BIPHASIC ACTION of PENTAZOCINE in MORPHINE DEPENDENT RATS Eijiro TAGASHIRA, Tomoko URANO, Tameo HIRAMORI and Saizo YANAU RA Depa

Total Page:16

File Type:pdf, Size:1020Kb

BIPHASIC ACTION of PENTAZOCINE in MORPHINE DEPENDENT RATS Eijiro TAGASHIRA, Tomoko URANO, Tameo HIRAMORI and Saizo YANAU RA Depa BIPHASIC ACTION OF PENTAZOCINE IN MORPHINE DEPENDENT RATS Eijiro TAGASHIRA, Tomoko URANO, Tameo HIRAMORI and Saizo YANAURA Departmentof Pharmacology.Hoshi Collegeof Pharmacy,2-4-41 Ebara, Shinagawa-ku,Tokyo 142, Japan Accepted February15, 1982 Abstract-The characteristic actions of pentazocine in morphine-dependent rats were investigated by a drug-admixed food (DAF) method. Pentazocine did not cause evident withdrawal signs when stopped after a continuous administration for 2 months at 3 different dose levels. A state of physical dependency on morphine was produced in rats by feeding them for 3 weeks with food that contained different levels of morphine. Animals exhibiting a moderate degree of morphine-withdrawal signs (17-18 hr after with drawal) received a s.c. cross-administration with pentazocine at 0, 5, 10, 20, 40, 80, and 150 mg/kg. This drug at 20 mg/kg proved most supressive of morphine-withdrawal signs, being about 1 /4 as potent as codeine. In a dose range from 20 to 40 mg/kg, the action of pentazocine on the with drawal signs was reversed, that is, doses not less than 40 mg/kg exerted a dose-related antagonistic action in all the 3 levels of morphine dependent rats. The challenge with levallorphan (2 mg/kg, s.c.) during the chronic application of pentazocine revealed slight withdrawal signs. These findings show that pentazocine has biphasic action on morphine dependence and suggests that this type of drug must have different properties from morphine type drugs. " A large number of clinical reports on exposure to drug" where the drug was dependence liability to pentazocine appeared always existing in the body using an inter from 1968 through 1969 (1-6). The clinical mittent i.v. infusion method which applied use of pentazocine also became popular in the drug automatically 24 times a day, and Japan, and pentazocine-dependent cases Laska and Fennessy (12) likewise studied tended to increase among general patients the dependence on the same drug by a slow and medical service people since 1971 release emulsion method. Yanagita et al. (counting 55 cases in these 5 years), calling (13) applied a gradually increased dose of one's attention to the problem of pentazocine pentazocine to monkeys by s.c. injection, 4 dependency. to 6 mg/kg, 4 times a day, for 60 consecutive Pentazocine is a drug rapidly metabolized days. A Drug-Admixed Food (DAF) method in animals (7, 8) as well as in man (9, 10), developed by the authors (14) was used in and its analgesic effect lasts only for a short the present study. This method is easy to time such as 90 to 120 min. Koga (11) follow and not time-consuming, and as studied the dependence liability to pen described in a previous paper of a study on tazocine under a condition of continuous the physical dependence on pethidine (15), this method has been proven to be applicable group given the drug from a low to an inter to a dependence formation study on drugs mediate dose (group B), the third group rapidly metabolized or those which become administered a low dose of pentazocine quickly toxic as in the case of barbiturates constantly for a long period (group C), and when continuously applied (16). the last group was the untreated control Only few systematic studies on the (group D). Each animal was allowed to dependence liability of laboratory animals to eat freely from either of 2 food containers, pentazocine have been published (1, 13, 17), one containing twice as much pentazocine and those results do not necessarily agree admixed as the other. As the drug depen with one another. In their studies on cross dence was developed, animals would tend physical dependence between morphine and to eat preferably the food with a heavier drug pentazocine, Koga (11) and Yanagita et al. content. Group A and B were fed initially (13) showed that the suppressive action on with a pair of food-admixtures with pentazocine against the sings of morphine pentazocine contents of 0.5 and 1 mg per g withdrawal varied with the degree of of food and these were gradually increased morphine dependence (or the dose for up to 4 and 6 mg/g food, and moreover, maintaining morphine dependence); and in 6 mg/g food (group A) was administer after mildly morphine-dependent animals, pen 77 days. During this period, the drug was tazocine suppressed the sings of morphine withdrawn for 24 hr before increasing the withdrawal, but hardly suppressed or even dosage as well as about midway during one tended to aggravate the signs of morphine dose level feeding. Group B was fed withdrawal in severely morphine-dependent initially with pentazocine at 0.5 and 1 mg/g animals. From various aspects in their food for 7 days, then at 1 and 2 mg/g food studies on the dependence liability to for 18 days, further at 2 mg/g food for 7 cyclazocine, benzomorphan derivatives days, and finally the drug was naturally analogus to pentazocine, Martin et al. (18), withdrawn. Animals were exposed to the Jasinski et al. (2, 3), and Gilbert and Martin drug totally for 32 days. Group C was fed (19) indicated that the dependence on the with pentazocine at 0.5 and 1 mg/g food for benzomorphan derivatives was qualitatively 32 days with no increase in the dosage before different from that on morphine in subjective withdrawal. Group D was fed only with symptoms, withdrawal signs, and mode of normal food througout the experiment (naive antagonism against naloxone. In the present control). study, the physical dependence on pen 2. Manifestation of withdrawal signs with tazocine (oral route) and the cross-physical levallorphan: During the continuous admin dependence liability to morphine were istration with pentazocine to the 3 groups of studied in comparison with those of codeine. rats described under 1, each group received Some new findings will be presented. 2 mg/kg of levallorphan s.c. at different times: group A at 7 and 15 days when the MATERIALSAND METHODS dose of pentazocine reached 4 and 6 mg/g 1. Dependence formation to pentazocine: food, respectively, group B at 12 days with Sprague-Dawley rats (6 weeks of age) were pentazocine at 1 and 2 mg/g food, and divided into 4 groups, each consisting of 6 group C at 19 days with the unchanged initial animals. Animals of the first group were dosage of 0.5 and 1 mg/g food. These administered pentazocine in a range from a animals were investigated for general low to a high dose (group A), the second behaviors and measured for body weight and food consumption at intervals during the withdrawal, the animals were put back on 24 hr after the challenge with levallorphan. the same foods as before. Morphine-dependent groups prepared with b-1) Three groups of morphine-dependent 1 /4 and 1 /2 mg/g food (M-L,) and 1 /8 and rats, M-H, M-I, and M-L2 were prepared. 1 /4 mg/g food (M-L2 group) for not less All 3 groups received pentazocine 20 mg/kg than 3 weeks were challenged with 2 mg/kg s.c. every 3 to 5 hr for the period from 17 hr of levallorphan. The body weights of rats until 48 hr after morphine withdrawal. After used in this experiment were 230-250 g. the cross-administration, animals were 3. Cross-physical dependence liability to completely off any drug, and they were pentazocine in morphine-dependent rats: For examined for general behaviors and measured the purpose of investigating the cross for body weight until they recovered in body physical dependence between morphine and weight up to the level before the cross pentazocine, 3 groups of rats (N=6) were administration. The control group again was prepared differently in the degree of physical fed only with normal food. dependence on morphine or in the main b-2) Seven groups (N=6) of rats (body tenance doses of morphine dependence. weight: 230-250 g) which had developed Highly dependent rats (M-H group) were physical dependence on morphine (M-I prepared by feeding them with food con groups of rats) received pentazocine at 0, 5, taining morphine at both 1 and 2 mg/g food, 10, 20, 40, 80, and 150 mg/kg for in intermediately dependent ones (M-I group) vestigating the dose-response relationship in were fed with 0.5 and 1 mg/g food, and the suppressive action of pentazocine on the lightly dependent ones (M-L2 group) were morphine-withdrawal signs. The cross fed with morphine at 1 /8 and 1 /4 mg/g food. administration was performed every 3 hr All groups were fed as described above for from 17 hr until 48 hr after morphine with 3 weeks. The control animals were fed only drawal. Rats were kept off morphine com with normal food (naive control). pletely for 5 to 6 days after the cross The cross-administration of pentazocine administration for the purpose of investigating was started at a) 0 hr (when the animals whether morphine dependence was main were non-withdrawn dependent state) or tained or cross-dependence had been b) 17-18 hr after withdrawal of morphine induced. During the cross-administration when the moderate withdrawal signs became period that ensued, the animals were manifest. examined for general behaviors and measured a) M-H and M-I groups of morphine for body weight. dependent rats (body weight: 350-380 g) b-3) For the purpose of comparing the received pentazocine at 20 mg/kg s.c. The cross-physical dependence liability to control rats were fed only with normal food pentazocine with that to codeine, the sup during the same period.
Recommended publications
  • INVESTIGATION of NATURAL PRODUCT SCAFFOLDS for the DEVELOPMENT of OPIOID RECEPTOR LIGANDS by Katherine M
    INVESTIGATION OF NATURAL PRODUCT SCAFFOLDS FOR THE DEVELOPMENT OF OPIOID RECEPTOR LIGANDS By Katherine M. Prevatt-Smith Submitted to the graduate degree program in Medicinal Chemistry and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Doctor of Philosophy. _________________________________ Chairperson: Dr. Thomas E. Prisinzano _________________________________ Dr. Brian S. J. Blagg _________________________________ Dr. Michael F. Rafferty _________________________________ Dr. Paul R. Hanson _________________________________ Dr. Susan M. Lunte Date Defended: July 18, 2012 The Dissertation Committee for Katherine M. Prevatt-Smith certifies that this is the approved version of the following dissertation: INVESTIGATION OF NATURAL PRODUCT SCAFFOLDS FOR THE DEVELOPMENT OF OPIOID RECEPTOR LIGANDS _________________________________ Chairperson: Dr. Thomas E. Prisinzano Date approved: July 18, 2012 ii ABSTRACT Kappa opioid (KOP) receptors have been suggested as an alternative target to the mu opioid (MOP) receptor for the treatment of pain because KOP activation is associated with fewer negative side-effects (respiratory depression, constipation, tolerance, and dependence). The KOP receptor has also been implicated in several abuse-related effects in the central nervous system (CNS). KOP ligands have been investigated as pharmacotherapies for drug abuse; KOP agonists have been shown to modulate dopamine concentrations in the CNS as well as attenuate the self-administration of cocaine in a variety of species, and KOP antagonists have potential in the treatment of relapse. One drawback of current opioid ligand investigation is that many compounds are based on the morphine scaffold and thus have similar properties, both positive and negative, to the parent molecule. Thus there is increasing need to discover new chemical scaffolds with opioid receptor activity.
    [Show full text]
  • (Methadone Hydrochloride Oral Concentrate USP) and Methadose
    NDA 17-116/S-021 Page 3 Methadose™ Oral Concentrate (methadone hydrochloride oral concentrate USP) and Methadose™ Sugar-Free Oral Concentrate (methadone hydrochloride oral concentrate USP) dye-free, sugar-free, unflavored CII Rx only FOR ORAL USE ONLY Deaths have been reported during initiation of methadone treatment for opioid dependence. In some cases, drug interactions with other drugs, both licit and illicit, have been suspected. However, in other cases, deaths appear to have occurred due to the respiratory or cardiac effects of methadone and too-rapid titration without appreciation for the accumulation of methadone over time. It is critical to understand the pharmacokinetics of methadone and to exercise vigilance during treatment initiation and dose titration (see DOSAGE AND ADMINISTRATION). Patients must also be strongly cautioned against self- medicating with CNS depressants during initiation of methadone treatment. Respiratory depression is the chief hazard associated with methadone hydrochloride administration. Methadone's peak respiratory depressant effects typically occur later, and persist longer than its peak analgesic effects, particularly in the early dosing period. These characteristics can contribute to cases of iatrogenic overdose, particularly during treatment initiation and dose titration. Cases of QT interval prolongation and serious arrhythmia (torsades de pointes) have been observed during treatment with methadone. Most cases involve patients being treated for pain with large, multiple daily doses of methadone, NDA
    [Show full text]
  • Pharmacology and Toxicology of Amphetamine and Related Designer Drugs
    Pharmacology and Toxicology of Amphetamine and Related Designer Drugs U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES • Public Health Service • Alcohol Drug Abuse and Mental Health Administration Pharmacology and Toxicology of Amphetamine and Related Designer Drugs Editors: Khursheed Asghar, Ph.D. Division of Preclinical Research National Institute on Drug Abuse Errol De Souza, Ph.D. Addiction Research Center National Institute on Drug Abuse NIDA Research Monograph 94 1989 U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service Alcohol, Drug Abuse, and Mental Health Administration National Institute on Drug Abuse 5600 Fishers Lane Rockville, MD 20857 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, DC 20402 Pharmacology and Toxicology of Amphetamine and Related Designer Drugs ACKNOWLEDGMENT This monograph is based upon papers and discussion from a technical review on pharmacology and toxicology of amphetamine and related designer drugs that took place on August 2 through 4, 1988, in Bethesda, MD. The review meeting was sponsored by the Biomedical Branch, Division of Preclinical Research, and the Addiction Research Center, National Institute on Drug Abuse. COPYRIGHT STATUS The National Institute on Drug Abuse has obtained permission from the copyright holders to reproduce certain previously published material as noted in the text. Further reproduction of this copyrighted material is permitted only as part of a reprinting of the entire publication or chapter. For any other use, the copyright holder’s permission is required. All other matieral in this volume except quoted passages from copyrighted sources is in the public domain and may be used or reproduced without permission from the Institute or the authors.
    [Show full text]
  • A Review of Prehospital Pain Management
    A Review of Prehospital Pain Management Jennifer Farah, MD EMS & Disaster Medicine Fellow University of California, San Diego Outline • Non-medicinal methods (e.g. ice-packs) • NSAIDs and Acetaminophen • Morphine • Fentanyl • Ketamine… the future? Nonsteroidal Anti-Inflammatory Drugs (NSAIDs) • Aspirin, Ibuprofen, Naproxen, Celecoxib • Dose (Ibuprofen): 10mg/kg (max daily 1200mg-3200mg/day) • Onset (oral): 25-30 mins • Peak: 1-2hr • Duration: 4-6hr • Cost: $0.11-0.21 / 200mg tablet Acetaminophen (Tylenol) • Dose: 15mg/kg PO (max daily dose 4000mg/day) • Onset (oral): 15-20 mins • Peak: 1-1.5hr • Duration: 4-6hr • IV: Should be administered as a 15 min infusion • Cost: $0.02-0.36 / 325mg tablet Morphine • Pure opioid agonist selective to μ – receptors • Onset IV: 5 mins • Duration: 4-5 hours • Dose: 2-10mg IV per 70kg (0.1mg/kg) • Controlled substance schedule II • Cost: $0.71 /10mg • Shelf life: 3 years Fentanyl • Pure opioid agonist to μ – receptors • Onset IV: Almost immediate • Duration: 30-60 mins • Dose: 50-100mcg IV or 0.5-1.5mcg/kg • Controlled substance schedule II • Cost: $0.83/ 100μg • Shelf life: 3 years Advantages of Fentanyl • x50-100 more potent than morphine Fentanyl 0.1mg = Morphine 10mg • Quick onset of action • Preserves cardiac stability • Less nausea (not validated) • May cause muscle rigidity (chest wall rigidity) Fleischman R. et al Prehospital Emergency Care 2010 • Retrospective before and after study from morphine to fentanyl in an ALS EMS system in 2007 • 355 patients Morphine, 363 patients Fentanyl • Morphine 2--5 mg IV, repeated q5 mins to a max of 20 mg. • Fentanyl 50μg IV, repeated doses of 25--50μg q3--5 minutes to a max of 200 μg.
    [Show full text]
  • Drugs of Abuseon September Archived 13-10048 No
    U.S. DEPARTMENT OF JUSTICE DRUG ENFORCEMENT ADMINISTRATION WWW.DEA.GOV 9, 2014 on September archived 13-10048 No. v. Stewart, in U.S. cited Drugs of2011 Abuse EDITION A DEA RESOURCE GUIDE V. Narcotics WHAT ARE NARCOTICS? Also known as “opioids,” the term "narcotic" comes from the Greek word for “stupor” and originally referred to a variety of substances that dulled the senses and relieved pain. Though some people still refer to all drugs as “narcot- ics,” today “narcotic” refers to opium, opium derivatives, and their semi-synthetic substitutes. A more current term for these drugs, with less uncertainty regarding its meaning, is “opioid.” Examples include the illicit drug heroin and pharmaceutical drugs like OxyContin®, Vicodin®, codeine, morphine, methadone and fentanyl. WHAT IS THEIR ORIGIN? The poppy papaver somniferum is the source for all natural opioids, whereas synthetic opioids are made entirely in a lab and include meperidine, fentanyl, and methadone. Semi-synthetic opioids are synthesized from naturally occurring opium products, such as morphine and codeine, and include heroin, oxycodone, hydrocodone, and hydromorphone. Teens can obtain narcotics from friends, family members, medicine cabinets, pharmacies, nursing 2014 homes, hospitals, hospices, doctors, and the Internet. 9, on September archived 13-10048 No. v. Stewart, in U.S. cited What are common street names? Street names for various narcotics/opioids include: ➔ Hillbilly Heroin, Lean or Purple Drank, OC, Ox, Oxy, Oxycotton, Sippin Syrup What are their forms? Narcotics/opioids come in various forms including: ➔ T ablets, capsules, skin patches, powder, chunks in varying colors (from white to shades of brown and black), liquid form for oral use and injection, syrups, suppositories, lollipops How are they abused? ➔ Narcotics/opioids can be swallowed, smoked, sniffed, or injected.
    [Show full text]
  • Proper Use of Ketamine and Innovar
    Proper Use of Ketamine and lnnovar* GUENTER CORSSEN, M.D. Professor and Chairman, Department of Anesthesiology, University of Alabama School of Medicine, Birmingham, Alabama KETAMINE. Success or failure with the use of Use of ketamine predominantly in infants ketamine depends largely on three factors: and children up to 14 years of age. 1. Awareness that ketamine is different from traditional anesthetics. These differences in­ The use of ketamine in adult patients is con­ clude the following: fined to surgical conditions for which keta­ mine has proven to be particularly advan­ Ketamine, unlike traditional anesthetics tageous, safe, and superior to conventional which cause total depression of the central anesthetic agents and methods ( see under 3). nervous system, affects selectively pain con­ duction and perception systems, stimulating Narcotic addicts and patients with a history one area of the brain while simultaneously of chronic alcohol abuse or suffering from depressing another ("dissociation") . acute alcohol intoxication are poor candi­ dates for ketamine anesthesia because in Ketamine stimulates the cardiovascular sys­ these patients even excessive doses of keta­ tem while traditional anesthetics depress car­ mine may fail to control body movements. diovascular function. 3. Limiting the use of ketamine anesthesia to Ketamine has antiarrhythmic properties while the following specific surgical areas and con­ traditional anesthetics do not. They may ditions: even precipitate arrhythmias. Surgical treatment of burns* Ketamine maintains or even exaggerates pro­ tective reflexes while traditional anesthetics Neurodiagnostic procedures such as pneu­ suppress them. moencephalography, ventriculography, mye­ lography, and carotid arteriography. Ketamine ensures airway patency, provided no mechanical airway obstruction is present, Out-patient ophthalmology (tonometry, fun­ while traditional anesthetics require addi­ doscopy, gonioscopy).
    [Show full text]
  • Of the Patients with Secondary Depression, However, Into the Fold of Medicine
    1088 ROBERTS AND KUCK: ALPHAPRODINE AND LEVALLORPHAN NOV. 19, 1960, o.83 better ones with imipramine (Tofranil). Only two are those which help to place the specialty back of the patients with secondary depression, however, into the fold of medicine. To this end, the newer required E.C.T., the rest being successfully treated drugs are undoubtedly playing their part. "Putting by imipramine. psychiatry back into medicine" is a phrase that E.C.T. still remains a most valuable form of we owe to Ayd. However, I consider that it will treatment, but our standard practice is to give a be a long time before we reach an integrated prac- two- to three-week trial of an antidepressant drug tice of both medicine and psychiatry. Perhaps this first. Only if there is no improvement or in the will be achieved both by the general hospitals presence of severe agitated or retarded depression advancing towards psychiatry and the mental with a risk of suicide would we proceed with E.C.T. hospital advancing towards the general hospital. The ultimate period of sickness is probably not In this way a proper community of service will be prolonged by this regimen, which may in fact yield set up without perhaps the series of parallel, and a more stable recovery. Certainly the retarded at times overlapping, facilities that exist at present. patient has no wish to indulge in explorative and Until continuity of treatment is achieved, I think interpretative psychotherapy, and his very inability that our best efforts will always be to some extent to do so may be construed by him as yet another vitiated.
    [Show full text]
  • Psycho Pharmacology © by Springer-Verlag 1976
    Psychopharmacology 47, 65- 69 (1976) Psycho pharmacology © by Springer-Verlag 1976 Generalization of Morphine and Lysergic Acid Diethylamide (LSD) Stimulus Properties to Narcotic Analgesics I. D. HIRSCHHORN* and J. A. ROSECRANS Department of Pharmacology, Medical College of Virginia, Richmond, Virginia 23298, U.S.A. Abstract. The present investigation sought to deter- Physical dependence is not always associated with drug mine whether the stimulus properties of morphine craving and a high abuse liability. Some narcotic- and lysergic acid diethylamide (LSD) would gener- antagonist analgesics, such as cyclazocine and nalor- alize to several narcotic analgesics which vary in their phine, produce physical dependence with chronic subjective effects. Morphine and saline served as administration, but withdrawal does not result in drug discriminative stimuli for one group of rats in a 2-1ever seeking behavior (Martin et al., 1965; Martin and discrimination task. LSD and saline were discrimina- Gorodetzky, 1965). However, both cyclazocine and tive stimuli for a second group. Depression of one nalorphine have subjective side effects characterized lever in an operant chamber resulted in reinforcement by dysphoria and hallucinations (Haertzen, 1970) following the administration of morphine or LSD which render them unsuitable for therapeutic use. and the opposite lever was reinforced after saline. Pentazocine, a less potent antagonist of morphine After discriminated responding was stable, stimulus than cyclazocine and nalorphine, more closely resem- generalization tests with narcotic analgesics and bles morphine in its pharmacological effects and has antagonists showed that the stimulus properties of a somewhat greater incidence of non-medical use morphine generalized to methadone and meperidine, than antagonists of the nalorphine type (Paddock and partially to pentazocine, all of which produce etal., 1969).
    [Show full text]
  • Update in Anaesthesia
    Update in Anaesthesia Pentazocine Karen Henderson Correspondence Email: [email protected] Introduction use with 30 - 40 mg of pentazocine equivalent In 1967 pentazocine became the first opioid to 10 mg morphine. When given by mouth, the agonist-antagonist to be introduced into analgesic action of pentazocine is much weaker clinical practice as an analgesic. It was hoped than morphine and is thought to lie somewhere that pentazocine would prove to be a powerful between that of peripherally acting analgesics analgesic, free of the side-effects of opioid such as paracetamol and weak opioids such as narcotics, particularly avoiding drug dependency. codeine. In practice pentazocine has proved to be less Other actions of pentazocine mirror those of effective than hoped, but it is still used widely in other opioids including respiratory depression, Clinical Overview Articles resource-poor countries. cough suppression, miosis, decreased gastric Chemistry emptying and constipation and increased smooth Pentazocine is a benzmorphan which is muscle tone in the uterus and bladder. However chemically related to morphine. It is a white or in normal use these effects are usually of little cream, odourless, crystalline powder. It consists clinical significance. of a racemic mixture of dextro- (d) and laevo- In contrast to other strong opioid analgesics Summary (l) isomers which is soluble in acidic aqueous however, there is a dose-related systemic This article describes solutions. Pentazocine hydrochloride is used for and pulmonary hypertension, increased left the pharmacology oral use and the lactate form is used for parenteral ventricular end-diastolic pressure and a rise in and rectal administration. and clinical uses of central venous pressure, probably as a result of the opioid agonist- Molecular weight (free base)........................321.9 a rise in plasma catecholamine concentrations.
    [Show full text]
  • TALWIN Nx Is an Analgesic for Oral Administration
    NDA 018733/S-015 Page 4 TALWIN® Nx CIV pentazocine hydrochloride and naloxone hydrochloride, USP Analgesic for Oral Use Only WARNING: TALWIN® Nx is intended for oral use only. Severe, potentially lethal, reactions may result from misuse of TALWIN® Nx by injection either alone or in combination with other substances. (See DRUG ABUSE AND DEPENDENCE section.) DESCRIPTION TALWIN Nx (pentazocine and naloxone hydrochlorides, USP) contains pentazocine hydrochloride, USP, equivalent to 50 mg base and is a member of the benzazocine series (also known as the benzomorphan series), and naloxone hydrochloride, USP, equivalent to 0.5 mg base. TALWIN Nx is an analgesic for oral administration. Chemically, pentazocine hydrochloride is (2R*,6R*,11R*)-1,2,3,4,5,6-Hexahydro-6,11­ dimethyl-3-(3-methyl-2-butenyl)-2,6-methano-3-benzazocin-8-ol hydrochloride, a white, crystalline substance soluble in acidic aqueous solutions, and has the following structural formula: C19H27NO·HCl M.W. 321.88 Chemically, naloxone hydrochloride is Morphinan-6-one,4,5-epoxy-3,14-dihydroxy-17-(2­ propenyl)-, hydrochloride, (5α)-. It is a slightly off-white powder, and is soluble in water and dilute acids, and has the following structural formula: Reference ID: 2909136 NDA 018733/S-015 Page 5 C19H21NO4·HCl M.W.=363.84 Inactive Ingredients: Colloidal Silicon Dioxide, Dibasic Calcium Phosphate, D&C Yellow #10, FD&C Yellow #6, Magnesium Stearate, Microcrystalline Cellulose, Sodium Lauryl Sulfate, Starch. CLINICAL PHARMACOLOGY Pentazocine is a Schedule IV opioid analgesic which when administered orally in a 50 mg dose appears equivalent in analgesic effect to 60 mg of codeine.
    [Show full text]
  • Levorphanol Use: Past, Present and Future
    Postgraduate Medicine ISSN: 0032-5481 (Print) 1941-9260 (Online) Journal homepage: http://www.tandfonline.com/loi/ipgm20 Levorphanol Use: Past, Present and Future Jeffrey Gudin, Jeffrey Fudin & Srinivas Nalamachu To cite this article: Jeffrey Gudin, Jeffrey Fudin & Srinivas Nalamachu (2015): Levorphanol Use: Past, Present and Future, Postgraduate Medicine, DOI: 10.1080/00325481.2016.1128308 To link to this article: http://dx.doi.org/10.1080/00325481.2016.1128308 Accepted author version posted online: 03 Dec 2015. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=ipgm20 Download by: [Jeffrey Fudin] Date: 03 December 2015, At: 20:32 Publisher: Taylor & Francis Journal: Postgraduate Medicine DOI: 10.1080/00325481.2016.1128308 Levorphanol Use: Past, Present and Future Authors: Jeffrey Gudin1, Jeffrey Fudin2, and Srinivas Nalamachu3 Affiliations: 1Director, Pain Management and Palliative Care, Englewood Hospital and Medical Center, Englewood, NJ, and Clinical Instructor, Anesthesiology, Icahn School of Medicine at Mount Sinai, New York, NY. 2Adjunct Associate Professor, Albany College of Pharmacy and Health Sciences and also Western New England University College of Pharmacy Director, PGY2 Pain Residency and Clinical Pharmacy, Specialist, Pain Management Stratton VA Medical Center, Albany, NY 3President and Medical Director, International Clinical Research Institute, Overland Park, KS, and Adjunct Associate Professor, Temple University School of Medicine, Downloaded by [Jeffrey Fudin] at 20:32 03 December 2015 Philadelphia, PA. Running Title: Levorphanol Use: Past, Present and Future Corresponding Author Srinivas Nalamachu Srinivas R. Nalamachu MD International Clinical Research Institute, Inc.
    [Show full text]
  • Symposium Iv. Discriminative Stimulus Effects
    Life Sciences, Vol. 28, pp. 1571-1584 Pergamon Press Printed in the U.S.A. MINI - SYMPOSIUM IV. DISCRIMINATIVE STIMULUS EFFECTS OF NARCOTICS: EVIDENCE FOR MULTIPLE RECEPTOR-MEDIATED ACTIONS Seymore Herling and James H. Woods Departments of Pharmacology and Psychology University of Michigan Ann Arbor, Michigan q8109 The different pharmacological syndromes produced by morphine and related drugs in the chronic spinal dog led Martin and his colleagues (1,2) to suggest that these drugs exert their agonist actions 0y interacting with three distinct receptors (~,K, and e). Morphine was hypothesized to be an agonist for the p receptor, ketazocine (ketocyclazocine) was an agonist for the K receptor, and SKF-10,0q7 was an agonist for the ~ receptor. The effects of these three drugs in the chronic spinal dog were reversed by the narcotic antagonist, naltrexone, indicating that the effects of these drugs are narcotic agonist effects (I). In additlon to the different effects of these narcotics in the non- dependent chronic spinal dog, the effects of morphine, ketazocine, and SKF-IO,047 in several other behavioral and physiological preparations are consistent with the concept of multiple receptors. For example, while ketazocine and ethylketazocine, like morphine, produce analgesia, these compounds, unlike morphine, do not suppress signs of narcotic abstinence in the morphine-dependent rhesus monkey or morphine-dependent chronic spinal dog (1-5). Further, the characteristics of ketazocine withdrawal and antagonist- precipitated abstinence syndromes, although similar to those of cyclazocine, are quailtativeiy different from those of morphine (1,2). In rhesus monkeys, ketazocine, ethylketazocine, and SKF-10,047 maintain lever pressing at rates comparable to or below those maintained by saline, and well below response rates maintained by codeine or morphine (5,6), suggesting that the former set of drugs have limited reinforcing effect.
    [Show full text]