent theorem and then use the divergent theorem to prove the formula for m-integrals. In addition to its simplicity, an advantage of our approach is that it yields the Brouwer Fixed Point Theorem as a corollary. AMS subject classifications: 26B15, 26B20 Key words: Change of variables, surface integral, divergent theorem, Cauchy-Binet formula. 1 Introduction The change of variables formula for multiple integrals is a fundamental theorem in mul- tivariable calculus. It can be stated as follows. Theorem 1.1. Let D and Ω be bounded open domains in Rm with piece-wise C1-boundaries, ϕ ∈ C1(Ω¯ ,Rm) such that ϕ : Ω → DisaC1-diffeomorphism. If f ∈ C(D¯ ), then f (y)dy = f (ϕ(x)) Jϕ(x) dx, (1.1) Ω ZD Z ′ where Jϕ(x)=detϕ (x) is the Jacobian determinant of ϕ at x ∈ Ω. The usual proofs of this theorem that one finds in advanced calculus textbooks in- volves careful estimates of volumes of images of small cubes under the map ϕ and nu- merous annoying details.
    [Show full text]
  • H. Jerome Keisler : Foundations of Infinitesimal Calculus
    FOUNDATIONS OF INFINITESIMAL CALCULUS H. JEROME KEISLER Department of Mathematics University of Wisconsin, Madison, Wisconsin, USA [email protected] June 4, 2011 ii This work is licensed under the Creative Commons Attribution-Noncommercial- Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ Copyright c 2007 by H. Jerome Keisler CONTENTS Preface................................................................ vii Chapter 1. The Hyperreal Numbers.............................. 1 1A. Structure of the Hyperreal Numbers (x1.4, x1.5) . 1 1B. Standard Parts (x1.6)........................................ 5 1C. Axioms for the Hyperreal Numbers (xEpilogue) . 7 1D. Consequences of the Transfer Axiom . 9 1E. Natural Extensions of Sets . 14 1F. Appendix. Algebra of the Real Numbers . 19 1G. Building the Hyperreal Numbers . 23 Chapter 2. Differentiation........................................ 33 2A. Derivatives (x2.1, x2.2) . 33 2B. Infinitesimal Microscopes and Infinite Telescopes . 35 2C. Properties of Derivatives (x2.3, x2.4) . 38 2D. Chain Rule (x2.6, x2.7). 41 Chapter 3. Continuous Functions ................................ 43 3A. Limits and Continuity (x3.3, x3.4) . 43 3B. Hyperintegers (x3.8) . 47 3C. Properties of Continuous Functions (x3.5{x3.8) . 49 Chapter 4. Integration ............................................ 59 4A. The Definite Integral (x4.1) . 59 4B. Fundamental Theorem of Calculus (x4.2) . 64 4C. Second Fundamental Theorem of Calculus (x4.2) . 67 Chapter 5. Limits ................................................... 71 5A. "; δ Conditions for Limits (x5.8, x5.1) . 71 5B. L'Hospital's Rule (x5.2) . 74 Chapter 6. Applications of the Integral........................ 77 6A. Infinite Sum Theorem (x6.1, x6.2, x6.6) . 77 6B. Lengths of Curves (x6.3, x6.4) .
    [Show full text]