Novel Pharmacological Modulators of P2X7 Receptor

Total Page:16

File Type:pdf, Size:1020Kb

Novel Pharmacological Modulators of P2X7 Receptor Novel Pharmacological Modulators of P2X7 receptor A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy Kshitija Dhuna MSc, Guru Nanak Dev University, Punjab, India. School of Health and Biomedical Sciences College of Science, Engineering and Health RMIT University March,2019 Declaration I certify that except where due acknowledgement has been made, the work is that of the author alone; the work has not been submitted previously, in whole or in part, to qualify for any other academic award; the content of the thesis/project is the result of work which has been carried out since the official commencement date of the approved research program; any editorial work, paid or unpaid, carried out by a third party is acknowledged; and, ethics procedures and guidelines have been followed. I acknowledge the support I have received for my research through the provision of an Australian Government Research Training Program Scholarship. Kshitija Dhuna Date: 18/03/19 ii Acknowledgement It is an extreme pleasure to express my sincere gratitude to my worthy guide, Dr Leanne Stokes, for her guidance, encouragement and useful critiques of this research work. You enabled me to undertake one of the most rewarding journeys of my life. You encouraged me to aspire to achieve my goals. My thesis, and the achievements throughout my candidature, would not have been possible without you. I feel blessed that I was given the opportunity to work under the supervision of a person who is an excellent scientist, a great teacher and a beautiful human being. I feel short of words to express my thanks to my co-supervisor A/Prof Samantha Richardson, whose unconditional support and encouragement made it possible for this work to see the light of the day. You took me by my hand and led me to the finish line. Thank you. I am indebted to Dr Martin Stebbing, my associate supervisor, for providing all the essential amenities for this project and for continuous and active involvement at each step of research work embodied in this thesis. I wish to convey my sincere thanks to Dr Ray M Helliwell, for making me a part of the ginsenosides story. Your in-depth knowledge of Pharmacology helped me thoroughly with all aspects of this project. Thank you! I would like to extend my gratitude to Dr Narin Osman for her constant words of encouragement and generous support during my entire candidature. Your smiles and reassurance helped me through some very difficult times. I would like to extend my heartfelt thanks to Dr Brett Cromer for his extensive help in the automated patch clamp experiments. iii The primary macrophage work in thesis would not have been possible without the generous contribution of Dr Simone de Luca and A/Prof Sarah Spencer who supplied the rat tissue for primary macrophage isolation. I am sincerely grateful to Prof Emilio Badoer and Dr Trisha Jenkins of the Neurobiology Research Group, thank you for your advice and support. I would also like to extend my gratitude to Dr Celine Velery, whose kind words made it a bit easier to survive this long journey. I would like to convey my sincere gratitude to members of the HDR administration team, Helen Cassidy and Mary Briganti. Thank you for answering the endless emails and also wiping away the occasional tears. I am grateful to our HDR co-ordinator, Prof Aj Jaworowski, for his support during my candidature. I would like to thank my friends at RMIT University, Saher Ali, Sefaa Al-Aryahi, Merfat Algathami and Durga Dharmadana for their friendship over the years. I would also like to mention the staff of Refuel cafeteria, who served coffee with a pinch of love! Thank you for making this journey less lonely. Thank you to my family for their outstanding support. Vikram, my husband, you stood by me through thick and thin like the Rock of Gibraltar. My beautiful daughter, Kainaat, your support and love made this thesis possible. My mother and sister, and my father in his time, without the constant support and help you graciously offered when I needed it; I could not have reached my goals. I acknowledge the support I have received for my research through the provision of an Australian Government Research Training Program Scholarship. iv Academic Contribution During the course of this thesis, the candidate’s aim was to contribute to the fields of Purinergic signalling and to characterise certain pharmacological modulators so as to attain a better insight into the P2X7 function and modulation. The candidate has contributed to the following publications and presentations: i. JOURNAL ARTICLES 1. Ginsenosides act as positive modulators of P2X4 receptors Kshitija Dhuna, Matthew Felgate, Stefan Bidula, Samuel Walpole, Lucka Bibic, Brett A. Cromer, Jesus Angulo , Julie Sanderson , Martin J. Stebbing, Leanne Stokes: Molecular pharmacology. 2018:mol.118.113696. 2. Neonatal overfeeding by small-litter rearing sensitizes hippocampal microglial responses to immune challenge: reversal with neonatal repeated injections of saline as well as minocycline Simone De Luca, Ilvana Ziko, Kshitija Dhuna, Luba Sominsky, Mary Tolcos, Leanne Stokes, Sarah Spencer: Journal of Neuroendocrinology 29(11):e12540 · October 2017. 3. P2X4 Receptor Function in the Nervous System and Current Breakthroughs in Pharmacology Leanne Stokes, Janice Layhadi, Lucka Bibic, Kshitija Dhuna, Samuel Fountain: Frontiers in Pharmacology 8 May 2017. 4. Selected ginsenosides of the protopanaxdiol series are novel positive allosteric modulators of P2X7 receptors. Ray M Helliwell, Charlene ShioukHuey, Kshitija Dhuna, Juan C Molero, Jiming M Ye, Charlene C Xue. British Journal of Pharmacology. 2015; 172(13):3326-40. v ii. CONFERENCE PRESENTATIONS 1. Ginsenosides cause cell death by potentiating calcium influx via P2X7 channels in a murine macrophage cell line. Kshitija Dhuna, Martin J Stebbing, Ray M Helliwell, Leanne Stokes, MGPCRS-ASCEPT, Melbourne, December 2016 2. Investigating the selectivity of ginsenoside positive modulators on P2X7 Kshitija Dhuna, Martin J Stebbing, Ray M Helliwell, Leanne Stokes, ASCEPT, Tasmania, December 2015 3. Minocycline: A novel pharmacological modulator of P2X7 Kshitija Dhuna, Martin J Stebbing, Leanne Stokes, GAGE conference, Canberra, April 2015 4. Minocycline modulates purinergic receptors Kshitija Dhuna, Martin J Stebbing, Leanne Stokes, HDR Conference, RMIT University, Melbourne, October 2014 vi TABLE OF CONTENT DECLARATION ...................................................................................................................... II ACKNOWLEDGEMENT ....................................................................................................... III ACADEMIC CONTRIBUTION .............................................................................................. V ABSTRACT ............................................................................................................................... 1 CHAPTER 1 .............................................................................................................................. 4 A REVIEW OF THE LITERATURE........................................................................................ 4 Introduction ................................................................................................................................ 4 1.1 Immune response: An overview ..................................................................................... 4 1.2 Initial recognition of danger: PAMPs and DAMPs ........................................................ 7 1.3 ATP: The endogenous “signal 0” ................................................................................. 10 1.4 ATP release from cells .................................................................................................. 11 1.5 Purinergic Signalling- An overview ............................................................................. 15 1.5.1 Discovery of Purinergic Signalling ................................................................................. 15 1.5.2 Classification and distribution of purinergic receptors ................................................... 15 1.5.3 Purinergic receptors in immune cells .............................................................................. 19 1.5.4 Role of ATP in short-term and long term (trophic) Purinergic Signalling ..................... 21 1.5.5 P2X receptors in macrophages and microglia ................................................................ 22 1.5.6 P2X7 receptor structure .................................................................................................. 24 1.5.7 Membrane pore formation by P2X7 receptors................................................................ 27 1.6 P2X7R in inflammation ..................................................................................................... 29 1.7 Pharmacological and therapeutic roles of P2X7 ................................................................ 31 1.8 Overall Aims ...................................................................................................................... 35 CHAPTER 2 ............................................................................................................................ 36 vii MATERIALS AND METHODS ............................................................................................. 36 Materials .................................................................................................................................. 36 2.1
Recommended publications
  • P2X7 Receptor Is Involved in Mitochondrial Dysfunction Induced by Extracellular Alpha Synuclein in Neuroblastoma SH-SY5Y Cells
    International Journal of Molecular Sciences Article P2X7 Receptor is Involved in Mitochondrial Dysfunction Induced by Extracellular Alpha Synuclein in Neuroblastoma SH-SY5Y Cells Anna Wilkaniec 1,* , Magdalena Cie´slik 1, Emilia Murawska 2, Lidia Babiec 1, Magdalena G ˛assowska-Dobrowolska 1 , Ewelina Pałasz 1, Henryk J˛e´sko 1 and Agata Adamczyk 1 1 Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences Pawi´nskiego5, 02-106 Warsaw, Poland; [email protected] (M.C.); [email protected] (L.B.); [email protected] (M.G.-D.); [email protected] (E.P.); [email protected] (H.J.); [email protected] (A.A.) 2 Department of Applied Microbiology, Institute of Microbiology, Warsaw University, Miecznikowa 1 Street, 02-096 Warsaw, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-22-608-66-00; Fax: +48-22-608-64-13 Received: 1 May 2020; Accepted: 29 May 2020; Published: 31 May 2020 Abstract: The purinergic P2X7 receptor (P2X7R) belongs to a family of trimeric ion channels that are gated by extracellular adenosine 50-triphosphate (ATP). Several studies have pointed to a role of P2X7R-dependent signalling in Parkinson’s disease (PD)-related neurodegeneration. The pathology of (PD) is characterized by the formation of insoluble alpha-synuclein (α-Syn) aggregates—Lewy bodies, but the mechanisms underlying α-Syn-induced dopaminergic cell death are still partially unclear. Our previous studies indicate that extracellular α-Syn directly interact with neuronal P2X7R and induces intracellular free calcium mobilization in neuronal cells. The main objective of this study was to examine the involvement of P2X7R receptor in α-Syn-induced mitochondrial dysfunction and cell death.
    [Show full text]
  • B2d782fbbf3b0194301a2dd0398
    International Journal of Molecular Sciences Review Structural and Functional Basis for Understanding the Biological Significance of P2X7 Receptor María Ángeles Martínez-Cuesta 1,2,* , María Amparo Blanch-Ruiz 1 , Raquel Ortega-Luna 1 , Ainhoa Sánchez-López 1 and Ángeles Álvarez 1,2,* 1 Departamento de Farmacología, Facultad de Medicina y Odontología, Universidad de Valencia, 46010 Valencia, Spain; [email protected] (M.A.B.-R.); [email protected] (R.O.-L.); [email protected] (A.S.-L.) 2 CIBERehd, Valencia, Spain * Correspondence: [email protected] (M.Á.M.-C.); [email protected] (Á.Á.); Tel.: +34-963983716 (M.Á.M.-C.); +34-963864898 (Á.Á.) Received: 16 October 2020; Accepted: 6 November 2020; Published: 10 November 2020 Abstract: The P2X7 receptor (P2X7R) possesses a unique structure associated to an as yet not fully understood mechanism of action that facilitates cell permeability to large ionic molecules through the receptor itself and/or nearby membrane proteins. High extracellular adenosine triphosphate (ATP) levels—inexistent in physiological conditions—are required for the receptor to be triggered and contribute to its role in cell damage signaling. The inconsistent data on its activation pathways and the few studies performed in natively expressed human P2X7R have led us to review the structure, activation pathways, and specific cellular location of P2X7R in order to analyze its biological relevance. The ATP-gated P2X7R is a homo-trimeric receptor channel that is occasionally hetero-trimeric and highly polymorphic, with at least nine human splice variants. It is localized predominantly in the cellular membrane and has a characteristic plasticity due to an extended C-termini, which confers it the capacity of interacting with membrane structural compounds and/or intracellular signaling messengers to mediate flexible transduction pathways.
    [Show full text]
  • Monocyte Activation and Membrane Disruption Mediated By
    MONOCYTE ACTIVATION AND MEMBRANE DISRUPTION MEDIATED BY HUMAN β-DEFENSIN-3 by ANTHONY BRUNO LIOI Submitted in partial fulfillment of the requirements For the degree of Doctor of Philosophy Dissertation Adviser: Dr. Scott Sieg Department of Molecular Biology and Microbiology Molecular Virology Program CASE WESTERN RESERVE UNIVERSITY January, 2014 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the dissertation of _______________________Anthony Bruno Lioi___________________________ candidate for the ______________Doctor of Philosophy_____________ degree *. (signed) ____________________David McDonald_________________________ (chair of the committee) _______________________Scott Sieg_____________________________ _______________________Michael Lederman______________________ _______________________George Dubyak_________________________ _______________________Aaron Weinberg________________________ _______________________Alan Levine___________________________ (date) _____11/20/2013_________ *We also certify that written approval has been obtained for any proprietary material contained therein. TABLE OF CONTENTS Table of Contents ................................................................................................................ i List of Tables ..................................................................................................................... v List of Figures ................................................................................................................... vi List of
    [Show full text]
  • Purinergic Signaling in Epilepsy François Rassendren, Etienne Audinat
    Purinergic signaling in epilepsy François Rassendren, Etienne Audinat To cite this version: François Rassendren, Etienne Audinat. Purinergic signaling in epilepsy. Journal of Neuroscience Research, Wiley, 2016, 94 (9), pp.781–93. 10.1002/jnr.23770. hal-01942455v2 HAL Id: hal-01942455 https://hal.archives-ouvertes.fr/hal-01942455v2 Submitted on 10 Jan 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Purinergic Signaling in Epilepsy François Rassendren1,2,3,4 and Etienne Audinat 5,6* 1CNRS, UMR 5203, Institut de Genomique Fonctionnelle,Montpellier, France 2INSERM, U1191, Montpellier, France 3Universite de Montpellier, UMR5203, Montpellier, France 4Labex ICST, Montpellier, France 5INSERM, U1128, Paris, France 6Laboratory of Neurophysiology and New Microscopies, Paris Descartes University,Paris, France Until recently, analysis of the mechanisms underlying epi- been dominated by a neurocentric view seeking to under- lepsy was centered on neuron dysfunctions. Accordingly, stand dysfunctions of synaptic and intrinsic membrane most of the available pharmacological
    [Show full text]
  • P2X7 Receptor Orchestrates Multiple Signalling Pathways Triggering Inflammation, Autophagy and Metabolic/Trophic Responses
    P2X7 receptor orchestrates multiple signalling pathways triggering inflammation, autophagy and metabolic/trophic responses. Running title: P2X7-activated Intracellular Pathways Authors: Elisa Orioli*, Elena De Marchi*, Anna Lisa Giuliani*, Elena Adinolfi*§ Affiliations: *Department of Morphology, Surgery and Experimental Medicine, Section of Experimental Pathology, Oncology and Biology, University of Ferrara, Ferrara, Italy §Corresponding author: Department of Morphology, Surgery and Experimental Medicine, Section of Experimental Pathology, Oncology and Biology, University of Ferrara, Via Luigi Borsari, 46, 44121, Ferrara, Italy; Tel: +39 (0)532 455445; Fax: +39 (0)532 455351: Email: [email protected] Abstract P2X7 receptor is an ion channel activated by extracellular adenosine trisphosphate (eATP) that attracted increasing attention for its role in immune reactions, neurobiology and oncology. As receptor for an extracellular ligand, P2X7 activates a series of intracellular signalling pathways mainly via alterations of the ion permeability, but also through formation of a large unselective pore and direct interaction with other proteins. Here we wish to give an overview on the main biochemical paths initiated by P2X7 activation by revising recent and established literature on P2X7-triggered signalling cascades leading to cell death, inflammatory and immune response activation, proliferation and metabolism modulation. We will focus on the well-known P2X7 inflammasome/NF-kB and pro-apoptotic networks but also cover P2X7-activated emerging autophagic, pyroptotic and proliferative-oncogenic pathways, like beclin-1/LC3-II, caspase-11, Akt and VEGF axes. Keywords: P2X7, ATP, autophagy, pyroptosis, IL-1β, NLRP3, Akt, VEGF Introduction P2X7 is a cation channel that, upon engagement by its natural ligand extracellular ATP (eATP), mediates cellular influx of sodium and calcium and efflux of potassium [1].
    [Show full text]
  • P2X7 on Mouse T Cells: One Channel, Many Functions Björn Rissiek, Friedrich Haag, Olivier Boyer, Friedrich Koch-Nolte, Sahil Adriouch
    P2X7 on Mouse T Cells: One Channel, Many Functions Björn Rissiek, Friedrich Haag, Olivier Boyer, Friedrich Koch-Nolte, Sahil Adriouch To cite this version: Björn Rissiek, Friedrich Haag, Olivier Boyer, Friedrich Koch-Nolte, Sahil Adriouch. P2X7 on Mouse T Cells: One Channel, Many Functions. Frontiers in Immunology, Frontiers, 2015, 6, pp.204. 10.3389/fimmu.2015.00204. hal-02376237 HAL Id: hal-02376237 https://hal-normandie-univ.archives-ouvertes.fr/hal-02376237 Submitted on 22 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. REVIEW published: 19 May 2015 doi: 10.3389/fimmu.2015.00204 P2X7 on mouse T cells: one channel, many functions Björn Rissiek 1,2*, Friedrich Haag 1, Olivier Boyer 3,4,5, Friedrich Koch-Nolte 1 and Sahil Adriouch 3,4* 1 Insitute of Immunology, University Medical Center, Hamburg, Germany, 2 Department of Neurology, University Medical Center, Hamburg, Germany, 3 U905, INSERM, Rouen, France, 4 Institute for Research and Innovation in Biomedicine (IRIB), Normandy University, Rouen, France 5 Department of Immunology, Rouen University Hospital, Rouen, France The P2X7 receptor is an adenosine triphosphate (ATP)-gated cation channel that is expressed by several cells of the immune system.
    [Show full text]
  • A Mechanism Based Approach to P2X7 Receptor Action
    Molecular Pharmacology Fast Forward. Published on February 8, 2019 as DOI: 10.1124/mol.118.115022 This article has not been copyedited and formatted. The final version may differ from this version. MOL # 115022 A mechanism based approach to P2X7 receptor action Mehmet Ugur and Özlem Ugur. M.U. : Ankara University Faculty of Medicine. Department of Biophysics. Ankara Turkey. O.U. : Ankara University Faculty of Medicine. Department of Pharmacology. Ankara Turkey. Downloaded from molpharm.aspetjournals.org at ASPET Journals on September 24, 2021 1 Molecular Pharmacology Fast Forward. Published on February 8, 2019 as DOI: 10.1124/mol.118.115022 This article has not been copyedited and formatted. The final version may differ from this version. MOL # 115022 Running title: P2X7 Receptor; beyond the pore formation. Corresponding Author: Mehmet Ugur M.D., PhD. Ankara University Faculty of Medicine Department of Biophysics, A. Adnan Saygun Cd. 06230 Ankara Turkey. 90 312 595 8172. [email protected] Number of pages: 29 Number of boxes: 1 Number of figures: 1 Downloaded from Number of references: 72 Number of words in the abstract: 250 molpharm.aspetjournals.org Number of words in the main text: 6236 Abbreviations: ATP: Adenosine triphosphate; NMDG: N_Methyl-D-glucamine; P2X2(4,7)R: P2X purinergic receptor 2(4,7); TRPV: transient receptor potential cation channel V; YoPro-1: 4-((3-methyl- 2(3H)-benzoxazolylidene)methyl)-1-(3-(trimethylammonio)propyl)quinolinium diiodide; ToTo-1: 1,1'- at ASPET Journals on September 24, 2021 (4,4,7,7-Tetramethyl-4,7-diazaundecamethylene)-bis-4-(3-methyl-2,3-dihydro-(benzo-1,3-thiazole)-2- methylidene)-quinolinium tetraiodide; LDH: Lactate dehydrogenase enzyme; HEK293: Human embryonic kidney cells; PLD: Phospho lipase D enzyme; PLA2 Phospho lipase A2 enzyme; PI4K; 1- phosphatidylinositol 4-kinase enzyme; PI3K: Phosphatidylinositol-4,5-bisphosphate 3-kinase; EMP- 1(2,3): Epithelial membrane protein 1(2,3); Ni-AchR: Nicotinic acethylcholine receptor.
    [Show full text]
  • To the Edge of Apoptotic Cell Death and Back
    UNIVERSITY OF CALIFORNIA SANTA BARBARA To the edge of apoptotic cell death and back A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Molecular, Cellular, and Developmental Biology by Christopher Michael Conner Committee Professor Denise Montell, Chair Professor Kathleen Foltz Professor Anthony De Tomaso Professor William Smith March 2021 The dissertation of Christopher Michael Conner is approved _____________________________________ Kathleen Foltz _____________________________________ Anthony De Tomaso _____________________________________ William Smith _____________________________________ Denise Montell, Committee Chair March 2021 Acknowledgements I want to thank everyone who helped me throughout my life and doctoral career with mentorship, scientific feedback, and friendship. Thank you, Denise. I am grateful to have done my doctorate research in your lab. Your mentorship and support for even my craziest hypotheses was essential to my research experience. I would like to thank my committee members, Kathy Foltz, Tony De Tomaso, and Bill Smith for their feedback and support. I want to further thank Kathy for being a second mentor to me and for your support at each critical step in my career. I want to thank every member of Denise’s lab. Special thanks to Varuzhan Balasanyan, Maddalena Nano, and Gongping Sun for mentorship, great collaboration and friendship. I also want to thank Jim Mondo, Austin Ding, Xiaoran Guo, Allison Gabbert, Morgan Mutch, Guangxia Miao, Joseph Campanale, Sreesankar Easwaran, Abhinava Mishra, Alba Torres, Lauren Penfield, Christina Herron, Yewubdar Argaw, Adishthi Guraz, Josephine Nguyen, Juhi Gor, Salina Manibog, Lisa Schwartz, and Jackie Chen for being great lab mates and creating the environment that made this work possible.
    [Show full text]
  • Determination of the Signaling Pathways and Subcellular Targets in Response to Nanosecond Pulsed Electric Fields Lynn Carr
    Determination of the signaling pathways and subcellular targets in response to nanosecond pulsed electric fields Lynn Carr To cite this version: Lynn Carr. Determination of the signaling pathways and subcellular targets in response to nanosecond pulsed electric fields. Human health and pathology. Université de Limoges, 2016. English. NNT: 2016LIMO0084. tel-01475003 HAL Id: tel-01475003 https://tel.archives-ouvertes.fr/tel-01475003 Submitted on 23 Feb 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Thèse de doctorat Université de Limoges École Doctorale Bio-Santé (ED 524) Faculté des Sciences et Techniques - XLIM Equipe BioEM Thèse pour obtenir le grade de Docteur de l’Université de Limoges Discipline : Biologie, médecine et santé Présentée et soutenue par Lynn Carr Le 15 décembre 2016 Determination of the signaling pathways and subcellular targets in response to nanosecond pulsed electric fields Thèse dirigée par Rodney O’Connor et co-dirigée par Sylvia M. Bardet JURY : Rapporteurs : Mme. Marie Pierre ROLS Directeur de Recherche CNRS Université de Toulouse – Laboratoire IPBS-CNRS UMR 5089 M. Michal CIFRA Professeur Czech Academy of Sciences – Bioelectrodynamics Research Team – Institute of Photonics and Electronics, Prague Examinateurs : M.
    [Show full text]
  • Cancer Metabostemness and Metabolic Reprogramming Via P2X7 Receptor
    cells Review Cancer Metabostemness and Metabolic Reprogramming via P2X7 Receptor Izadora Lorrany Alves Rabelo 1, Vanessa Fernandes Arnaud-Sampaio 1, Elena Adinolfi 2, Henning Ulrich 1 and Claudiana Lameu 1,* 1 Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-000, Brazil; [email protected] (I.L.A.R.); [email protected] (V.F.A.-S.); [email protected] (H.U.) 2 Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; elena.adinolfi@unife.it * Correspondence: [email protected]; Tel.: +55-11-3091-9181; Fax: +55-11-3815-5579 Abstract: The heterogeneity of tumor cell mass and the plasticity of cancer cell phenotypes in solid tumors allow for the insurgence of resistant and metastatic cells, responsible for cancer patients’ clinical management’s main challenges. Among several factors that are responsible for increased cancer aggression, metabolic reprogramming is recently emerging as an ultimate cancer hallmark, as it is central for cancer cell survival and self-renewal, metastasis and chemoresistance. The P2X7 receptor, whose expression is upregulated in many solid and hematological malignancies, is also emerging as a good candidate in cancer metabolic reprogramming and the regulation of stem cell proliferation and differentiation. Metabostemness refers to the metabolic reprogramming of cancer cells toward less differentiated (CSCs) cellular states, and we believe that there is a strong correlation between metabostemness and P2X7 receptor functions in oncogenic processes. Here, we summarize Citation: Rabelo, I.L.A.; Arnaud-Sampaio, V.F.; Adinolfi, E.; important aspects of P2X7 receptor functions in normal and tumor tissues as well as essential Ulrich, H.; Lameu, C.
    [Show full text]
  • Positive Allosteric Modulation of P2X7 Promotes Apoptotic Cell Death Over
    Bidula et al. Cell Death and Disease (2019) 10:882 https://doi.org/10.1038/s41419-019-2110-3 Cell Death & Disease ARTICLE Open Access Positive allosteric modulation of P2X7 promotes apoptotic cell death over lytic cell death responses in macrophages Stefan Bidula1, Kshitija Dhuna2, Ray Helliwell2 and Leanne Stokes 1 Abstract P2X7 is an ATP-gated ion channel that is highly expressed by leukocytes, such as macrophages. Here, P2X7 has been demonstrated to be involved in the regulation of various cell death pathways; including apoptosis, pyroptosis, necrosis, and autophagy. However, cell death induction via P2X7 is complex and is reliant upon the nature of the stimulus, the duration of the stimulus, and the cell type investigated. Previous reports state that high extracellular ATP concentrations promote osmotic lysis, but whether positive allosteric modulation of P2X7 in the presence of lower concentrations of ATP condemns cells to the same fate is unknown. In this study, we compared cell death induced by high ATP concentrations, to cell death induced by compound K, a recently identified and potent positive allosteric modulator of P2X7. Based on our observations, we propose that high ATP concentrations induce early cell swelling, loss of mitochondrial membrane potential, plasma membrane rupture, and LDH release. Conversely, positive allosteric modulation of P2X7 primarily promotes an intrinsic apoptosis pathway. This was characterised by an increase in mitochondrial Ca2+, accelerated production of mitochondrial ROS, loss of mitochondrial membrane permeability in a Bax-dependent manner, the potential involvement of caspase-1, and caspase-3, and significantly accelerated kinetics of caspase-3 activation. This study highlights the ability of positive allosteric modulators to calibrate P2X7-dependent 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; cell death pathways and may have important implications in modulating the antimicrobial immune response and in the resolution of inflammation.
    [Show full text]
  • GAEL) – Hybrids
    Design, Synthesis and Antitumor Properties of Glycosylated Antitumor Ether Lipid (GAEL) – Hybrids By Temilolu Idowu A thesis submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfillment of the requirements of the degree of Master of Science Department of Chemistry University of Manitoba Winnipeg, Manitoba, Canada Copyright © 2015 by Temilolu Idowu To my cute little niece, Bliss Temitope Adedeji, that came just at the nick of time. ii ABSTRACT The development of resistance to apoptotic pathways by cancer cells is one of the great impediments to the successful use of chemotherapeutic agents. The development of resistance may be attributed to the role of cancer stem cells in the progression of this disease. One approach to combat drug resistance involves the use of drug combinations that impact multiple targets simultaneously. Although this is believed to be better at controlling complex disease systems, it has often proven to be of limited benefits in terms of overall therapeutic outcomes in cancer treatment. Glycosylated antitumor ether lipids (GAELs) are an emerging class of novel anticancer molecules that is being investigated as potential anticancer drugs. Interest in this class of drug is based on their ability to kill cancer stem cells as well as their non-apoptotic mechanism of action. This provides new opportunities to manipulate cell death in a therapeutic context, especially the renewed ability to kill apoptosis-resistant cancer cells. We therefore hypothesized that hybrid molecules that combine apoptosis-dependent and apoptosis-independent mode of actions in a single molecule may lead to better therapeutic outcomes. We also posited that the amphiphilic nature of GAELs could be modulated and fine-tuned to give a more potent analog.
    [Show full text]