Pharmacological Analysis and Structure Determination of 7-Methylcyanopindolol–Bound B1-Adrenergic Receptor
1521-0111/88/6/1024–1034$25.00 http://dx.doi.org/10.1124/mol.115.101030 MOLECULAR PHARMACOLOGY Mol Pharmacol 88:1024–1034, December 2015 Copyright ª 2015 by The American Society for Pharmacology and Experimental Therapeutics Pharmacological Analysis and Structure Determination of 7-Methylcyanopindolol–Bound b1-Adrenergic Receptor Tomomi Sato, Jillian Baker, Tony Warne, Giles A. Brown, Andrew G.W. Leslie, Miles Congreve, and Christopher G. Tate MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom (T.S., T.W., A.G.W.L., C.G.T.); Heptares Therapeutics Ltd, Welwyn Garden City, United Kingdom (G.A.B., M.C.); School of Life Sciences, University of Nottingham, Medical School, Queen’s Medical Centre, Nottingham, United Kingdom (J.B.); KEK High Energy Accelerator Research Organization, Institute of Materials Structure Science, Structural Biology Research Center, Tsukuba, Japan (T.S.) Downloaded from Received July 27, 2015; accepted September 17, 2015 ABSTRACT Comparisons between structures of the b1-adrenergic receptor of 7-methylcyanopindolol was reduced significantly compared (AR) bound to either agonists, partial agonists, or weak partial with cyanopindolol, acting as a very weak partial agonist of 5.46 molpharm.aspetjournals.org agonists led to the proposal that rotamer changes of Ser , turkey b1AR and an inverse agonist of human b2AR. The coupled to a contraction of the binding pocket, are sufficient to structure of 7-methylcyanopindolol–bound b1AR was deter- increase the probability of receptor activation. (RS)-4-[3-(tert- mined to 2.4-Å resolution and found to be virtually identical to butylamino)-2-hydroxypropoxy]-1H-indole-2-carbonitrile (cya- the structure of cyanopindolol-bound b1AR.
[Show full text]