EEG Investigation of Mirror-Neuron Activity Before and After Conscious Perception of Emotion in Faces Katie Singsank [email protected]
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mirror Neuron System and Social Cognition Spring Quarter 2017 Tuth 11:00 - 12:20 Pm CSB 005
Department of Cognitive Science 0515 University of California, San Diego (858) 534-6771 La Jolla, CA 92093 COGS171: Mirror Neuron System and Social Cognition Spring Quarter 2017 TuTH 11:00 - 12:20 pm CSB 005 Instructor: J. A. Pineda, Ph.D. TA: TBN [email protected] Phone: 858-534-9754 SeCtion: F 9-9:50 am CSB 005 OffiCe Hours: M 9-11 am, CSB 107 (or by appointment) This class will examine the neuroanatomy, physiology, and funCtional Correlates of the human mirror neuron system and its putative role in soCial Cognition, e.g., aCtion understanding, empathy, and theory of mind. We will examine the developmental, neuroimaging, electrophysiologiCal, as well as clinical evidence for and against this hypothesis. All students will: 1. Write a CritiCal review or “thought” essay (no longer than 1 page) on the weeks labeled with an asterisk (Weeks 2,3,4,6,8,10) based on one of the required readings that week. See Class website (or ask instruCtor) for a sample of a CritiCal review. Essays are due on Tuesday of the assigned week - for a total of 6 essays, although only 5 will count towards grade (25%). 2. You will also be responsible for: • a term paper due at end of class (8-10 pages) on an issue relevant to mirroring and social cognition. You will work on this as a group of 3-4 students. See Class website for instruCtions on structure of proposal. (15%) • an oral presentation of the term paper (10-15 minutes). (10%) 3. Take the midterm (25%) and final (25%). -
The Mirror Neuron System: How Cognitive Functions Emerge from Motor Organization Leonardo Fogassi
The mirror neuron system: How cognitive functions emerge from motor organization Leonardo Fogassi To cite this version: Leonardo Fogassi. The mirror neuron system: How cognitive functions emerge from motor or- ganization. Journal of Economic Behavior and Organization, Elsevier, 2010, 77 (1), pp.66. 10.1016/j.jebo.2010.04.009. hal-00921186 HAL Id: hal-00921186 https://hal.archives-ouvertes.fr/hal-00921186 Submitted on 20 Dec 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript Title: The mirror neuron system: How cognitive functions emerge from motor organization Author: Leonardo Fogassi PII: S0167-2681(10)00177-0 DOI: doi:10.1016/j.jebo.2010.04.009 Reference: JEBO 2604 To appear in: Journal of Economic Behavior & Organization Received date: 26-7-2009 Revised date: 19-4-2010 Accepted date: 20-4-2010 Please cite this article as: Fogassi, L., The mirror neuron system: How cognitive functions emerge from motor organization, Journal of Economic Behavior and Organization (2010), doi:10.1016/j.jebo.2010.04.009 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. -
Research on Light and Sound
Research on light and sound Welcome! I’ve spent the last five years reading all the available research on mind machines – and now I’ve pulled together the most accessible of this information as a way to encourage you to try this technology yourself. Mind machines are referred to in these reports in a number of ways: • BWS (Brainwave Synchronisers) • LS (light and sound devices) • AVS (audio visual stimulation) • Photic stimulation All refer to the same technology which is built into our range of mind machines. All our mind machines can generate all the frequencies mentioned in these reports. I’ve condensed some of the reports for readability – and because some of the data is repeated. For example I’ve taken out three paragraphs from the extract from Megabrain Power as the original full reports are included here. I’ve had the very good fortune to spend time with many of the people mentioned in these pages: Robert Austin, Tom Budzynski, Michael Hutchison, Julian Isaacs, Harold Russell and David Siever – all thorough and committed researchers at the cutting edge of peak performance technology. Have a great read. You don’t need to understand it all. I just hope you read enough to see for yourself that mind machines really do work, and you’re encouraged to try a unit in your own home, using our 100% money back satisfaction guarantee. Chris Payne, Managing Director, LifeTools Slow wave photic stimulation in the treatment of headache A Preliminary Report by Glen D Solomon, MD (printed in Headache, the official publication of the American Association for the Study of Headache, August 16, 1985) Acute muscle contraction headache Fifteen patients, 10 female and five male, aged 21 to 41 years (mean 33.4 years), were treated with slow wave photic stimulation. -
Motor Development Research: II
Motor development research: II. The first two decades of the 21st century shaping our future Jill Whitall1, Farid Bardid2,3, Nancy Getchell4, Melissa Pangelinan5, Leah E. Robinson6,7, Nadja Schott8, Jane E. Clark9,10 1 Department of Physical Therapy & Rehabilitation Science, University of Maryland, USA 2 School of Education, University of Strathclyde, UK 3 Department of Movement and Sports Sciences, Ghent University, Belgium 4 Department of Kinesiology & Applied Physiology, University of Delaware, USA 5 School of Kinesiology, College of Education, Auburn University, USA 6 School of Kinesiology, University of Michigan, USA 7 Center for Human Growth and Development, University of Michigan, USA 8 Institute of Sport & Exercise Science, University of Stuttgart, Germany 9 Department of Kinesiology, School of Public Health, University of Maryland, USA 10 Neuroscience and Cognitive Science Program, University of Maryland, USA Corresponding author: Jill Whitall E-mail: [email protected] This is the accepted manuscript version of the study cited as: Whitall, J., Bardid, F., Getchell, N., Pangelinan, M., Robinson, L. E., Schott, N., & Clark, J. E. (2020). Motor development research: II. The first two decades of the 21st century shaping our future. Journal of Motor Learning and Development, 8(2), 363-390. https://doi.org/10.1123/jmld.2020-0007 This paper is not the copy of record and may not exactly replicate the authoritative document published in Journal of Motor Learning and Development. The final published version is available on the journal website. Author note: Authorship order is alphabetical except the lead author is first and the senior author is last. Abstract In Part I of this series (Whitall et al., this issue), we looked back at the 20th century and re- examined the history of Motor Development research described in Clark & Whitall’s 1989 paper “What is Motor Development? The Lessons of History”. -
Empathy, Mirror Neurons and SYNC
Mind Soc (2016) 15:1–25 DOI 10.1007/s11299-014-0160-x Empathy, mirror neurons and SYNC Ryszard Praszkier Received: 5 March 2014 / Accepted: 25 November 2014 / Published online: 14 December 2014 Ó The Author(s) 2014. This article is published with open access at Springerlink.com Abstract This article explains how people synchronize their thoughts through empathetic relationships and points out the elementary neuronal mechanisms orchestrating this process. The many dimensions of empathy are discussed, as is the manner by which empathy affects health and disorders. A case study of teaching children empathy, with positive results, is presented. Mirror neurons, the recently discovered mechanism underlying empathy, are characterized, followed by a theory of brain-to-brain coupling. This neuro-tuning, seen as a kind of synchronization (SYNC) between brains and between individuals, takes various forms, including frequency aspects of language use and the understanding that develops regardless of the difference in spoken tongues. Going beyond individual- to-individual empathy and SYNC, the article explores the phenomenon of syn- chronization in groups and points out how synchronization increases group cooperation and performance. Keywords Empathy Á Mirror neurons Á Synchronization Á Social SYNC Á Embodied simulation Á Neuro-synchronization 1 Introduction We sometimes feel as if we just resonate with something or someone, and this feeling seems far beyond mere intellectual cognition. It happens in various situations, for example while watching a movie or connecting with people or groups. What is the mechanism of this ‘‘resonance’’? Let’s take the example of watching and feeling a film, as movies can affect us deeply, far more than we might realize at the time. -
Electrophysiologic Monitoring in Neurointensive Care
Ovid: Electrophysiologic monitoring in neurointensive care. Main Search Page Ask A LibrarianDisplay Knowledge BaseHelpLogoff Full Text Save Article TextEmail Article TextPrint Preview Electrophysiologic monitoring in neurointensive care Procaccio, Francesco MD*†; Polo, Alberto MD*; Lanteri, Paola MD†; Sala, ISSN: Author(s): Francesco MD† 1070- 5295 Issue: Volume 7(2), April 2001, pp 74-80 Accession: Publication Type: [Neuroscience] 00075198- Publisher: © 2001 Lippincott Williams & Wilkins, Inc. 200104000- University and City Hospital Neuroanesthesia and Intensive Care, Department 00004 of Neurological Sciences and Vision, Divisions of *Neurology and Full †Neurosurgery, Verona, Italy. Institution(s): Text Correspondence to Francesco Procaccio, MD, Neuroanesthesia and Intensive (PDF) Care, University and City Hospital, Pz Stefani, 1, 37124 Verona, Italy; e-mail: 69 K [email protected] Email Jumpstart Table of Contents: Find ≪ Neurologic complications in intensive care. Citing ≫ Pediatric neurologic emergencies. Articles ≪ Abstract Table Links of Cumulative evidence of potential benefits of Contents Abstract electroencephalography (EEG) and evoked potentials in About Complete Reference the management of patients with acute cerebral this ExternalResolverBasic damage has been confirmed. Continuous EEG Journal Outline monitoring is the best method for detecting ≫ nonconvulsive seizures and is strongly recommended for the treatment of status epilepticus. Continuously displayed, ● Abstract validated quantitative EEG may facilitate early detection -
Guidelines for EEG Reporting William O
GUIDELINE American Clinical Neurophysiology Society Guideline 7: Guidelines for EEG Reporting William O. Tatum,* Selioutski Olga,† Juan G. Ochoa,‡ Heidi Munger Clary,§ Janna Cheek,║ Frank Drislane,¶ and Tammy N. Tsuchida# *Mayo Clinic College of Medicine, Mayo Clinic, Jacksonville, Florida, U.S.A.; †University of Rochester, Rochester, New York, U.S.A.; ‡University of South Alabama, Mobile, Alabama, U.S.A.; §Wake Forest University, Winston Salem, North Carolina, U.S.A.; ║Tulsa, Oklahoma, U.S.A.; ¶Harvard University, Boston, Massachusetts, U.S.A.; and #George Washington University, Washington, DC, U.S.A. Summary: This EEG Guideline incorporates the practice of parameters and type of EEG recording. Sleep feature structuring a report of results obtained during routine adult documentation is also expanded upon. More descriptive terms electroencephalography. It is intended to reflect one of the are included for background features and interictal discharges current practices in reporting an EEG and serves as a revision that are concordant with efforts to standardize terminology. In of the previous guideline entitled “Writing an EEG Report.” The the clinical correlation section, examples of common clinical goal of this guideline is not only to convey clinically relevant scenarios are now provided that encourages uniformity in information, but also to improve interrater reliability for reporting. Including digital samples of abnormal waveforms is clinical and research use by standardizing the format of EEG now readily available with current EEG recording systems and reports. With this in mind, there is expanded documentation of may be beneficial in augmenting reports when controversial the patient history to include more relevant clinical waveforms or important features are encountered. -
EEG Glossary
EEG Glossary The first attempt to systematically propose a syllabus for Activation procedure Any procedure designed to modu- electroencephalographers was made by O’Leary and Knott late EEG activity, for instance to enhance physiologi- who in 1955 published in the EEG Journal “Some Minimal cal waveforms or elicit abnormal paroxysmal activity. Essentials for Clinical Electroencephalographers” [1]. In the Examples include eye closing, hyperventilation, photic following decades, with the EEG being increasingly used in stimulation, natural or drug-induced sleep, sensory stimu- the experimental and clinical field, need to adopt a language lation (acoustic, somatosensory, or pain). as common as possible between various laboratories world- Activity, EEG An EEG wave or sequence of waves of wide became even more pressing. In fact, the multiplicity of cerebral origin. terms generated (and sometimes still generates) confusion Alpha band Frequency band of 8–13 Hz inclusive. Greek and misinterpretations, promoting misdiagnosis and making letter: α. it difficult to compare data between different laboratories. Alpha rhythm Rhythm at 8–13 Hz inclusive occurring To overcome this risk, in 1974 “A Glossary of Terms,” most during wakefulness over the posterior regions of the head, commonly used by “Clinical Electroencephalographers,” was generally with maximum amplitudes over the occipital published in the EEG Journal; this glossary was the result of areas. Amplitude varies but is mostly below 50 μV in the the work of a group of experts from the International Federation adult, but often much higher in children. Best seen with of Clinical Neurophysiology (IFCN) led by Chatrian [2]. the eyes closed, during physical relaxation and relative Thanks to this document, it was for the first time officially mental inactivity. -
Mirror Neurons and Their Reflections
Open Access Library Journal Mirror Neurons and Their Reflections Mehmet Tugrul Cabioglu1, Sevgin Ozlem Iseri2 1Department of Physiology, Faculty of Medicine, Baskent University, Ankara, Turkey 2Department of Clinical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Turkey Received 23 October 2015; accepted 7 November 2015; published 12 November 2015 Copyright © 2015 by authors and OALib. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract Human mirror neuron system is believed to provide the basic mechanism for social cognition. Mirror neurons were first discovered in 1990s in the premotor area (F5) of macaque monkeys. Besides the premotor area, mirror neuron systems, having different functions depending on their locations, are found in various cortical areas. In addition, the importance of cingulate cortex in mother-infant relationship is clearly emphasized in the literature. Functional magnetic resonance imaging, electroencephalography, transcortical magnetic stimulation are the modalities used to evaluate the, activity of mirror neurons; for instance, mu wave suppression in electroencephalo- graphy recordings is considered as an evidence of mirror neuron activity. Mirror neurons have very important functions such as language processing, comprehension, learning, social interaction and empathy. For example, autistic individuals have less mirror neuron activity; therefore, it is thought that they have less ability of empathy. Responses of mirror neurons to object-directed and non-object directed actions are different and non-object directed action is required for the activa- tion of mirror neurons. Previous researchers find significantly more suppression during the ob- servation of object-directed movements as compared to mimed actions. -
Clinical Neurophysiology (CNP) Section Resident Core Curriculum
American Academy of Neurology Clinical Neurophysiology (CNP) Section Resident Core Curriculum 9/7/01 Definition of the Subspecialty of Clinical Neurophysiology The subspecialty of Clinical Neurophysiology involves the assessment of function of the central and peripheral nervous system for the purpose of diagnosing and treatment of neurologic disorders. The CNP procedures commonly used include EEG, EMG, evoked potentials, polysomnography, epilepsy monitoring, intraoperative monitoring, evaluation of movement disorders, and autonomic nervous system testing. The use of CNP procedures requires an understanding of neurophysiology, clinical neurology, and the findings that can occur in various neurologic disorders. The following are the recommended CORE curriculum for residents re CNP. Basic Neurophysiology: Membrane properties of nerve and muscle potentials (resting, action, synaptic, generator), ion channels, synaptic transmission, physiologic basis of EEG, EMG, evoked potentials, sleep mechanisms, autonomic disorders, epilepsy, neuromuscular diseases, and movement disorders Anatomic Substrates of EEG, EMG, evoked potentials, sleep and autonomic activity Indications: Know the indications for and the interpretation of the various CNP tests in the context of the clinical problem. EEG: 1. Recognize normal EEG patterns of infants, children, and adults 2. Recognize abnormal EEG patterns and their clinical significance, including epileptiform patterns, coma patterns, periodic patterns, and the EEG patterns seen with various focal and diffuse neurologic and systemic disorders. 3. Know the EEG criteria for recording in suspected brain death EMG: 1. Know the normal parameters of nerve conduction studies and needle exam of infants, children, and adults 2. Know the abnormal patterns of nerve conduction studies and needle exam and the clinical correlates with various diseases that affect the neuromuscular and peripheral nervous system Evoked Potential Studies 1. -
Social Cognition and the Mirror Neuron System of the Brain
Motivating Questions Social Cognition and the Mirror How do our brains perceive the Neuron System of the Brain mental states of others despite their inaccessibility? How do we understand the actions, emotions and the intentions of others? Rationally? Intuitively? Jaime A. Pineda, Ph.D. Cognitive Neuroscience Laboratory How do we understand first- COGS1 class and third-person experiences? Classic Explanation A Different Perspective Theory-Theory (argument from analogy; disembodied Simulation Theory knowledge; visual hypothesis) (Direct-matching hypothesis; embodied knowledge) Map visual information onto Involves striate, extrastriate, motor representations of the inferotemporal lobe and same action superior temporal sulcus, among others Mirroring systems bridges between perception and action that allow for simulation Mirror neurons EEG Mu rhythms A Different Perspective The Mirror Neuron System Simulation Theory (Direct-matching hypothesis; embodied knowledge) Map visual information onto motor representations of the same action Mirroring systems bridges between perception and action that allow for simulation Mirror neurons EEG Mu rhythms Iacoboni and Dapretto, Nature Reviews, 2006,7:942-951 1 Biological Motion Biological Motion Perception: Monkeys Visual system's ability to Gender recover object information Activity engaged in Perret and colleagues from sparse input Emotional state (1989; 1990; 1994) Cells in superior temporal polysensory area (STPa) of the macaque temporal cortex appear sensitive to biological motion Oram & Perrett, J. Cog. Neurosci., 1994, 6(2), 99-116 Biological Motion Perception: Humans Brain Circuit for Social Perception (SP) An area in the superior • SP is processing of temporal sulcus (STS) in information that results in humans responds to the accurate analysis of biological motion the intentions of others • STS involved in the Other areas do as well, processing of a variety of including frontal cortex, social signals SMA, insula, thalamus, amygdala Grossman et al. -
EEG Evidence for Mirror Neuron Activity During the Observation of Human and Robot Actions: Toward an Analysis of the Human Qualities of Interactive Robots
ARTICLE IN PRESS Neurocomputing 70 (2007) 2194–2203 www.elsevier.com/locate/neucom EEG evidence for mirror neuron activity during the observation of human and robot actions: Toward an analysis of the human qualities of interactive robots Lindsay M. Obermana,b,Ã, Joseph P. McCleeryb, Vilayanur S. Ramachandrana,b,c, Jaime A. Pinedac,d aCenter for Brain and Cognition, UC San Diego, La Jolla, CA 92093-0109, USA bDepartment of Psychology, UC San Diego, La Jolla, CA 92093-0109, USA cDepartment of Neurosciences, UC San Diego, La Jolla, CA 92093-0662, USA dDepartment of Cognitive Science, UC San Diego, La Jolla, CA 92093-0515, USA Received 4 February 2005; received in revised form 17 January 2006; accepted 1 February 2006 Available online 2 January 2007 Abstract The current study investigated the properties of stimuli that lead to the activation of the human mirror neuron system, with an emphasis on those that are critically relevant for the perception of humanoid robots. Results suggest that robot actions, even those without objects, may activate the human mirror neuron system. Additionally, both volitional and nonvolitional human actions also appear to activate the mirror neuron system to relatively the same degree. Results from the current studies leave open the opportunity to use mirror neuron activation as a ‘Turing test’ for the development of truly humanoid robots. r 2007 Elsevier B.V. All rights reserved. Keywords: Mirror neuron; Humanoid; Anthropomorphic; Robot; Volition; Action observation; Social interaction 1. Introduction observation/execution network known as the ‘mirror neuron’ system. A great deal of robotics research has recently investi- Single unit studies indicate that neurons in area F5 of the gated issues surrounding the creation of robots that are macaque premotor cortex, which are indistinguishable able to socially interact with humans and other robots from neighboring neurons in terms of their motor proper- [7,8,36].