17th International Symposium on Applications of Laser Techniques to Fluid Mechanics Lisbon, Portugal, 07-10 July, 2014 Experimental Study of Falling Films by Simultaneous Laser-Induced Fluorescence, Particle Image Velocimetry and Particle Tracking Velocimetry Alexandros Charogiannis1 and Christos N. Markides1,* 1: Clean Energy Processes Laboratory, Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom * Correspondent author:
[email protected] Abstract A measurement technique based on the simultaneous implementation of Laser-Induced Fluorescence (LIF), Particle Image Velocimetry (PIV) and Particle Tracking Velocimetry (PTV) has been applied to the study of wavy liquid falling film flows characterized by low Reynolds (Re) and Kapitza (Ka) numbers. The presently examined Re number range was 2.2 – 8.2, while the Ka number range was 28.6 – 41.4. The experimental methodology was developed with the ultimate aim of allowing for the evaluation of the local and instantaneous film thickness, interfacial velocity and velocity field from within the illuminated liquid volume underneath the wavy interface. The major challenges associated with the simultaneous implementation of the two optical diagnostic techniques were, firstly, the development of a refractive index correction approach allowing for liquids of different properties (surface tension and viscosity) to be tested, secondly, the identification of the location of the two liquid boundaries (solid-liquid and gas- liquid) in the LIF images, and lastly,