Dissertation Zur Erlangung Des Akademischen Grades Eines

Total Page:16

File Type:pdf, Size:1020Kb

Dissertation Zur Erlangung Des Akademischen Grades Eines Molekulare Untersuchungen zur Phylogenie der Gattung Fosterella (Bromeliaceae) Inaugural-Dissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) im Fachbereich Naturwissenschaften der Universität Kassel vorgelegt von: Martina Rex aus: Wismar (Mecklenburg/Vorpommern) Kassel, im Juni 2007 Betreuer: Prof. Dr. Kurt Weising Prüfungskommission: Prof. Dr. Kurt Weising (1. Gutachter) Prof. Dr. Georg Zizka (2. Gutachter) Dr. Maria Maier-Stolte (Beisitzerin) Prof. Dr. Hartmut Follmann (Beisitzer) Tag der mündlichen Prüfung: 16. Juli 2007 Inhaltsverzeichnis Inhaltsverzeichnis 1 Einleitung ...................................................................................................................5 1.1 Allgemeine Merkmale der Bromeliaceae...............................................................6 1.2 Systematik der Bromeliaceae ...............................................................................7 1.3 Die Gattung Fosterella ........................................................................................11 1.3.1 Merkmale der Gattung Fosterella ................................................................12 1.3.2 Systematische Einordnung .........................................................................18 1.3.3 Artabgrenzung und Verwandtschaftsbeziehungen ......................................18 1.4 Problemstellungen und Ziele der Arbeit ..............................................................19 2 Material und Methoden............................................................................................20 2.1 Pflanzenmaterial.................................................................................................20 2.2 Molekulare Methoden .........................................................................................36 2.2.1 Allgemeine Grundlagen...............................................................................36 2.2.2 DNA-Isolation..............................................................................................38 2.2.3 Gelelektrophorese.......................................................................................39 2.2.4 AFLP- Analyse............................................................................................41 2.2.4.1 Allgemeine Grundlagen und Prinzip der Methode................................41 2.2.4.2 Durchführung der AFLP-Methode........................................................42 2.2.4.3 Restriktion und Ligation .......................................................................43 2.2.4.4 Amplifikation ........................................................................................43 2.2.4.5 Reproduzierbarkeitstest.......................................................................46 2.2.4.6 Codierung der Bandenmuster und Erstellung von Datenmatrizen........46 2.2.5 Vergleichende DNA-Sequenzierung ...........................................................48 2.2.5.1 Allgemeine Grundlagen .......................................................................48 2.2.5.2 Chloroplasten-DNA-Analyse ................................................................48 2.2.5.3 Mitochondrien-DNA-Analyse................................................................55 2.2.5.4 Aufreinigung von PCR-Amplifikaten.....................................................57 2.2.5.5 Sequenzierung der PCR-Fragmente....................................................58 2.2.5.6 Editierung und Sequenzalignment .......................................................59 2.2.5.7 Überprüfung erhaltener Sequenzen mit Hilfe der NCBI Gen-Bank.......60 2.3 Verfahren zur Datenanalyse ...............................................................................61 2.3.1 Distanzen und Evolutionsmodelle ...............................................................61 2.3.2 Wahl der Außengruppe für die Analysen.....................................................62 2.3.3 Distanzanalysen .........................................................................................62 2.3.4 Cophänetische Koeffizientenanalyse ..........................................................63 2.3.5 Hauptkoordinatenanalyse (PCoA)...............................................................63 2.3.6 Maximum Parsimonie-Analyse (MP) ...........................................................63 2.3.7 Maximum Likelihood-Analyse (ML) .............................................................64 2.3.8 Bayes´sche Analyse (MB)...........................................................................65 2.4 Anwendung der Datenanalyseverfahren.............................................................66 2.4.1 AFLP-Datenanalyse....................................................................................66 2.4.2 Chloroplasten-DNA-Datenanalyse ..............................................................68 3 Inhaltsverzeichnis 3 Ergebnisse ...............................................................................................................70 3.1 DNA-Isolation .....................................................................................................70 3.2 Ergebnisse der Vorversuche...............................................................................71 3.2.1 Pilotexperimente zur AFLP-Analyse............................................................71 3.2.1.1 Primer- und Probenauswahl ................................................................71 3.2.1.2 Reproduzierbarkeit der AFLPs.............................................................75 3.2.2 Pilotexperimente zur DNA-Sequenzierung..................................................77 3.2.2.1 Chloroplasten-DNA-Regionen .............................................................77 3.2.2.2 Mitochondrien-DNA-Regionen .............................................................81 3.2.3 AFLP-Phylogenie der Gattung Fosterella ....................................................83 3.2.3.1 Distanzanalysen ..................................................................................85 3.2.3.2 Cophänetische Koeffizientenanalyse ...................................................92 3.2.3.3 Hauptkoordinatenanalyse ....................................................................92 3.2.3.4 Maximum Parsimonie-Analyse ............................................................93 3.2.4 Sequenzanalyse der Chloroplasten-DNA....................................................95 3.2.4.1 Einzeldatensätze .................................................................................95 3.2.4.2 Kombination der Einzeldatensätze.....................................................102 4 Diskussion..............................................................................................................114 4.1 Methodische Aspekte .......................................................................................114 4.1.1 DNA-Isolation............................................................................................114 4.1.2 AFLP-Fingerprinting..................................................................................115 4.1.3 Vergleichende Sequenzierung ..................................................................118 4.1.4 Datenauswertung......................................................................................120 4.1.4.1 Vor- und Nachteile verschiedener Datenanalyseverfahren ................120 4.1.4.2 AFLP-Daten.......................................................................................124 4.1.4.3 DNA-Sequenzdaten...........................................................................126 4.1.4.4 Differenzen zwischen AFLPs und Sequenzdaten ..............................127 4.2 Molekulare Systematik (Phylogenie) der Gattung Fosterella .............................128 4.2.1 Auswahl der Taxa .....................................................................................128 4.2.2 Stellung der Gattung Fosterella in der Familie der Bromeliaceae..............129 4.2.3 Artengruppen innerhalb der Gattung Fosterella ........................................130 4.2.4 Verwandtschaftsverhältnisse innerhalb der Gattung, ihre Evolution und Biogeographie...........................................................................................141 5 Zusammenfassung ................................................................................................145 6 Ausblick..................................................................................................................148 7 Literaturverzeichnis...............................................................................................149 8 Abbildungsverzeichnis..........................................................................................164 9 Tabellenverzeichnis...............................................................................................166 10 Abkürzungsverzeichnis.........................................................................................167 11 Anhang ...................................................................................................................169 4 Einleitung 1 Einleitung Die Familie der Bromeliaceae wurde 1789 vom französischen Botaniker Antoine Laurent de Jussieu (1748-1826) erstmals beschrieben. Er benannte sie nach dem schwedischen Arzt und Botaniker Celia Olaf Bromell (1639-1705) (z. B. Simpson 2006). Bei den Bromeliaceae handelt es sich um eine fast ausschließlich neuweltliche Pflanzenfamilie, die von den Südstaaten der USA bis nach Südchile
Recommended publications
  • Cross-Amplification of Nuclear Microsatellite Markers in Two
    Braz. J. Bot (2017) 40(2):475–480 DOI 10.1007/s40415-017-0362-7 ORIGINAL ARTICLE Cross-amplification of nuclear microsatellite markers in two species of Cryptanthus Otto & A. Dietr. (Bromeliaceae) 1 2 3 De´bora Maria Cavalcanti Ferreira • Jordana Neri • Clarisse Palma-Silva • 4 5 4 Diego Sotero Pinange´ • Ana Maria Benko-Iseppon • Rafael Batista Louzada Received: 1 June 2016 / Accepted: 16 January 2017 / Published online: 27 January 2017 Ó Botanical Society of Sao Paulo 2017 Abstract Thirty-eight nuclear microsatellite loci origi- Keywords Bromeliad Á Cryptanthus burle-marxii Á nally developed for Aechmea caudata Lindm., Orthophy- Cryptanthus zonatus Á Microsatellite Á Transferability tum ophiuroides Louzada & Wand., Pitcairnia albiflos Herb., Vriesea gigantea (Gaud.) and V. simplex (Vell.) Beer were tested in Cryptanthus burle-marxii Leme and C. Introduction zonatus (Vis.) Vis. Of the 38 loci tested, 13 were poly- morphic. Ten polymorphic microsatellite loci were selec- The genus Cryptanthus Otto & A. Dietr. (Bromeliaceae) ted to be amplified and genotyped in one population each comprises 78 species restricted to Brazil, where they occur of C. burle-marxii and C. zonatus. The observed and in the Atlantic Forest, ‘‘Caatinga’’ and ‘‘Cerrado’’ (Forzza expected heterozygosity per locus in the C. burle-marxii et al. 2016). These species belong to the Bromelioideae population ranged from 0.050 to 0.850 and 0.050 to 0.770, subfamily and are terrestrial and/or saxicolous herbs respectively. In C. zonatus, the observed and expected (Ramı´rez-Morillo 1996). Traditionally Cryptanthus has heterozygosity per locus ranged from 0.167 to 0.846 and been recognized as sister group to the genus Orthophytum 0.290 to 0.692, respectively.
    [Show full text]
  • Phytogeography and Vegetation of Tropical Inselbergs
    PHYTOGEOGRAPHY AND VEGETATION OF TROPICAL INSELBERGS W. BARTHLOTI-, S. POREMBSKI,J. SZARZYNSKI,J. P. MUND Botanisches Institut der Universitat Bonn. Meckenheimer Allee 170, D-53115 Bonn, Germany Résumé : Un bref aperçu de la végétation des inselbergs néo-et paléotropicaux est présenté. Les données proviennent d'études effectuées sur le terrain en Afrique de l'Ouest (Côte-d'Ivoire, Guinée, Cameroun), en Afrique de l'Est (Malawi), à Madagascar, au Brésil, au Venezuela et en Guyane française. Les habitats rocheux isolés sont occupéspar une flore adaptée 8 ce milieu particulier qui diffère presque complètement de la végé- tation environnante. Ils constituent ainsi des modèles pour l'étude de I'écologie insulaire. Les surfaces de roche apparemment nues sont ordinairement couvertes de cyanobactéries (ex. Guyane française) ou de lichens (ex. Côte-d'Ivoire). La végétation discontinue d'Angiospermes est constituée d'une mosaïque de différentes formations. Les plus remarquables sont caractérisées par des tapis de Monocotylédones (Broméliacbesdans la région néotropicale et Cypéracées dans la région paléotropicale), des végétationsmarécageuses sur dallegranitique humide (plusieurs espèces d'Utricularia, deGenlisea, de Burmannia ainsi que d'Eriocaulacées)et des groupements saisonniers de plantes dansles cuvettes rocheuses (ex. Scrophulariacées). On trouve des types biologiques convergents dans les régions paléo- et néotropicales (ex. rosettes caulescentes chez les Cypéracées et Velloziacées). Mots-clés : Biodiversité,géobotanique, inselbergs, écologie insulaire, phytogéographie, rochers découverts. Brorné- liacées,Cactacées, Velloziacées. Abstract: A short survey of the vegetation of neo- and paleo-tropical rock outcrops (inselbergs) is provided. The data are based on field studies in West Africa (Ivory Coast, Guinea, Cameroon), East Africa (Malawi), Madagascar, Brazil, Venezuela and French Guyana.
    [Show full text]
  • VOLUME LII Second Quarter 2018
    Bromeliaceae VOLUME LII Second Quarter 2018 The Bromeliad Society of Queensland Inc. P.O. Box 565, Fortitude Valley, Q 4006 www.bromsqueensland.com.au Email: [email protected] [email protected] [email protected] Committee Details PRESIDENT Barry Kable (07) 3824 5931 VICE PRESIDENT John Olsen (07) 3856 0265 TREASURER John Olsen SECRETARY Alfonso Trudu COMMITTEE Pam Butler, John Williamson, Gilda Trudu, Glenn Bernoth, Fred Thomson, Tom Isaac, Joy Constantino, Maxim Wilson, Bruce Dunstan. DATABASE MANAGER John Williamson LIBRARIAN Evelyn Rees SHOW CONVENOR John Williamson BROMELIACEAE EDITORS John Olsen, Barbara Murray, Maxim Wilson BSQ WEBMASTER Joy Constantino FIELD DAY COORDINATORS Ruth Kimber & Bev Mulcahy SEED BANK COORDINATOR Peter Ball SUPPER STEWARDS Selga Boothby & Sharon Born PLANT SALES Margaret Kraa & Lee Thornycroft ASSISTANT SALES Michelle Cameron COMPETITION STEWARDS Fred Thomson, Denice McLean, Helen Moriarty NEWSLETTER COORDINATOR Maxim Wilson ASSISTANT SHOW CONVENER Peter Ball HALL COORDINATOR David Rees RAFFLE COORDINATOR Lesley Gibbs EXHIBITION COORDINATOR Amanda Meads HISTORIAN Glenn Bernoth MONTHLY MEETINGS of the Society are held on the 3 rd Thursday of each month except for December, at the Uniting Hall, 52 Merthyr Road, New Farm, Brisbane, commencing 7:30 pm. ANNUAL GENERAL MEETING is held immediately before the March Meeting Front Cover: Edmundoa ‘Rosea’ painting Rear Cover: Tillandsia funckiana By: Steve Molnar The Bromeliad Society of Queensland Inc., gives permission to all Bromeliad Societies to reprint articles in their journals provided [email protected] is advised and proper acknowledgement is given to the original author and Bromeliaceae. This permission does not apply to any other person or organisation without the prior permission of the author.
    [Show full text]
  • BOH: a Unique Chemical for the Induction of Flowering in Bromeliads
    BOH: A Unique Chemical for the Induction of Flowering in Bromeliads Héctor R. Cibes and A. Santiago Nieves1 INTRODUCTION The pineapple family, Bromeliaceae, is composed of stemless herbs native to tropical America whence they have been disseminated to other areas of the world. They have stiff and sometimes spiny leaves. Their flowers are borne in panicles. Perhaps the most important genus of the family is Ananas, to which the commercial pineapple varieties belong. Other members of the family are noted for the fiber obtained from their leaves. Bromelia pinguin L., or wild pineapple, a native of the West Indies, is widely used as a hedge plant and its fruit is also known to contain a proteolytic enzyme. The genus Bromeha was named after the Swedish botanist, Olaf Bromelius. Bromeliads are becoming increasingly important as ornamental plants, both locally and in the United States. Not only the plants themselves are showy, because of their color, shape, and variegation, but also their flowers are beautiful. An important characteristic among bromeliads is that their flowers are long-lasting on the plants. Some will last, attached to the mother plant, for months without losing their beautiful appear­ ance. FLOWER INDUCTION However, flowering is not uniform in this group of plants. For instance, a pineapple field may flower sporadically 10 to 15 times throughout the year, after attaining the proper age. Thus, flower-forcing during a con­ venient time along the growing season is imperative in commercial plant­ ings. This is attainable through the use of suitable concentrations of either calcium carbide (CaC2), naphthalene acetic acid (NAA), or /3-hydroxyethyl hydrazine (BOH).
    [Show full text]
  • SDBS Bromeliad Blade 2015 02.Pages
    THE BROMELIAD BLADE Newsletter of the San Diego Bromeliad Society Volume L, Number 2 February 2015 The President’s Corner Editor’s Notes by Robert Kopfstein Our February speaker will be Consider This: George Allaria, a long-time bromeli- Numerous studies by universities have demonstrated that being ad collector and grower. See details involved in gardening and the plant world is good for your about his talk on page 2 and meet- health; furthermore gardening increases your life span signifi- ing details on page 6. cantly. Included this month are articles by What exactly does potting, weeding, and arranging your plants Andrew Wilson on Winter Color and do for you? Some of the advantages are apparent. By being in by Scott Sandel on his recent trip to the garden you receive healthy doses of vitamin D. Obviously Mexico’s Yucatan area. The compan- the bending, stooping, lifting is good exercise. Gardening is also ion plants this month are oncidium a creative act that stimulates the brain and sometimes challenges orchids. Andy Siekkinen has a report the intellect. (What is wrong with this plant? Why can other on his research project on page 11. people grow cryptanthus and I am a miserable failure?) ❐ But there are other proven benefits to gardening which have March Meeting been uncovered by researchers. Contact with dirt is good for your immune system. The bacteria The March talk will deal with plants in soil stimulates your natural defenses against disease. So get of the Huntington Botanic Garden. It rid of the gloves. Just don't lick your fingers after fertilizing.
    [Show full text]
  • An Alphabetical List of Bromeliad Binomials
    AN ALPHABETICAL LIST OF BROMELIAD BINOMIALS Compiled by HARRY E. LUTHER The Marie Selby Botanical Gardens Sarasota, Florida, USA ELEVENTH EDITION Published by the Bromeliad Society International June 2008 ii INTRODUCTION TO EDITION XI This list is presented as a spelling guide for validly published taxa accepted at the Bromeliad Identification Center. The list contains the following information: 1) Genus number (the left-hand number) based on the systematic sequence published in the Smith & Downs monograph: Bromeliaceae (Flora Neotropica, number 14, parts 1-3; 1974, 1977, 1979). Whole numbers are as published in the monograph. 2) Species number (the second number) according to its systematic position in the monograph. Note: Taxa not included in the monograph or that have been reclassified have been assigned numbers to reflect their systematic position within the Smith & Downs framework (e.g., taxon 14.1 is related to taxon 14). The utility of this method is that one may assume for example that Tillandsia comarapaensis (150.2) is related to T. didisticha (150) and therefore may have certain horticultural qualities in common with that species. 3) Genus and species names follow the respective numbers. 4) Subspecific taxa (subspecies, varieties, forms) names are indented below the species names. Note: Variety "a" (the type variety) is not listed unless it contains a form (see Aechmea caudata ). Similarly, the type form is not listed. 5) Author name follows the specific and subspecific names. These names are included for the convenience of specialist users of the list. This list does not contain publication data or synonymy, as it is not our intent for it to be a technical nomenclatural guide.
    [Show full text]
  • The Genus Guzmania (Bromeliaceae) in Venezuela
    The genus Guzmania (Bromeliaceae) in Venezuela Compiled by Yuribia Vivas Fundación Instituto Botánico de Venezuela Bruce Holst & Harry Luther Marie Selby Botanical Gardens The genus Guzmania was described by Hipólito Ruiz and José Pavón in 1802 in the "Flora Peruviana et Chilensis." The type species is Guzmania tricolor Ruiz & Pav. The name honors Spanish naturalist Anastasio Guzmán, a student of South American plants and animals (Grant & Zijlstra 1998). Species of Guzmania are distributed from the southern USA (Florida) and Mexico to Brazil and Peru, including the Most species of Guzmania are found in cloud forests at middle elevations. Antilles; they are largely absent from lowland Amazonia. Photograph by Yuribia Vivas. Figure modified from Smith & Downs, Flora Neotropica. Guzmania is placed in the subfamily Tillandsioideae, and is distinguished from other members of the subfamily (Vriesea,Tillandsia, Catopsis, Racinaea, Alcantarea, Mezobromelia, and Werauhia) by having polystichously arranged flowers (that is, arranged in many planes on the inflorescence axis), white, whitish, yellow, or greenish petals that lack nectar scales, and having generally reddish brown-colored seeds. In general aspect, Guzmania is difficult to distinguish from Mezobromelia since both are polystichously flowered and may have similar color schemes, but the presence of nectar scales in Mezobromelia and absence inGuzmania separates them. Approximately 200 species and 17 varieties of Guzmania are known, making it the third largest genus in the subfamily, after Tillandsia and Vriesea. The table below is a listing of Guzmania in Venezuela, with synonymy, types, phenology, and distribution. Column two contains photographs of live plants and the third column, type specimens. Click on the photos for enlarged images.
    [Show full text]
  • Carbon Isotope Ratio and the Extent of Daily CAM
    NPH_489.fm Page 75 Tuesday, September 3, 2002 9:12 AM Research CarbonBlackwell Science, Ltd isotope ratio and the extent of daily CAM use by Bromeliaceae Simon Pierce1, Klaus Winter2 and Howard Griffiths1 1University of Cambridge, Department of Plant Sciences, Downing Street, Cambridge, CB2 3EA, UK; 2Smithsonian Tropical Research Institute, Apartado 2072, Balboa, Panama City, Republic of Panama Summary δ13 Author for correspondence: • Use of carbon isotope ratio ( C) to resolve photosynthetic pathways (C3, C4 or S. Pierce CAM) has limitations imposed by the use of intermediate photosynthetic modes by Tel: +44 114222 4702 certain plant taxa. Fax: +44 114222 0002 δ13 E-mail: [email protected] • Diel gas-exchange patterns, leaf C values and nocturnal tissue acidification were determined for 50 Bromeliaceae. Received: 21 February 2002 • δ13C values for well watered plants reflected the proportion of daily CO uptake Accepted: 17 June 2002 2 δ13 occurring at night. Thirteen per cent of species with C values typical of C3 plants (i.e. from −22.6 to −31.5‰) showed nocturnal acidification and either a small pro- portion (< 10%) of daily CO2 uptake occurring nocturnally or internal CO2 recycling during part of the night. None altered CAM expression in response to short-term drought, but the contribution of CAM to daily carbon gain became proportionally more important as C3 CO2 uptake failed. • Surveys of plant communities using solely the carbon isotope technique under- estimate the number of CAM-equipped plants. Key words: Bromeliad, carbon pathway, crassulacean acid metabolism (CAM), δ13C, epiphyte, photosynthesis. © New Phytologist (2002) 156: 75–83 (i.e.
    [Show full text]
  • Adaptive Radiation, Correlated and Contingent Evolution, and Net Species Diversification in Bromeliaceae
    Molecular Phylogenetics and Evolution 71 (2014) 55–78 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Adaptive radiation, correlated and contingent evolution, and net species diversification in Bromeliaceae Thomas J. Givnish a,*, Michael H.J. Barfuss b, Benjamin Van Ee c, Ricarda Riina d, Katharina Schulte e,f, Ralf Horres g, Philip A. Gonsiska a, Rachel S. Jabaily h, Darren M. Crayn f, J. Andrew C. Smith i, Klaus Winter j, Gregory K. Brown k, Timothy M. Evans l, Bruce K. Holst m, Harry Luther n, Walter Till b, Georg Zizka e, Paul E. Berry o, Kenneth J. Sytsma a a Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA b Department of Systematic and Evolutionary Botany, Faculty of Life Sciences, University of Vienna, Vienna A-1030, Austria c School of Natural Sciences, Black Hills State University, Spearfish, SD 57799, USA d Real Jardín Botánico, CSIC, Plaza de Murillo 2, Madrid 28014, Spain e Department of Botany and Molecular Evolution, Research Institute Senckenberg and J.W. Goethe University, Frankfurt am Main D-60325, Germany f Australian Tropical Herbarium, James Cook University, Cairns, QLD 4878, Australia g GenXPro, Frankfurt am Main 60438, Germany h Department of Biology, Rhodes College, Memphis, TN 38112, USA i Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom j Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panama k Department of Botany, University of Wyoming, Laramie, WY 82071, USA l Department of Biology, Grand Valley State University, Allendale, MI 49401, USA m Marie Selby Botanical Gardens, Sarasota, FL 34236, USA n Gardens By The Bay, National Parks Board Headquarters, Singapore 259569, Singapore o Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA article info abstract Article history: We present an integrative model predicting associations among epiphytism, the tank habit, entangling Received 22 May 2013 seeds, C3 vs.
    [Show full text]
  • Flower and Floral Trichome Morphology of Species of Dyckia Schult. F
    Acta Botanica Brasilica - 31(1): 29-41. January-March 2017. doi: 10.1590/0102-33062016abb0335 Flower and fl oral trichome morphology of species of Dyckia Schult. f. (Bromeliaceae, Pitcairnioideae), and their importance to species characterization and genus taxonomy Jordano Dorval Tavares de Carvalho¹, Liliana Essi² and João Marcelo Santos de Oliveira³* Received: September 10, 2016 Accepted: December 15, 2016 . ABSTRACT Th is paper presents a morphological analysis of the fl ower and fl oral trichomes of three rare species of Dyckia: Dyckia ibicuiensis, D. polyclada and D. racinae. Flowers at anthesis were collected from natural populations and subjected to morphometric and microscopic analysis. Among the most representative features for Dyckia are: morphometrics of individual fl oral parts; the general confi guration of the androecium and gynoecium; the degree of fusion of the stigmatic lobes; the morphology of the ovules, especially in relation to the chalazal appendix; and the presence and constitution of peltate trichomes in the perianth, which exhibited a polymorphism not previously reported for Dyckia. Th e characters were eff ective at describing each species, proposing phylogenetic inferences and recognizing infrageneric groupings. We propose two species groups, which are consistent with previous hypotheses about the relationships among the species of the genus. Th e objective of this study was to provide fl oral morphological data useful for characterizing these three rare species, delimiting the genus and forming phylogenetic hypotheses. Keywords: androecium, Dyckia, Encholirium, fl oral morphology, gynoecium, peltate trichome, perianth, Pitcairnioideae Introduction taxon, morphological studies of diff erent fl ower organs have allowed for inferences of evolutionary, systematic, ecological and physiological orders in diverse genera of the Morphological and anatomical studies using diff erent family (Varadarajan & Brown 1988; Brown & Gilmartin approaches have provided effective instruments for 1989; Brown & Terry 1992; Sajo et al.
    [Show full text]
  • (NOA) : Patrones De Distribución, Prioridades De Conservación Y Cambio Climático Godoy-Bürki, Carolina Doctor En Ciencias Naturales
    Naturalis Repositorio Institucional Universidad Nacional de La Plata http://naturalis.fcnym.unlp.edu.ar Facultad de Ciencias Naturales y Museo Diversidad de plantas vasculares en zonas áridas del Noroeste de Argentina (NOA) : patrones de distribución, prioridades de conservación y cambio climático Godoy-Bürki, Carolina Doctor en Ciencias Naturales Dirección: Zuloaga, Fernando O. Co-dirección: Aagesen, Lone Facultad de Ciencias Naturales y Museo 2015 Acceso en: http://naturalis.fcnym.unlp.edu.ar/id/20150319001389 Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional Powered by TCPDF (www.tcpdf.org) UNIVERSIDAD NACIONAL DE LA PLATA Facultad de Ciencias Naturales y Museo Diversidad de plantas vasculares en zonas áridas del Noroeste de Argentina (NOA): Patrones de Distribución, Prioridades de Conservación y Cambio climático Tesis presentada para optar al grado de Doctor en Ciencias Naturales de la Universidad Nacional de La Plata Ing. Ana Carolina Godoy-Bürki Director: Dr. Fernando O. Zuloaga Co-directora: Dra. Lone Aagesen 2015 “Todo logro empieza con la decisión de intentarlo.” A mi familia y amigos… Agradecimientos “Cómo empezar sin olvidar a nadie en tan largo camino…” Agradezco con todo el corazón a todos aquellos que me acompañaron en este trayecto de mi vida directa o indirectamente, interesada o desinteresadamente. Gracias por ayudarme a crecer, a florecer, y a madurar para dar, como paso final, el tan anhelado fruto: esta tan querida y por momentos tan odiada tesis doctoral. A mis directores, Dr. Fernando Zuloaga y Dra. Lone Aagesen que me tuvieron gran paciencia en mis momentos difíciles, sin dejar de alentarme ni un solo día.
    [Show full text]
  • Bat Pollination in Bromeliaceae Pedro A
    PLANT ECOLOGY & DIVERSITY https://doi.org/10.1080/17550874.2019.1566409 ARTICLE Bat pollination in Bromeliaceae Pedro A. Aguilar-Rodrígueza, Thorsten Krömer a, Marco Tschapka b,c, José G. García-Francod, Jeanett Escobedo-Sartie and M.Cristina MacSwiney G. a aCentro de Investigaciones Tropicales, Universidad Veracruzana, Xalapa, Veracruz, Mexico; bInstitute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany; cSmithsonian Tropical Research Institute, Balboa Ancón, Panamá, República de Panamá; dRed de Ecología Funcional, Instituto de Ecología, Xalapa, Veracruz, México; eFacultad de Ciencias Biológicas y Agropecuarias, Universidad de Colima, Crucero de Tecomán, Tecomán, Colima, México ABSTRACT ARTICLE HISTORY Background: Chiropterophily encompasses the floral traits by which bats are attracted as the Received 2 May 2017 main pollinators. Among the chiropterophilous flowering plants of the New World, Accepted 3 January 2019 Bromeliaceae is one of the most ecologically important families; however, information KEYWORDS about the chiropterophilous interaction in this family is still scarce. Anoura; bromeliads; Aims: We present a comprehensive review of bat pollination in bromeliads, covering floral chiropterophily; floral scent; traits, rewards offered to pollinators, floral attractants and the identity of visiting bat species. nectar; pollination; Werauhia Methods: We discuss traits shared among chiropterophilous bromeliads and present general trends in an evolutionary context. We constructed a phylogenetic tree to elucidate the ancestral pollination syndromes of the 42 extant bromeliad species (ca. 1% of total) known to be bat-pollinated. Results: Most of the species within the ten genera reported belong to the Tillandsioideae subfamily, with three genera appearing to be exclusively bat-pollinated. Floral visitors include 19 bat species of 11 genera from the Phyllostomidae.
    [Show full text]