Index

Page numbers in italics refer to Figures. Page numbers in bold refer to Tables.

Acidere Formation 205 Catalina-Rincon Mountains Permo-Triassic evolution 36 Acigo¨l Fault 199 (Arizona, USA) 4 magmatism 39–44 acoustic fluidization 17 Central Anatolide Crystalline Complex metamorphism 36–39 Aegean extensional province 198 sedimentary basins and tectonic map 198 Central Finland Granitoid Complex 229 volcanics 44–47 tectonic setting 197–198, 200 crust detail 242, 245, 246 map 35 Aegean Sea structure interpretation 237, 238 numerical analysis of geological geodynamics 181–183 Central Volcanic Region (New Zealand) evolution geological map 140 74, 79, 81–83 model set-up 47–49 tectonic map 170, 181 chlorite, and fault strength 15 thermomechanics 50–52 Agridi Fault 126, 127, 129, 130, 131 clays, reactions and fault strength 15 numerical and natural data compared Fault 129 Coastal Fault System 141, 144, 145 52–53 Alasehir detachment 199, 205 collisional modelling 225–226 magmatism 58–64 Alasehir graben 215, 217 continental back-arc systems 73 metamorphism 53–58 Alasehir granitoid 199, 202 conceptual model 74 sedimentary basins and Alpine orogeny 34–36 studies in New Zealand, extension in volcanics 64 Amonton’s Law 11–12, 17 relation to local variables Evciler granitoid 199 Amorgos detachment crustal structure 78–81 Evia 140, 141 geological setting 171–173 extension and arc migration 78 exhumation, factors affecting 179 map 170 extension–rotation relations 78 extension timing of detachment geodetic strain estimates 76–77 and isostasy 4 methods of analysis 173 GPS strain estimates 77–78 relation to rotation 78 fission track analysis 173, 175 heat output 81–83 relation to volcanic arc migration 78 results 174 palaeomagnetic rotations 78 extension fault, defined 169 results discussed 175 summary of observations 83–85 extension rate, effect of 226 significance of results 175–176 tectonic setting 73–74 extensional collapse 225–226 amphibolite facies, Svecofennian 226, volcanic arc migration 74–76 External Hellenides 170 229, 245 cooling, and crustal thinning 4 extrusion wedge, defined 169 Anatolia core complexes 4 Eybek granitoid 199 cross-section 216, 217 and tectonites 5 geological setting 200–201 Corinth Rift 119, 120 fault breccia 11 map 199 cratonization 226 fault core, defined 11 Anatolide Block 197, 198, 199, 200 Cretan detachment 169, 170 fault gouge 11 andesites, origins of low/high K 74–76 crust feldspar, reactions and fault strength 15 Andre´ fault 141, 144, 145, 154 structure in New Zealand 78–81 Feneos Basin 127, 128 apatite FTA see fission track analysis thinning and cooling 4 fission track analysis (FTA), apatite and apatite (U–Th)/He dating Cyclades, regional geology 141 zircon studies on Ios Cycladic Basal and Upper Units 140, 141 Amorgos detachment study method 150–151 Cycladic Blueschist Unit 140, 141, 170 methods 173, 175 results 154 results 174, 175–176 significance of results 158–162 Dara Basin 127, 129, 130 Naxos study Appalachians orogen 2 Datc¸a–Kale Fault 198, 199, 217 methods 184 apparent friction 12 decollements, seismic character 233 results 184, 189 40Ar/39Ar dating 114, 202–203 detachment era, defined 1 granodiorite 184, 185, 187 asperities and flash heating 16 detachment horizons 10 metamorphic rocks 184, Attic–Cycladic Massif 180, 181 detachment zones 185, 187 Austroalpine nappe system 34 seismic character 233 sediments 184, 186, 188 magmatism 40, 41, 42 Svecofennian orogen 241, 242, 244 results discussed metamorphism 36, 37, 38 Dixie Valley (Nevada, USA) 10 granodiorite 192–193 Drossopigi Fault 125 metamorphic rocks 189–192 Baklan granitoid 199, 211, 212, 213 dynamic failure 14 sediments 193 Basal Conglomerate Unit 171, 172, 173 dynamic fragmentation 19–22 fixism and fixist concept, rise and fall Basin and Range Province 2, 3, 4 of 1–3 low-angle normal faults 9 earthquakes, and low-angle normal faults 9 flash heating 16 Bergslagen plate 227 East Anatolian Fault Zone 198 fluids, effect of Biga Peninsula 200 East Greenland, Caledonides 2 at faults 12 Bothnian Belt 229 Ecemis Fault 198 high pore pressure 13–14 boudins see Varvara boudin Egrigo¨z granitoid 199, 201–202, 211, 212, Flysch Unit 172 brittle/ductile behaviour 11 213, 214 folds, upright v. flat-lying 226 Burdur Fault 198, 199 Fault 129, 132, 133, 134, 135 friction, coefficient of, for low-angle Bu¨yu¨k Menderes graben 215, 217 Eromonsia Formation 186, 188, 189, 193 normal faults 9 Byerlee friction 9 Erzurum-Kars Plateau 198 friction in LANF, mechanics of 11–12 Eu anomaly 214 evaluation of mechanisms, granular carbon dioxide, role in faulting 11 European Alps 33 friction 17–19 cataclasite 11 geology dynamic rock fragmentation 19–22 Cataldag granitoid 199, 217 Alpine evolution 34–36 mechanical process 16–17 254 INDEX friction in LANF, mechanics of geodesy, strain measurement in New isostasy, and extension 4 (Continued) Zealand 76–77 isotherms, relation to detachment 179–180 requirement for reduction 12 Go¨ynu¨kbelen granitoid 199 Izmir–Ankara suture zone 198, 199, requirements for low strength 12–13 Gondwanaland, break-up 89 200, 217 heating 15–16 GPS, strain measurement in New Zealand high pore fluid pressure 13–14 77–78 Japan Sea, Miocene rotations 74 weak faults materials 14–15 granular friction 17–19 summary and discussion 22–25 granulite facies, Svecofennian 226, 229, Kamenitsa Fault 126, 129, 133 245 Kandila Basin 127, 129, 130, 132 Gardiki Fault 128, 132, 133 graphite, reactions and fault strength 15 Kapidag granitoid 215 geochemistry gravitational collapse 225–226 Karabiga granitoid 199 Menderes massif study 203, 206 Svecofennian Orogen 244 Karelia plate 227 methods of analysis 206 gravitational potential energy, of Karliova triple junction 198 results 206–209 thickened crust 225–226, 244 Katrandag granitoid 199 Zealandia studies see Amorgos detachment; Ios; Kazdag core complex 200, 201, 215, 217 Eastern Province Naxos; Peloponnesus, Northern Kazdag mertamorphic massif 199, 200 Eweburn Tuff 101–102, 105, Gu¨ney detachment 199 Kefalonia Fault 198 106, 107 Gu¨rgenyayla granitoid 199, 215 Keitele microplate 227 Houhora Complex 102–103, Kestanbol granitoid 199 105, 106, 107 Headland Shear Zone 144–146, 158 Khelmos Fault 124, 126, 132, 133, 134 Motu Tuff 103, 104, 105, heat, effect on fault strength 15–16 Koyunoba granitoid 199, 201–202 106, 107 heat output, convective discharge in Kozak granitoid 199 Shag Valley Ignimbrite New Zealand 81–83 Krathis Fault 124, 126, 128 101–102, 104, 105, Hellenic trench 197 Ku¨c¸u¨k Menderes graben 215, 217 106, 107 Helvetic Domain 36, 40, 46 Kusc¸ayiri granitoid 199 Western Province hydrothermal fluid, role in faulting 11 Canavans Quartz Monzonites Laramide Ranges 2 102, 105, 107 Ilica granitoid 199, 217 Levidi Basin 127, 130, 132 DSDP rhyolite 103, 104, illite, and fault strength 15 Levidi Fault 126, 127, 129, 133 107 Indonesian archipeligo 226 listric faults 10 Stitts Tuff 103, 104, 105, infrastructure-superstructure concept 1–2, lithosphere, growth and classification 225 106, 107 226 Lord Howe Rise see Zealandia Whataroa Granite 103, applied to Svecofennian 244–246 low-angle normal faults (LANF) 106, 107 Inner Tauride suture 198 angle of plane 9 geochronology Intra-Pontide suture zone 198, 199 defined 10 studies on Ios Ios Detachment Fault 141, 144, 146 initiation 11 Rb/Sr geochronology Ios metamorphic core complex relation to friction coefficient 9 introduction 148–149 experimental studies relation to relief 9 methods 149 Rb/Sr geochronology tectonic settings 11 results 149–150 introduction 148–149 Lycian ophiolite nappes 140, 199, 200, thermochronology methods 149 201, 216, 217 apatite (U–Th)/He dating results 149–150 Lykouria Fault 127, 129, 132, 133 method 150–151 thermochronology results 154 apatite (U–Th)/He dating magmatism fission track analysis method 150–151 European Alps methods 151, 153 results 154 geology 39–44 results 152, 153 fission track analysis numerical modelling 47–49, results discussed methods 151, 153 50–52 age-slip relations results 152, 153 numerical modelling and geology 155–158 results discussed compared 58–64 cooling history 154–155 age-slip relations mantle degassing, role in faulting 11 temperature–time 155–158 mantle fluid, role in faulting 11 relations cooling history 154–155 Maras triple junction 198 158–159 temperature–time Marble Unit 171, 172, 173 studies in Menderes granitoids relations Marmara granitoids 199, 200–201 202–203 158–159 Median Batholith (Zealandia) 89, 90 studies in Zealandia extensional setting 139–140 melting, and fault strength 16 Eweburn Tuff 96, 97, 98, 99, geological setting 141, 142 Menderes metamorphic massif 198, 100, 101 deformation history 199, 201 Houhora Complex 92, 93, D1 143 granitoids 201 95–96, 99 D2 142–144 field relations 201–202 Motu Tuff 100 D3-5 144 geochemistry 203, 206 Shag Valley Ignimbrite 96, metamorphic history methods of analysis 206 99, 100, 101 M1 141–142 results 206–209 Western Province M2 142–143 geochronology 202–203 Canavans Quartz Monzonite petrographic analysis 147 geodynamic interpretation 93, 95, 96, 100 P–T calculation 147–148 215–216 DSDP rhyolite 93, 95, 96, 99, structural analysis 144–146 petrogenetic history 100 timing of events fractional crystallization Stitts Tuff 93, 95, 96, 100 geometry variations 159–161 214–215 Whataroa Granite 93, 95, 96, tectonic implications 161–162 melt source and evolution 99, 100, 101 temperature variations 158 212–213 INDEX 255

previous research 209–211 North Mainalon Fault Zone 127, 131, 132, magmatism 40, 41, 42, 43 Sr–Nd isotopes 213–214 133, 134, 135 metamorphism 36, 38,39 map 203 sedimentary basins and volcanic Menderes Nappe 170 Orchomenos Fault 127, 130 45, 46 Metabasite Unit 171, 172 Orhaneli granitoid 199, 215 Southern Finland Arc Complex 227 metamorphic core concept, first defined 1 orogenic collapse 225–226 Southwest Anatolian shear zone 199 metamorphic facies, Svecofennian 226, orthogonal pairs 229 Sr anomaly 213, 214 229, 245 Otago Schists 89 87Sr/86Sr 106, 109 metamorphic tectonites 5 Ovacik Fault 198 static failure 13–14 metamorphism stockwerk folding hypothesis 1–2 HP–LT palaeomagnetism, measures of rotation strain hardening 226 Naxos 180, 182 in New Zealand 78 conditions for 245 western Anatolia 200 Pampak–Sevan fault 198 strain measurement HT–LP 33 Pelagonia 197 geodetic 76–77 European Alps Pelagonian/Lycian Zone 170 GPS 77–78 geology 36–39 Peloponnesus, Northern 120 strength, defined 12 numerical modelling 47–49, history of research 119, 121 stress, normal 12 50–52 lithostratigraphy 121–124 strike-slip faults, large displacement 1 numerical modelling and significance of fault geometry Stymfalis Basin 127 geology compared 128–135 superstructure-infrastructure concept 53–58 structure and fault geometry 1–2, 226 MP–MT, Naxos 182–183 124–127 applied to Svecofennian 244–246 Svecofennian 226, 229, 245 Penninic Domain 34 Svecofennian Orogen meteoric fluid, role in faulting 11 magmatism 41 aeromagnetic anomalies and linea- mica, reactions and fault strength 15 metamorphism 36, 37 ment recognition 229–233 migmatite, Svecofennian orogen 245 Penteleion Fault 132, 133 crustal features interpreted 241 minerals, effect on fault strength 14–15 Pesulia Formation 184, 186, 188, extension mode 246–247 Mohr–Coulomb criterion 11 189, 193 lower 241 Monodendri Fault 125, 126 Phyllite–Quartzite Unit 169, 171 middle 241–242 montmorillonite, and fault strength 15 Pindos thrust 125, 127, 129, 130 superstructure-infrastructure pore fluid pressure, effect on faulting evolution 244–246 Naxos 13–14 upper 242–244 exhumation evidence 183–184 potential energy see gravitational potential introduction 226–229 fission track analysis study energy seismic data 233, 241 methods 184 Precambrian orogens, characteristics 226 crustal structure interpretation results 184, 189 pseudotachylyte 11, 16 237, 238, 239, 240 granodiorite 184, 185, 187 Pyrgaki–Mamoussia Fault 132, 133, reflection profiles 234, 235, 236 metamorphic rocks 184, 185, 134, 135 187 talc, reactions and fault strength 15 sediments 184, 186, 188 quartz gouge, and fault strength 15 Tampere arc 227 results discussed Tampere Belt 229 granodiorite 192–193 Rb/Sr geochronology Taupo Volcanic Zone 74 metamorphic rocks 189–192 studies on Ios Tauride Block 199 sediments 193 introduction 148–149 Tavsanli blueschists 216, 217 geological setting 180–181 methods 149 Tethyan ophiolites 217 intrusives 183 results 149–150 thermal energy, of thickened crust landslides 183 Rhodope massif 216 225–226 sediments 183 rhyolites see Zealandia, felsic volcanics thermal pressurization, effect on fault tectono-metamorphic units Riedel shears 229 strength 15–16 181–182 thermochronology, principles of 179–180 M1 Eocene HP–LT 182 Saitias Fault 132, 133 apatite (U–Th)/He dating on Ios M2 Miocene MP–MT Sakarya continent 197, 199, 200, 215, method 150–151 182–183 216, 217 results 154 1Nd plots 101, 104, 106, 109, 213, 214 Salihli granitoid 199, 202–203, 204, 205, significance of results 158–162 Neotethyan ophiolites 199 207, 208, 209, 211, 212, 213, 214 fission track analysis (FTA), apatite New Zealand Samos 140, 141 and zircon formation 89 San Andreas Fault 15, 241 Amorgos detachment study North Island San Andreas Fault Borehole Observatory methods 173, 175 crustal structure 78–81 at Depth (SAFOD) 5 results 174, 175–176 extension and arc migration 78 Savo arc 227, 229 Naxos study extension–rotation relations 78 seawater, role in faulting 11 methods 184 geodetic strain estimates 76–77 serpentinite, and fault strength 15 results 184, 189 GPS strain estimates 77–78 Sevketiye granitoid 199 granodiorite 184, 185, heat output 81–83 shear failure 12 187 palaeomagnetic rotations 78 silica gel, and fault strength 15 metamorphic rocks 184, summary of observations 83–85 Simav detachment 199, 209, 215 185, 187 tectonic setting 73–74 Simav graben 215, 217 sediments 184, 186, 188 volcanic arc migration 74–76 smectite, and fault strength 15 results discussed see also Zealandia, Eastern Province Snake Range (Nevada, USA) 3 granodiorite 192–193 normal faults 1, 9, 169 South Cyclades shear zone 139, 141, 145, metamorphic rocks see also low-angle normal faults 146, 170 189–192 North Anatolian Fault Zone 198, 199, 216 Southalpine Domain 34 sediments 193 256 INDEX thrust faults, large displacement 1 results of geochronology and Motu Tuff 91 thrust sheet geometry, Peloponnesus geochemistry Shag Valley Ignimbrite 128–135 discussed 91–92 thrust-and-nappe structure 2 age 108 methods 91, 101 Tinos 140, 141 chemical controls 112 U–Pb ICPMS 113–114 Topuk granitoid 199, 215 extension initiation U–Pb TIMS 112–113 Torlesse Terrane 89 109–111 results of geochemistry trace elements, discriminant plots tectonic controls Eweburn Tuff 101–102, 105, 106, 107 111–112 106, 107 Tripolitza Unit 169, 170, 171 wedge magmatism Houhora Complex 102–103, Tsivlos Fault 124, 130, 132, 133, 134 108–109 105, 106, 107 Turgutlu granitoid 199, 202–203, 211, Western Province Motu Tuff 103, 104, 105, 106, 212, 213, 214 geochronology and geochemistry 107 Tutak Fault 198 description of samples Shag Valley Ignimbrite Tuzgo¨lu¨ Fault 198 Canavans Quartz 101–102, 104, 105, Monzonite 92 106, 107 U–Pb ICPMS methods 113–114 DSDP rhyolite 92 results of geochronology U–Pb TIMS methods 112–113 Stitts Tuff 92 Eweburn Tuff 96, 97, 98, 99, U–Th/He dating of apatite Whatarou Granite 92 100, 101 studies on Ios methods Houhora Complex 92, 93, method 150–151 40Ar/39Ar 114 95–96, 99 results 154 U–Pb ICPMS 113–114 Motu Tuff 100 significance of results 158–162 U–Pb TIMS 112–113 Shag Valley Ignimbrite 96, results of geochemistry 99, 100, 101 Valimi Fault 124, 125, 126, 130, 132, Canavans Quartz results of geochronology and 133, 134 Monzonites 102, geochemistry discussed Vardar-Imzir-Ankara Zone 170 105, 107 age 108 Variscan Orogeny 33–34 DSDP rhyolite 103, 104, chemical controls 112 European Alps 36 107 extension initiation 109–111 magmatism 39–44 Stitts Tuff 103, 104, 105, tectonic controls 111–112 metamorphism 36–39 106, 107 wedge magmatism 108–109 sedimentary basins and volcanics Whataroa Granite 103, Zealandia, Western Province 44–47 106, 107 geochronology and geochemistry of Varvara boudin 145, 146, 154, 158 results of geochronology Cretaceous felsic volcanics volcanic arcs, migration characteristics in Canavans Quartz description of samples New Zealand 74–76 Monzonite 93, Canavans Quartz Monzonite volcanism, Cretaceous of Zealandia 95, 96, 100 92 Eastern Province DSDP rhyolite 93, 95, 96, DSDP rhyolite 92 geochronology and geochemistry 99, 100 Stitts Tuff 92 40Ar/39Ar 114 Stitts Tuff 93, 95, 96, 100 Whatarou Granite 92 description of samples Whataroa Granite 93, 95, methods Eweburn Tuff 91 96, 99, 100, 101 40Ar/39Ar 114 Houhora Complex 91 results of geochronology and U–Pb ICPMS 113–114 Motu Tuff 91 geochemistry U–Pb TIMS 112–113 Shag Valley Ignimbrite discussed results of geochemistry 91–92 age 108 Canavans Quartz Monzonites methods 91, 101 chemical controls 112 102, 105, 107 U–Pb ICPMS 113–114 extension initiation DSDP rhyolite 103, 104, 107 U–Pb TIMS 112–113 109–111 Stitts Tuff 103, 104, 105, 106, results of geochemistry tectonic controls 107 Eweburn Tuff 101–102, 111–112 Whataroa Granite 103, 106, 105, 106, 107 wedge magmatism 107 Houhora Complex 108–109 results of geochronology 102–103, 105, Canavans Quartz Monzonite 106, 107 Western Finland Arc Complex 227, 229 93, 95, 96, 100 Motu Tuff 103, 104, 105, Whipple Mountains (California, USA) 3 DSDP rhyolite 93, 95, 96, 99, 106, 107 100 Shag Valley Ignimbrite Yenice granitoid 199 Stitts Tuff 93, 95, 96, 100 101–102, 104, Whataroa Granite 93, 95, 96, 105, 106, 107 Zarouchla Complex 124, 126, 131, 133 99, 100, 101 results of geochronology Zealandia 89, 90 results of geochronology and Eweburn Tuff 96, 97, 98, Zealandia, Eastern Province geochemistry discussed 99, 100 geochronology and geochemistry of age 108 Houhora Complex 92, Cretaceous felsic volcanics chemical controls 112 93, 95–96, 99 40Ar/39Ar 114 extension initiation 109–111 Motu Tuff 100 description of samples tectonic controls 111–112 Shag Valley Ignimbrite Eweburn Tuff 91 wedge magmatism 108–109 96, 99, 100 Houhora Complex 91 zircon FTA see fission track analysis