Module 3: Food Safety, Storage & Preservation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Harmful Effects of Food Preservatives on Human Health Shazia Khanum Mirza1, U.K
Journal of Medicinal Chemistry and Drug Discovery ISSN: 2347-9027 International peer reviewed Journal Special Issue Analytical Chemistry Teacher and Researchers Association National Convention/Seminar Issue 02, Vol. 02, pp. 610-616, 8 January 2017 Available online at www.jmcdd.org To Study The Harmful Effects Of Food Preservatives On Human Health Shazia Khanum Mirza1, U.K. Asema2 And Sayyad Sultan Kasim3. 1 -Research student , Dept of chemistry, Maulana Azad PG & Research centre, Aurangabad. 2-3 -Assist prof. Dept of chemistry,Maulana Azad college Arts sci & com.Aurangabad. ABSTRACT Food chemistry is the study of chemical processes and interactions of all biological and non- biological components. Food additives are chemicals added to foods to keep them fresh or to enhance their color, flavor or texture. They may include food colorings, flavor enhancers or a range of preservatives .The chemical added to a particular food for a particular reason during processing or storage which could affect the characteristics of the food, or become part of the food Preservatives are additives that inhibit the growth of bacteria, yeasts, and molds in foods. Additives and preservatives are used to maintain product consistency and quality, improve or maintain nutritional value, maintain palatability and wholesomeness, provide leavening(yeast), control pH, enhance flavour, or provide colour Some additives have been used for centuries; for example, preserving food by pickling (with vinegar), salting, as with bacon, preserving sweets or using sulfur dioxide as in some wines. Some preservatives are known to be harmful to the human body. Some are classified as carcinogens or cancer causing agents. Keywords : Food , Food additives, colour, flavour , texture, preservatives. -
Effects of Salts on Preservation and Metabolic Activities of Fish and Meat Microflora
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/322520649 EFFECTS OF SALTS ON PRESERVATION AND METABOLIC ACTIVITIES OF FISH AND MEAT MICROFLORA Article · January 2018 CITATIONS READS 0 63 3 authors: Oranusi Solomon Abah Kingsley Covenant University Ota Ogun State, Nigeria Covenant University Ota Ogun State, Nigeria 99 PUBLICATIONS 755 CITATIONS 4 PUBLICATIONS 1 CITATION SEE PROFILE SEE PROFILE Selina Anosike Covenant University Ota Ogun State, Nigeria 9 PUBLICATIONS 4 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Biogas and biofertilizer production from local biomasses View project Food safety; Public and environmental health View project All content following this page was uploaded by Oranusi Solomon on 16 January 2018. The user has requested enhancement of the downloaded file. EFFECTS OF SALTS ON PRESERVATION AND METABOLIC ACTIVITIES OF FISH AND MEAT MICROFLORA ORANUSI, 5.*, ABAH, K. A. AND ANOSIKE S.O. Department of Biological Sciences, Covenant University, Ota, Nigeria *Corresponding Author; Email: [email protected]; +2348065299155 Abstract Foods usually carry a mixed population ofmicroorganisms derived from both the natural microfloro of the food plant or animo/ and those introduced during handling, processing, and storage. Salt is a widely used additive and preservative, which, influences microorganisms in different concentrations. This study aims to determine the effect of salts on food preservation and metabolic activities of food microfloro. Two food samples (row fish and raw lean meat) were investigated. Sodium chloride (NaCI), Potassium chloride {KCI} and Calcium chloride {CoCI,) were grouped into varying concentrations of2, 2.5 and 4.5% respectively. -
R09 SI: Thermal Properties of Foods
Related Commercial Resources CHAPTER 9 THERMAL PROPERTIES OF FOODS Thermal Properties of Food Constituents ................................. 9.1 Enthalpy .................................................................................... 9.7 Thermal Properties of Foods ..................................................... 9.1 Thermal Conductivity ................................................................ 9.9 Water Content ........................................................................... 9.2 Thermal Diffusivity .................................................................. 9.17 Initial Freezing Point ................................................................. 9.2 Heat of Respiration ................................................................. 9.18 Ice Fraction ............................................................................... 9.2 Transpiration of Fresh Fruits and Vegetables ......................... 9.19 Density ...................................................................................... 9.6 Surface Heat Transfer Coefficient ........................................... 9.25 Specific Heat ............................................................................. 9.6 Symbols ................................................................................... 9.28 HERMAL properties of foods and beverages must be known rizes prediction methods for estimating these thermophysical proper- Tto perform the various heat transfer calculations involved in de- ties and includes examples on the -
Food Storage & Safety Guide
Food Storage & Safety Guide Best Practices | Guidelines | Resources table of contents Dry Storage 3 Cold Storage 4 Refrigeration 4 Freezers 5 Recommended Storage Times 6 Hot Storage 9 Catering 10 - 11 Best Practices 10 - 11 Food Handler’s Gear 11 Food Safety during Storage 12 - 14 Cross-contamination or Food Borne Illnesses 12 Food Temperatures 13 Storage Containers 14 Allergy Prevention 15 Cleaning & Sanitizing 16 Food Storage & Safety Resources 17 2 www.rwsmithco.com [email protected] dry STORAGE To prevent contamination from liquids, dust, insects and rodents, store food at least 6 inches above floor. Ensure store room is well ventilated with a humidity level around 50-60%. Allow for a 2-foot ceiling and 18-inch outside wall clearance to protect foods from higher temperatures. Store all cleaning and chemical products on shelves below dry goods (as well as utensils). Follow the FIFO inventory management rule: first in, first out. Increase the shelf life of bulk products - such as flour, sugar, rice and grains - by http://www.rwsmithco.com/Kitchen-Supplies/Food-Pans-Bins-and- transferring them from their original packaging into air-tight, BPA-free plasticStorage/Food-Pans/Polycarbonate-Food-Pans/c1340_1352_1353_1628/ containers. Opt for food grade containers that lock out moisture with easy snap-on lids. http://www.rwsmithco.com/Kitchen- Supplies/Food-Pans-Bins-and-- ClearlyStorage/Food-Labeling/c1340_1352_1631/ label all containers including the delivery date and best by date. Toss out canned goods that are too dented to stack, bulging at the ends, punctured, or have leakage stains. Adhere to special storage instructions on packaging, such as “store in a cool, dry place” or “refrigerate after opening”. -
Food Spoilage: Microorganisms and Their Prevention
Available online a t www.pelagiaresearchlibrary.com Pelagia Research Library Asian Journal of Plant Science and Research, 2015, 5(4):47-56 ISSN : 2249-7412 CODEN (USA): AJPSKY Food Spoilage: Microorganisms and their prevention Seema Rawat Department of Botany and Microbiology, H. N. B. Garhwal (Central) University, Srinagar, Uttarakhand, India _____________________________________________________________________________________________ ABSTRACT Food spoilage can be defined as “any sensory change (tactile, visual, olfactory or flavour)” which the consumer considers to be unacceptable. Spoilage may occur at any stage along food chain. Spoilage may arise from insect damage, physical damage, indigenous enzyme activity in the animal or plant tissue or by microbial infections. Most natural foods have a limited life. Perishable foods such as fish, meat and bread have a short life span. Other food can be kept for a considerably longer time but decomposes eventually. Enzymes can bring about destruction of polymers in some foods while chemical reactions such as oxidation and rancidity decompose others but the main single cause of food spoilage is invasion by microorganisms such as moulds, yeast and bacteria. In case of mould spoilage a furry growth covers the food and it becomes soft and often smells bad. Bacterial contamination is more dangerous because very often food does not look bad even though severely infected, it may appear quite normal. The presence of highly dangerous toxins and bacterial spores is often not detected until after an outbreak of food poisoning, laboratory examination uncovers the infecting agent. Key words: Food spoilage, Enzymes, Bacterial contamination, Food poisoning, Perishable foods. _____________________________________________________________________________________________ INTRODUCTION Food spoilage is a metabolic process that causes foods to be undesirable or unacceptable for human consumption due to changes in sensory characteristics. -
ANFP/DMA Practice Standards
APPENDIX ANFP/DMA Practice Standards by Susan Davis Allen, MS, RD, CHE C Professional Standards of Practice serve as the basis for quality dietetic practice for dietary managers. The standards that follow provide guidelines for dietary managers to use in the proper storage of food. You may ask yourself, “Why do we need a standard for 1.6 Refrigerated ready-to-eat food that is not labeled food storage?” Do you track the cost of food that is is discarded. discarded each week because of improper storage? Can 1.7 A refrigerated food storage timeline chart is in you be sure that in the event of a disaster, your food place and followed. (See sample.) storage practices would be adequate? 1.8 Staff receives training on the proper refrigerator With the increase in healthcare costs, your ability to storage time and temperature. control costs may come down to your ability to control 1.9 All discarded refrigerated food is recorded with the shelf stability of both raw and cooked foods. Besides food item, amount, date, and reason. reducing waste, properly stored food maintains its 1.10 Blast chillers, if available, are used to quickly cool nutritional quality and decreases the risk of foodborne foods to safe refrigeration temperatures. illness. In addition, with the threat of terrorist and natural disasters, properly storing water and other appropriate 1.11 Refrigeration unit is cleaned and inspected on a emergency supplies is becoming increasingly important. regular basis. 1.12 Only food purchased from approved vendors is STANDARD 1: refrigerated. The certified dietary manager (CDM) shall ensure that 1.13 Refrigerated food stock rotation follows the FIFO standards for refrigerated, frozen, and dry foods are put (first in, first out) principle. -
Food Storage in the Home Charlotte P
Utah State University DigitalCommons@USU All Archived Publications Archived USU Extension Publications 1995 Food Storage in the Home Charlotte P. Brennand Utah State University Deloy G. Hendricks Utah State University Follow this and additional works at: http://digitalcommons.usu.edu/extension_histall Part of the Food Science Commons Warning: The information in this series may be obsolete. It is presented here for historical purposes only. For the most up to date information please visit The tU ah State University Cooperative Extension Office Recommended Citation Brennand, Charlotte P. and Hendricks, Deloy G., "Food Storage in the Home" (1995). All Archived Publications. Paper 641. http://digitalcommons.usu.edu/extension_histall/641 This Report is brought to you for free and open access by the Archived USU Extension Publications at DigitalCommons@USU. It has been accepted for inclusion in All Archived Publications by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. FOOD STORAGE IN THE HOME (Reducing Waste and Maintaining the Quality of Stored Food) Charlotte P. Brennand, PhD, and Deloy G. Hendricks, PhD Department of Nutrition & Food Sciences July 1995 FN 502 Contents Who Should Have a Food Storage Program? ........................................1 Why Have a Food Storage Program? ..............................................1 What to Store.................................................................1 The Food Guide Pyramid ........................................................3 -
High Oxygen As an Additional Factor in Food Preservation Promotor: Prof
High Oxygen as an additional factor in Food Preservation Promotor: Prof. Dr. ir. F.M. Rombouts Hoogleraar in de Levensmiddelenhygiëne en microbiologie, Wageningen Universiteit Copromotors: Dr. L.G.M. Gorris SEAC, Unilever, Colworth House, Verenigd Koninkrijk Dr. E.J. Smid Groupleader Natural Ingredients, NIZO Food Research, Ede Samenstelling promotiecommissie: Prof. Dr. ir. J. Debevere (Universiteit Gent, België) Prof. Dr. G.J.E. Nychas (Agricultural University of Athens, Griekenland) Prof. Dr. J.T.M. Wouters (Wageningen Universiteit) Dr. J. Hugenholtz (NIZO Food Research, Ede) Athina Amanatidou High Oxygen as an additional factor in Food Preservation Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus, van Wageningen Universiteit, Prof. dr. ir. L. Speelman, in het openbaar te verdedigen op dinsdag 23 oktober des namiddags te half twee in de Aula Amanatidou A.-High Oxygen as an additional factor in Food Preservation-2001 Thesis Wageningen University-With summary in Dutch- pp. 114 ISBN: 90-5808-474-4 To my parents, my brother and to Erik Abstract In this thesis, the efficacy of high oxygen as an additional hurdle for food preservation is studied. At high oxygen conditions and at low temperature, significant impairment of growth and viability of bacterial cells is found to occur as the result of free radical attack. The imposed oxidative stress leads - to an increase of intracellularly generated reactive oxygen species (mainly O2 , H2O2 and HO·), which disturbs the cellular homeostasis due to catabolic imbalance and results in growth inhibition. The so- called “free radical burst” probably is responsible for the induction of a host defence mechanism against the destructive impact of high oxygen. -
Food Preservation Methods Department of Food Science Foods Are Freshest and at Optimum Quality at the Time of Their Harvest Or Slaughter
PURDUE EXTENSION FS-15-W Food Entrepreneurship Series Food Preservation Methods Department of Food Science Foods are freshest and at optimum quality at the time of their harvest or slaughter. To maintain this ous ways to extend the period of time during which quality in foods that will be consumed later, the the food can be shipped, displayed in the store, foods can be preserved by cold, heat, chemical purchased by the consumer, and finally consumed. Katherine Clayton preservatives, or combinations of these methods. The physical and chemical composition of the food science Extension Cold usually means refrigeration or freezing. food helps determine the type of process required outreach specialist Heating involves many processing methods, for preservation. Other factors that influence a such as pasteurization, commercial sterilization, choice of preservation method are the desired end Deidre Bush product, type of packaging, cost, and distribution former Extension assistant and drying. Adding preservative ingredients and processing by means of fermentation are also methods. Kevin Keener ways to preserve foods. food process engineer, The Role of Water Activity and Extension specialist, and A food entrepreneur needs a basic understand- Acidity in Preservation professor of food science ing of the various preservation techniques before starting a business. The two most important chemical composition factors that affect how a food is preserved are Food processing converts harvested or raw water content and acidity. Water content includes foods into forms that are more easily stored and moisture level, but an even more important Department of Food Science consumed, and sometimes into a form that may measurement is water activity. -
Food Preservation
Healthy Living 4-H Food Preservation North Dakota 4-H Project Sheet 4-H food preservation projects are Exhibit Ideas designed to help you do fun experiments, learn the fundamentals Make a portfolio or display on of preserving foods, prepare flavor- how to preserve foods safely or filled recipes and reflect on what the importance of head space, finger-tight seals and you’ve learned. You’ll have fun preventing oxidation. learning about safely preserving Make a portfolio or display food. about food labels for preserved foods or kitchen equipment needed to preserve foods. Understand why food is preserved. Make a portfolio or display Understand the science of safe food about your favorite food preservation. preservation recipes. Learn how to prepare, preserve and store foods safely. Canned food exhibits—jams, Develop math and science problem-solving skills by preparing recipes and jelly, pickles, fruits, tomato calculating the cost per jar. product Here’s what you can do all year! NDSU is an equal opportunity institution Pressure Water canning Making jam Pickling Freezing Drying canning Beginning activity: Beginning activity: Beginning activity: Beginning activity: Beginning activity: Beginning activity: Can crushed Make strawberry Make refrigerator Freeze berries. Dry fruit. Can green beans. tomatoes. freezer jam. pickles. Advanced activity: Advanced activity: Advanced activity: Advanced activity: Advanced activity: Advanced activity: Freeze corn-on-the Dry fruit leather. Can tomato veggie Can salsa. Make strawberry Can dill pickles. cob . Additional activities: soup. Additional activities: jam with regular Additional activities: Additional activities: Dry fruits. Additional activities: pectin. Can tomatoes. Make pickles. Freeze fruits and Learn about water Can vegetables. -
Nutrition and Food Sciences Database
Nutrition and Food Sciences Database the complete online nutrition and food sciences information service that covers the whole food chain from primary production of food species – both plant and animal – to the dietary effects of food and food components in humans what is the Nutrition and Food Sciences Database? At its core is a subset of CAB Abstracts, the leading bibliographic database covering the applied life sciences. Nutrition and Food Sciences Database supplies bibliographic information and abstracts for research and practice on all aspects of human nutrition and food, from farm to fork, including: diet studies, nutrient physiology, genomics, metabolomics and proteomics and personalised nutrition, nutrition-related diseases, clinical nutrition and dietetics, public health nutrition, healthy eating, food culture, food composition and analysis, food processing and packaging, food storage and preservation, novel foods, functional foods, food wastes, sustainability, food safety and quality, food fraud, marketing, food policy, food security, international regulations, consumer and sensory science. The Nutrition and Food Sciences Database (a subset of CAB Abstracts) contains: • 50,000 full text articles, growing year by year • literature from over 103 countries • over 1.2 million research summaries since 1973, selectively • 200 fulltext reviews and datasheets sourced from over 6,000 serials as well as over 300 non-serial • over 2,200 news articles publications each year • events diary • weekly updates, with over 80,000 new records added -
Food Losses and Waste in the Context of Sustainable Food Systems
HLPE REPORT 8 Food losses and waste in the context of sustainable food systems A report by The High Level Panel of Experts on Food Security and Nutrition June 2014 HLPE Reports series #1 Price volatility and food security (2011) #2 Land tenure and international investments in agriculture (2011) #3 Food security and climate change (2012) #4 Social protection for food security (2012) #5 Biofuels and food security (2013) #6 Investing in smallholder agriculture for food security (2013) #7 Sustainable fisheries and aquaculture for food security and nutrition (2014) #8 Food losses and waste in the context of sustainable food systems (2014) All HLPE reports are available at www.fao.org/cfs/cfs-hlpe 2 HLPE Steering Committee members (June 2014) Per Pinstrup-Andersen (Chair) Maryam Rahmanian (Vice-Chair) Amadou Allahoury Marion Guillou Sheryl Hendriks Joanna Hewitt Masa Iwanaga Carol Kalafatic Bernardo Kliksberg Renato Maluf Sophia Murphy Ruth Oniang’o Michel Pimbert Magdalena Sepúlveda Huajun Tang HLPE Project Team members Vishweshwaraiah Prakash (Team Leader) Jane Ambuko Walter Belik Jikun Huang Antonius Timmermans Coordinator of the HLPE Vincent Gitz This report by the High Level Panel of Experts on Food Security and Nutrition (HLPE) has been approved by the HLPE Steering Committee. The views expressed do not necessarily reflect the official views of the Committee on World Food Security, of its members, participants, or of the Secretariat. This report is made publicly available and its reproduction and dissemination is encouraged. Non- commercial uses will be authorized free of charge, upon request. Reproduction for resale or other commercial purposes, including educational purposes, may incur fees.