Mitigating Asymmetric Read and Write Costs in Cuckoo Hashing for Storage Systems Yuanyuan Sun, Yu Hua, Zhangyu Chen, and Yuncheng Guo, Huazhong University of Science and Technology https://www.usenix.org/conference/atc19/presentation/sun This paper is included in the Proceedings of the 2019 USENIX Annual Technical Conference. July 10–12, 2019 • Renton, WA, USA ISBN 978-1-939133-03-8 Open access to the Proceedings of the 2019 USENIX Annual Technical Conference is sponsored by USENIX. Mitigating Asymmetric Read and Write Costs in Cuckoo Hashing for Storage Systems Yuanyuan Sun, Yu Hua*, Zhangyu Chen, Yuncheng Guo Wuhan National Laboratory for Optoelectronics, School of Computer Huazhong University of Science and Technology *Corresponding Author: Yu Hua (
[email protected]) Abstract The explosion of data volume leads to nontrivial challenge on storage systems, especially on the support for query ser- In storage systems, cuckoo hash tables have been widely vices [8, 12, 49]. Moreover, write-heavy workloads further used to support fast query services. For a read, the cuckoo exacerbate the storage performance. Much attention has hashing delivers real-time access with O(1) lookup com- been paid to alleviate the pressure on storage systems, which plexity via open-addressing approach. For a write, most demands the support of low-latency and high-throughput concurrent cuckoo hash tables fail to efficiently address the queries, such as top-k query processing [30, 33], optimizing problem of endless loops during item insertion due to the big data queries via automated program reasoning [42], of- essential property of hash collisions. The asymmetric fea- fering practical private queries on public data [47], and opti- ture of cuckoo hashing exhibits fast-read-slow-write perfor- mizing search performance within memory hierarchy [9].