Speech Coding Methods, Standards, and Applications Jerry D. Gibson
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Speech Coding and Compression
Introduction to voice coding/compression PCM coding Speech vocoders based on speech production LPC based vocoders Speech over packet networks Speech coding and compression Corso di Networked Multimedia Systems Master Universitario di Primo Livello in Progettazione e Gestione di Sistemi di Rete Carlo Drioli Università degli Studi di Verona Facoltà di Scienze Matematiche, Dipartimento di Informatica Fisiche e Naturali Speech coding and compression Introduction to voice coding/compression PCM coding Speech vocoders based on speech production LPC based vocoders Speech over packet networks Speech coding and compression: OUTLINE Introduction to voice coding/compression PCM coding Speech vocoders based on speech production LPC based vocoders Speech over packet networks Speech coding and compression Introduction to voice coding/compression PCM coding Speech vocoders based on speech production LPC based vocoders Speech over packet networks Introduction Approaches to voice coding/compression I Waveform coders (PCM) I Voice coders (vocoders) Quality assessment I Intelligibility I Naturalness (involves speaker identity preservation, emotion) I Subjective assessment: Listening test, Mean Opinion Score (MOS), Diagnostic acceptability measure (DAM), Diagnostic Rhyme Test (DRT) I Objective assessment: Signal to Noise Ratio (SNR), spectral distance measures, acoustic cues comparison Speech coding and compression Introduction to voice coding/compression PCM coding Speech vocoders based on speech production LPC based vocoders Speech over packet networks -
Digital Speech Processing— Lecture 17
Digital Speech Processing— Lecture 17 Speech Coding Methods Based on Speech Models 1 Waveform Coding versus Block Processing • Waveform coding – sample-by-sample matching of waveforms – coding quality measured using SNR • Source modeling (block processing) – block processing of signal => vector of outputs every block – overlapped blocks Block 1 Block 2 Block 3 2 Model-Based Speech Coding • we’ve carried waveform coding based on optimizing and maximizing SNR about as far as possible – achieved bit rate reductions on the order of 4:1 (i.e., from 128 Kbps PCM to 32 Kbps ADPCM) at the same time achieving toll quality SNR for telephone-bandwidth speech • to lower bit rate further without reducing speech quality, we need to exploit features of the speech production model, including: – source modeling – spectrum modeling – use of codebook methods for coding efficiency • we also need a new way of comparing performance of different waveform and model-based coding methods – an objective measure, like SNR, isn’t an appropriate measure for model- based coders since they operate on blocks of speech and don’t follow the waveform on a sample-by-sample basis – new subjective measures need to be used that measure user-perceived quality, intelligibility, and robustness to multiple factors 3 Topics Covered in this Lecture • Enhancements for ADPCM Coders – pitch prediction – noise shaping • Analysis-by-Synthesis Speech Coders – multipulse linear prediction coder (MPLPC) – code-excited linear prediction (CELP) • Open-Loop Speech Coders – two-state excitation -
Mpeg Vbr Slice Layer Model Using Linear Predictive Coding and Generalized Periodic Markov Chains
MPEG VBR SLICE LAYER MODEL USING LINEAR PREDICTIVE CODING AND GENERALIZED PERIODIC MARKOV CHAINS Michael R. Izquierdo* and Douglas S. Reeves** *Network Hardware Division IBM Corporation Research Triangle Park, NC 27709 [email protected] **Electrical and Computer Engineering North Carolina State University Raleigh, North Carolina 27695 [email protected] ABSTRACT The ATM Network has gained much attention as an effective means to transfer voice, video and data information We present an MPEG slice layer model for VBR over computer networks. ATM provides an excellent vehicle encoded video using Linear Predictive Coding (LPC) and for video transport since it provides low latency with mini- Generalized Periodic Markov Chains. Each slice position mal delay jitter when compared to traditional packet net- within an MPEG frame is modeled using an LPC autoregres- works [11]. As a consequence, there has been much research sive function. The selection of the particular LPC function is in the area of the transmission and multiplexing of com- governed by a Generalized Periodic Markov Chain; one pressed video data streams over ATM. chain is defined for each I, P, and B frame type. The model is Compressed video differs greatly from classical packet sufficiently modular in that sequences which exclude B data sources in that it is inherently quite bursty. This is due to frames can eliminate the corresponding Markov Chain. We both temporal and spatial content variations, bounded by a show that the model matches the pseudo-periodic autocorre- fixed picture display rate. Rate control techniques, such as lation function quite well. We present simulation results of CBR (Constant Bit Rate), were developed in order to reduce an Asynchronous Transfer Mode (ATM) video transmitter the burstiness of a video stream. -
The Discrete Cosine Transform (DCT): Theory and Application
The Discrete Cosine Transform (DCT): 1 Theory and Application Syed Ali Khayam Department of Electrical & Computer Engineering Michigan State University March 10th 2003 1 This document is intended to be tutorial in nature. No prior knowledge of image processing concepts is assumed. Interested readers should follow the references for advanced material on DCT. ECE 802 – 602: Information Theory and Coding Seminar 1 – The Discrete Cosine Transform: Theory and Application 1. Introduction Transform coding constitutes an integral component of contemporary image/video processing applications. Transform coding relies on the premise that pixels in an image exhibit a certain level of correlation with their neighboring pixels. Similarly in a video transmission system, adjacent pixels in consecutive frames2 show very high correlation. Consequently, these correlations can be exploited to predict the value of a pixel from its respective neighbors. A transformation is, therefore, defined to map this spatial (correlated) data into transformed (uncorrelated) coefficients. Clearly, the transformation should utilize the fact that the information content of an individual pixel is relatively small i.e., to a large extent visual contribution of a pixel can be predicted using its neighbors. A typical image/video transmission system is outlined in Figure 1. The objective of the source encoder is to exploit the redundancies in image data to provide compression. In other words, the source encoder reduces the entropy, which in our case means decrease in the average number of bits required to represent the image. On the contrary, the channel encoder adds redundancy to the output of the source encoder in order to enhance the reliability of the transmission. -
Speech Compression Using Discrete Wavelet Transform and Discrete Cosine Transform
International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 Vol. 1 Issue 5, July - 2012 Speech Compression Using Discrete Wavelet Transform and Discrete Cosine Transform Smita Vatsa, Dr. O. P. Sahu M. Tech (ECE Student ) Professor Department of Electronicsand Department of Electronics and Communication Engineering Communication Engineering NIT Kurukshetra, India NIT Kurukshetra, India Abstract reproduced with desired level of quality. Main approaches of speech compression used today are Aim of this paper is to explain and implement waveform coding, transform coding and parametric transform based speech compression techniques. coding. Waveform coding attempts to reproduce Transform coding is based on compressing signal input signal waveform at the output. In transform by removing redundancies present in it. Speech coding at the beginning of procedure signal is compression (coding) is a technique to transform transformed into frequency domain, afterwards speech signal into compact format such that speech only dominant spectral features of signal are signal can be transmitted and stored with reduced maintained. In parametric coding signals are bandwidth and storage space respectively represented through a small set of parameters that .Objective of speech compression is to enhance can describe it accurately. Parametric coders transmission and storage capacity. In this paper attempts to produce a signal that sounds like Discrete wavelet transform and Discrete cosine original speechwhether or not time waveform transform -
Speech Coding Using Code Excited Linear Prediction
ISSN : 0976-8491 (Online) | ISSN : 2229-4333 (Print) IJCST VOL . 5, Iss UE SPL - 2, JAN - MAR C H 2014 Speech Coding Using Code Excited Linear Prediction 1Hemanta Kumar Palo, 2Kailash Rout 1ITER, Siksha ‘O’ Anusandhan University, Bhubaneswar, Odisha, India 2Gandhi Institute For Technology, Bhubaneswar, Odisha, India Abstract The main problem with the speech coding system is the optimum utilization of channel bandwidth. Due to this the speech signal is coded by using as few bits as possible to get low bit-rate speech coders. As the bit rate of the coder goes low, the intelligibility, SNR and overall quality of the speech signal decreases. Hence a comparative analysis is done of two different types of speech coders in this paper for understanding the utility of these coders in various applications so as to reduce the bandwidth and by different speech coding techniques and by reducing the number of bits without any appreciable compromise on the quality of speech. Hindi language has different number of stops than English , hence the performance of the coders must be checked on different languages. The main objective of this paper is to develop speech coders capable of producing high quality speech at low data rates. The focus of this paper is the development and testing of voice coding systems which cater for the above needs. Keywords PCM, DPCM, ADPCM, LPC, CELP Fig. 1: Speech Production Process I. Introduction Speech coding or speech compression is the compact digital The two types of speech sounds are voiced and unvoiced [1]. representations of voice signals [1-3] for the purpose of efficient They produce different sounds and spectra due to their differences storage and transmission. -
An Ultra Low-Power Miniature Speech CODEC at 8 Kb/S and 16 Kb/S Robert Brennan, David Coode, Dustin Griesdorf, Todd Schneider Dspfactory Ltd
To appear in ICSPAT 2000 Proceedings, October 16-19, 2000, Dallas, TX. An Ultra Low-power Miniature Speech CODEC at 8 kb/s and 16 kb/s Robert Brennan, David Coode, Dustin Griesdorf, Todd Schneider Dspfactory Ltd. 611 Kumpf Drive, Unit 200 Waterloo, Ontario, N2V 1K8 Canada Abstract SmartCODEC platform consists of an effi- cient, block-floating point, oversampled This paper describes a CODEC implementa- Weighted OverLap-Add (WOLA) filterbank, a tion on an ultra low-power miniature applica- software-programmable dual-Harvard 16-bit tion specific signal processor (ASSP) designed DSP core, two high fidelity 14-bit A/D con- for mobile audio signal processing applica- verters, a 14-bit D/A converter and a flexible tions. The CODEC records speech to and set of peripherals [1]. The system hardware plays back from a serial flash memory at data architecture (Figure 1) was designed to enable rates of 16 and 8 kb/s, with a bandwidth of 4 memory upgrades. Removable memory cards kHz. This CODEC consumes only 1 mW in a or more power-efficient memory could be package small enough for use in a range of substituted for the serial flash memory. demanding portable applications. Results, improvements and applications are also dis- The CODEC communicates with the flash cussed. memory over an integrated SPI port that can transfer data at rates up to 80 kb/s. For this application, the port is configured to block 1. Introduction transfer frame packets every 14 ms. e Speech coding is ubiquitous. Increasing de- c i WOLA Filterbank v mands for portability and fidelity coupled with A/D e and D the desire for reduced storage and bandwidth o i l Programmable d o r u utilization have increased the demand for and t D/A DSP Core A deployment of speech CODECs. -
CT8021 H.32X G.723.1/G.728 Truespeech Co-Processor
CT8021 H.32x G.723.1/G.728 TrueSpeech Co-Processor Introduction Features The CT8021 is a speech co-processor which · TrueSpeechâ G.723.1 at 6.3, 5.3, 4.8 and performs full duplex speech compression and de- 4.1 kbps at 8KHz sampling rate (including compression functions. It provides speech G.723.1 Annex A VAD/CNG) compression for H.320, H.323 and H.324 · G.728 16 Kbps LD-CELP Multimedia Visual Telephony / Video · Download of additional speech compression Conferencing products and DSVD Modems. The software modules into external sram for CT8021 has built-in TrueSpeechâ G.723.1 (for TrueSpeechâ 8.5, G.722 & G.729-A/B H.323 and H.324) as well as G.728 LD-CELP · Real-time Full duplex or Half duplex speech speech compression (for H.320). This combination compression and decompression of ITU speech compression standards within a · Acoustic Echo Cancellation concurrent with single device enables the creation of a single full-duplex speech compression multimedia terminal which can operate in all · Full Duplex standalone Speakerphone types of Video Conferencing systems including · Host-to-Host (codec-less) and Host-CODEC H.320 ISDN-based, H.324 POTS-based, and modes of operation H.323 LAN/Internet-based. TrueSpeechâ G.723.1 · Parallel 8-bit host interface provides simple provides compressed data rates of 6.3 and 5.3 memory-mapped I/O host connection. Kbps and includes G.723.1 Annex A VAD/CNG · 1 or 2-channel DMA support (Single Cycle “silence” compression which can supply an even and Burst Modes) lower average bit rate. -
TR 101 329-7 V1.1.1 (2000-11) Technical Report
ETSI TR 101 329-7 V1.1.1 (2000-11) Technical Report TIPHON; Design Guide; Part 7: Design Guide for Elements of a TIPHON connection from an end-to-end speech transmission performance point of view 2 ETSI TR 101 329-7 V1.1.1 (2000-11) Reference DTR/TIPHON-05011 Keywords internet, IP, network, performance, protocol, quality, speech, voice ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.:+33492944200 Fax:+33493654716 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice Individual copies of the present document can be downloaded from: http://www.etsi.org The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://www.etsi.org/tb/status/ If you find errors in the present document, send your comment to: [email protected] Copyright Notification No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media. -
Block Transforms in Progressive Image Coding
This is page 1 Printer: Opaque this Blo ck Transforms in Progressive Image Co ding Trac D. Tran and Truong Q. Nguyen 1 Intro duction Blo ck transform co ding and subband co ding have b een two dominant techniques in existing image compression standards and implementations. Both metho ds actually exhibit many similarities: relying on a certain transform to convert the input image to a more decorrelated representation, then utilizing the same basic building blo cks such as bit allo cator, quantizer, and entropy co der to achieve compression. Blo ck transform co ders enjoyed success rst due to their low complexity in im- plementation and their reasonable p erformance. The most p opular blo ck transform co der leads to the current image compression standard JPEG [1] which utilizes the 8 8 Discrete Cosine Transform DCT at its transformation stage. At high bit rates 1 bpp and up, JPEG o ers almost visually lossless reconstruction image quality. However, when more compression is needed i.e., at lower bit rates, an- noying blo cking artifacts showup b ecause of two reasons: i the DCT bases are short, non-overlapp ed, and have discontinuities at the ends; ii JPEG pro cesses each image blo ck indep endently. So, inter-blo ck correlation has b een completely abandoned. The development of the lapp ed orthogonal transform [2] and its generalized ver- sion GenLOT [3, 4] helps solve the blo cking problem to a certain extent by b or- rowing pixels from the adjacent blo cks to pro duce the transform co ecients of the current blo ck. -
Video/Image Compression Technologies an Overview
Video/Image Compression Technologies An Overview Ahmad Ansari, Ph.D., Principal Member of Technical Staff SBC Technology Resources, Inc. 9505 Arboretum Blvd. Austin, TX 78759 (512) 372 - 5653 [email protected] May 15, 2001- A. C. Ansari 1 Video Compression, An Overview ■ Introduction – Impact of Digitization, Sampling and Quantization on Compression ■ Lossless Compression – Bit Plane Coding – Predictive Coding ■ Lossy Compression – Transform Coding (MPEG-X) – Vector Quantization (VQ) – Subband Coding (Wavelets) – Fractals – Model-Based Coding May 15, 2001- A. C. Ansari 2 Introduction ■ Digitization Impact – Generating Large number of bits; impacts storage and transmission » Image/video is correlated » Human Visual System has limitations ■ Types of Redundancies – Spatial - Correlation between neighboring pixel values – Spectral - Correlation between different color planes or spectral bands – Temporal - Correlation between different frames in a video sequence ■ Know Facts – Sampling » Higher sampling rate results in higher pixel-to-pixel correlation – Quantization » Increasing the number of quantization levels reduces pixel-to-pixel correlation May 15, 2001- A. C. Ansari 3 Lossless Compression May 15, 2001- A. C. Ansari 4 Lossless Compression ■ Lossless – Numerically identical to the original content on a pixel-by-pixel basis – Motion Compensation is not used ■ Applications – Medical Imaging – Contribution video applications ■ Techniques – Bit Plane Coding – Lossless Predictive Coding » DPCM, Huffman Coding of Differential Frames, Arithmetic Coding of Differential Frames May 15, 2001- A. C. Ansari 5 Lossless Compression ■ Bit Plane Coding – A video frame with NxN pixels and each pixel is encoded by “K” bits – Converts this frame into K x (NxN) binary frames and encode each binary frame independently. » Runlength Encoding, Gray Coding, Arithmetic coding Binary Frame #1 . -
Predictive and Transform Coding
Lecture 14: Predictive and Transform Coding Thinh Nguyen Oregon State University 1 Outline PCM (Pulse Code Modulation) DPCM (Differential Pulse Code Modulation) Transform coding JPEG 2 Digital Signal Representation Loss from A/D conversion Aliasing (worse than quantization loss) due to sampling Loss due to quantization Digital signals Analog signals Analog A/D converter signals Digital Signal D/A sampling quantization processing converter 3 Signal representation For perfect re-construction, sampling rate (Nyquist’s frequency) needs to be twice the maximum frequency of the signal. However, in practice, loss still occurs due to quantization. Finer quantization leads to less error at the expense of increased number of bits to represent signals. 4 Audio sampling Human hearing frequency range: 20 Hz to 20 Khz. Voice:50Hz to 2 KHz What is the sampling rate to avoid aliasing? (worse than losing information) Audio CD : 44100Hz 5 Audio quantization Sample precision – resolution of signal Quantization depends on the number of bits used. Voice quality: 8 bit quantization, 8000 Hz sampling rate. (64 kbps) CD quality: 16 bit quantization, 44100Hz (705.6 kbps for mono, 1.411 Mbps for stereo). 6 Pulse Code Modulation (PCM) The 2 step process of sampling and quantization is known as Pulse Code Modulation. Used in speech and CD recording. audio signals bits sampling quantization No compression, unlike MP3 7 DPCM (Differential Pulse Code Modulation) 8 DPCM (Differential Pulse Code Modulation) Simple example: Code the following value sequence: 1.4 1.75 2.05 2.5 2.4 Quantization step: 0.2 Predictor: current value = previous quantized value + quantized error.