Inchi, the IUPAC International Chemical Identifier Stephen R Heller1*, Alan Mcnaught2, Igor Pletnev3, Stephen Stein1 and Dmitrii Tchekhovskoi1

Total Page:16

File Type:pdf, Size:1020Kb

Inchi, the IUPAC International Chemical Identifier Stephen R Heller1*, Alan Mcnaught2, Igor Pletnev3, Stephen Stein1 and Dmitrii Tchekhovskoi1 Heller et al. Journal of Cheminformatics (2015) 7:23 DOI 10.1186/s13321-015-0068-4 RESEARCH ARTICLE Open Access InChI, the IUPAC International Chemical Identifier Stephen R Heller1*, Alan McNaught2, Igor Pletnev3, Stephen Stein1 and Dmitrii Tchekhovskoi1 Abstract This paper documents the design, layout and algorithms of the IUPAC International Chemical Identifier, InChI. Keywords: InChI, InChIKey, Chemical structure linear notation, Chemical identifier, IUPAC standard Introduction algorithms and implementation details are briefly dis- InChI is the International Chemical Identifier developed cussed. Finally, we provide information about InChI under the auspices of IUPAC, the International Union of Software, licensing, known problems/limitations, and fu- Pure and Applied Chemistry [1], with principal contribu- ture prospects for InChI. tions from NIST (the U.S. National Institute of Standards and Technology [2]) and the InChI Trust [3]. Background This paper documents the design, layout and algo- A chemical identifier is a text label that denotes a chem- rithms of InChI. It is intended to provide a reasonably ical substancea. These labels are of the utmost importance detailed description without being overlong for a journal as they provide a convenient means of comparing and article. For a briefer introduction, which also provides distinguishing chemicals in a variety of applications, from more detail on historical and organizational matters, the the design of new materials to legal and regulatory issues. reader is referred to a recent paper by the same authors The main requirement for an identifier is that the label [4]. For a more technical description, one may consult must be unambiguous: the same label must always refer to the InChI Technical Manual [5] and the free source the same substance, and no other substance may have this codes of the InChI software, which are available from label. Two different substances must have different labels. the InChI Trust [6]. Note that an identifier may not be strictly unique in The paper is organized as follows. First, we discuss the the sense that the same substance may be, on a case-by- general concepts associated with chemical identifiers. case basis, denoted by several distinct synonymical labels Then we outline the design goals of InChI and our gen- (provided that the lists of synonyms for different sub- eral approach, focussing on the InChI model of chemical stances do not overlap). An obvious example is given by structure and the hierarchical layered structure of the IUPAC chemical nomenclature that allows one to pro- Identifier; the concept of Standard InChI is introduced. duce and use different names for a single compound; This is followed by a detailed description of each of the nevertheless, all these names unambigously identify the possible major InChI layers, accounting for molecular compound. Though not necessary, strict uniqueness, connectivity, charge, stereochemistry, isotopic enrich- which is always assigning a single label to a particular ment, position of hydrogen atoms and bonding in metal substance, is highly convenient and very desirable. compounds, and the sublayers associated with these The concept of “chemical identifier” heavily relies on layers. We then describe the workflow of InChI gener- the concepts of chemical substance and chemical identity. ation (normalization, canonicalization, and serialization The IUPAC Compendium of Chemical Terminology, the stages), as well as generation of the compact hashed “Gold Book”,defines“chemical substance” as “Matter of code derived from InChI (InChIKey); the related constant composition best characterized by the entities (molecules, formula units, atoms) it is composed of. Phys- * Correspondence: [email protected] ical properties such as density, refractive index, electric 1Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD 20899-8362, USA conductivity, melting point etc. characterize the chemical Full list of author information is available at the end of the article substance” [7]. As this definition implies, identity of a © 2015 Heller et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http:// creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Heller et al. Journal of Cheminformatics (2015) 7:23 Page 2 of 34 chemical substance is determined by its constituent units their associated registry is a decentralized compendium of and properties. It is noteworthy that even at this highly handbooks and nomenclature rules. In these cases, there is general level, this consideration is somewhat restrictive. no algorithm for direct conversion of molecular structures For example, the concept of “chemical substance” is not to these identifying labels). applicable to material that is not of constant composition Despite the widespread use of registry-lookup authority- (e.g., oil). This consideration is also somewhat counter- assigned chemical identifiers, these types of identifier have intuitive, for example, as concerns aggregate states, poly- a number of substantial drawbacks. For example, even the morphs, etc. Thus, most chemists would agree that largest registry cannot include all known chemical sub- “water” is a chemical substance, that may appear as steam, stances. Furthermore, no registry can include a substance ice and liquid water, and that all three should have the that has not previously existed and for which a hypothe- same chemical identifier – despite the fact that each may sized structure is drawn or computed. Furthermore, some be isolated as a different state of matter, placed in a test authorities may impose restricted access and/or require tube or stored in a bottle. In other words, the “identifying payment for assigning labels and even for lookup in their power” of a chemical identifier is inherently limited. registries. The oldest known chemical identifiers are words of The alternative to authority-assigned is structure-based natural languages describing common chemicals with chemical identifiers. These are derived from molecular terms like “water”, “iron” or “table salt”; they are trivial structural formulae, either drawn in print form or pre- names, in modern nomenclature. Notably, trivial names sented in digital form. When the algorithm for an identi- exemplify the principle that a chemical identifier is not fier’s derivation and/or a related utility tool becomes necessarily related to molecular structure. The identity publicly available, anyone has the ability to produce the of chemical substances denoted by trivial names was his- identifier for a given structure. (Note that structure- torically determined by a set of characteristic physical based identifiers still may require registry lookup to re- and chemical properties, long before exact structures cover the structure from the label). were resolved, or even before the very concept of mo- The earliest examples of structure-based identifiers are lecular structure evolved in the second half of the 19th the systematic names of classical chemical nomencla- century. Of course, today’s trivial names are associated tures established either by IUPAC or by CAS. However, with chemical stuctures (yet the structures may not be the nomenclature rules developed by these authorities fully defined, as is common for natural products). are not easy to learn and practice, even for professional A trivial name is an example of a registry-lookup chemists. Misinterpretation may result in ambiguous chemical identifier: it provides a unique label for the naming. Finally, and most importantly, systematic chem- named substance but the label itself says nothing (or ical names are not well suited for digital representations little) about the characteristic properties and structure. and the internet: they tend to be too long and contain Such data are stored in electronic or printed registries non-alphanumeric characters (i.e., other than Latin let- (handbooks) that uniquely associate the label with the ters and digits). As an example, Figure 1 gives the properties/structure. Retrieving reference data requires a IUPAC systematic chemical name for the marine toxin registry lookup. palytoxin [14]; this is compared with the much shorter More recent examples of registry-lookup identifiers InChIKey (discussed later). are those associated with large printed or electronic col- Since the second half of the 20th century, chemical lections of chemical structures and properties – Beilstein structure linear notations have become well established and Gmelin Registry numbers [8], Chemical Abstracts as alternative to classical nomenclature. These textual Service (CAS) Registry numbers by the American labels are derived using specific algorithms from mo- Chemical Society [9], EC numbers from the European lecular structural formulae. They serve as handy textual Community Inventory [10], CID and SID numbers substitutes for structural formulae, being much more assigned by PubChem [11], and identifiers assigned by convenient in database and internet applications. Exam- ChEMBL [12], ChemSpider [13], etc. ples are the pioneering Wiswesser line-formula notation, Note that all the above registry-lookup identifiers
Recommended publications
  • Third-Generation Synchrotron X-Ray Diffraction of 6- M Crystal of Raite, Na
    Proc. Natl. Acad. Sci. USA Vol. 94, pp. 12263–12267, November 1997 Geology Third-generation synchrotron x-ray diffraction of 6-mm crystal of raite, 'Na3Mn3Ti0.25Si8O20(OH)2z10H2O, opens up new chemistry and physics of low-temperature minerals (crystal structureymicrocrystalyphyllosilicate) JOSEPH J. PLUTH*, JOSEPH V. SMITH*†,DMITRY Y. PUSHCHAROVSKY‡,EUGENII I. SEMENOV§,ANDREAS BRAM¶, CHRISTIAN RIEKEL¶,HANS-PETER WEBER¶, AND ROBERT W. BROACHi *Department of Geophysical Sciences, Center for Advanced Radiation Sources, GeologicalySoilyEnvironmental, and Materials Research Science and Engineering Center, 5734 South Ellis Avenue, University of Chicago, Chicago, IL 60637; ‡Department of Geology, Moscow State University, Moscow, 119899, Russia; §Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, 117071, Russia; ¶European Synchrotron Radiation Facility, BP 220, 38043, Grenoble, France; and UOP Research Center, Des Plaines, IL 60017 Contributed by Joseph V. Smith, September 3, 1997 ABSTRACT The crystal structure of raite was solved and the energy and metal industries, hydrology, and geobiology. refined from data collected at Beamline Insertion Device 13 at Raite lies in the chemical cooling sequence of exotic hyperal- the European Synchrotron Radiation Facility, using a 3 3 3 3 kaline rocks of the Kola Peninsula, Russia, and the 65 mm single crystal. The refined lattice constants of the Monteregian Hills, Canada (2). This hydrated sodium- monoclinic unit cell are a 5 15.1(1) Å; b 5 17.6(1) Å; c 5 manganese silicate extends the already wide range of manga- 5.290(4) Å; b 5 100.5(2)°; space group C2ym. The structure, nese crystal chemistry (3), which includes various complex including all reflections, refined to a final R 5 0.07.
    [Show full text]
  • Chemistry: Empirical & Molecular Formulas
    Chemistry: Empirical & Molecular Formulas Name______________________ 1) What is the empirical formula for C15H30O5H5? 2) A compound has an empirical formula of C2H4O3N. Its molar mass is 359 g. What is the molecular formula? 3) A compound contains 12.7 g iron & 7.29 g oxygen. Its molar mass is 87.85 g. What is its empirical formula? What is its molecular formula? 4) A compound contains 65.6% carbon, 9.45% hydrogen & 25.0% oxygen. Its molar mass is 1922.85 g. What is its empirical formula? What is its molecular formula? 5) A compound contains 92.2% carbon & 7.75% hydrogen. It has a molar mass of 118 g. What is its empirical formula? What is its molecular formula? 6) A compound has an empirical formula of C2H5O3N. Its molar mass is 454 g. What is its molecular formula? 7) What is the empirical formula for C20H32O4N4? 8) A compound contains 69.6% carbon, 9.76% hydrogen & 20.6% oxygen. Its molar mass is 465.72 g. What is its empirical formula? What is its molecular formula? 9) A compound contains 42.044 g carbon & 7.956 g hydrogen. Its molar mass is 114.26 g. What is its empirical formula? What is its molecular formula? 10) A compound contains 30.79 g copper & 19.31 g oxygen. Its molar mass is 207 g. What is its empirical formula? What is its molecular formula? 11) A compound contains 40.9% carbon, 4.58% hydrogen & 54.5% oxygen. Its molar mass is 176.1 g. What is its empirical formula? What is its molecular formula? 12) A compound has an empirical formula of CH2O & a gram molecular mass of 180.16 g.
    [Show full text]
  • 11.2 Alkanes
    11.2 Alkanes A large number of carbon compounds are possible because the covalent bond between carbon atoms, such as those in hexane, C6H14, are very strong. Learning Goal Write the IUPAC names and draw the condensed structural formulas and skeletal formulas for alkanes and cycloalkanes. Chemistry: An Introduction to General, Organic, and Biological Chemistry, Twelfth Edition © 2015 Pearson Education, Inc. Naming Alkanes Alkanes • are hydrocarbons that contain only C—C and C—H bonds • are formed by a continuous chain of carbon atoms • are named using the IUPAC (International Union of Pure and Applied Chemistry) system • have names that end in ane • use Greek prefixes to name carbon chains with five or more carbon atoms Chemistry: An Introduction to General, Organic, and Biological Chemistry, Twelfth Edition © 2015 Pearson Education, Inc. IUPAC Naming of First Ten Alkanes Chemistry: An Introduction to General, Organic, and Biological Chemistry, Twelfth Edition © 2015 Pearson Education, Inc. 1 Condensed Structural Formulas In a condensed structural formula, • each carbon atom and its attached hydrogen atoms are written as a group • a subscript indicates the number of hydrogen atoms bonded to each carbon atom The condensed structural formula of butane has four carbon atoms. CH3—CH2—CH2—CH3 butane Core Chemistry Skill Naming and Drawing Alkanes Chemistry: An Introduction to General, Organic, and Biological Chemistry, Twelfth Edition © 2015 Pearson Education, Inc. Condensed Structural Formulas Alkanes are written with structural formulas that are • expanded to show each bond • condensed to show each carbon atom and its attached hydrogen atoms Expanded Condensed Expanded Condensed Chemistry: An Introduction to General, Organic, and Biological Chemistry, Twelfth Edition © 2015 Pearson Education, Inc.
    [Show full text]
  • WS 4.2: Empirical Formula Problems
    Name: Answer Key Period: ______ Date: __________ Chem B odds for HW and evens for review WS 4.2: Empirical Formula Problems Directions: Determine the empirical formula for the following substances. If a molecular formula cannot be reduced, write “cannot be reduced in the box for empirical formula” Molecular Formula Empirical Formula Molecular Formula Empirical Formula 1) C6H6 CH 2) C10H18 C5H9 3) C8H18 C4H9 4) C7H15O2 Not reducible 5) WO2 Not reducible 6) N2H4 NH2 7) C2H6O2 CH3O 8) P3F6 PF2 9) X39Y13 X3Y 10) IF5 Not reducible 11) C4H10 C2H5 12) N2O5 Not reducible 13) C6H12O6 CH2O 14) N2O4 NO2 15) P2F4 PF2 16) SF6 Not reducible 17) SO3 Not reducible 18) N2Cl4 NCl2 19) N2Br4 NBr2 20) P2O5 Not reducible Directions: Solve the following problems. You may need to use a separate sheet of paper. 1) What is the empirical formula for a compound which 3) Barry Um has a sample of a compound which weighs 200 contains 0.0134 g of iron, 0.00769 g of sulfur and 0.0115 g of grams and contains only carbon, hydrogen, oxygen and oxygen? nitrogen. By analysis, he finds that it contains 97.56 grams of carbon, 4.878 g of hydrogen, 52.03 g of oxygen and 45.53 g of nitrogen. Find its empirical formula. 3 FeSO C5H3N2O2 2) A compound is found to contain 53.7 % iron and 46.27 % sulfur. Find its empirical formula. 4) What is the empirical formula for a compound which contains 80.3% zinc and the rest is oxygen? Fe2S3 ZnO 5) Rubbing alcohol was found to contain 60.0 % carbon, 13.4 9) Give the name and empirical formula of a compound % hydrogen, and the remaining mass was due to oxygen.
    [Show full text]
  • Empirical and Molecular Formula Notes • the Empirical Formula of A
    Empirical and Molecular Formula Notes The empirical formula of a compound shows the ratio of elements present in a compound The molecular formula of a compound shows how many atoms of each element are present in a molecule of a compound. o Example: the compound butene has a molecular formula of C4H8. The empirical formula of butene is CH2 because there is a 1:2 ratio of carbon atoms to hydrogen atoms. Finding the molecular formula when given the empirical formula The molecular formula is just a multiple of the empirical formula. Take a look at butene: o CH2 x n = C4H8 so n=4. What is the molar mass of butene? . If the empirical formula of a compound is CH2, then you can find the molar mass of the empirical formula: 12.0+ 2(1.0) = 14.0 g/mol . 14.0 g/mol x 4 = 56 g/mol What if I have a compound with an empirical formula of CH2 that has a molar mass of 84 g/mol. What is the molecular formula of this compound? o 14.0 g/mol x n = 84 g/mol so n = 6 o CH2 x 6 = C6H12 Try a few: 1. What is the empirical formula of C8H10? C6H12O6? 2. What is the molecular formula of a molecule that has an empirical formula of NO2 and a molar mass of 92 g/mol? 3. Consider a molecule that has an empirical formula of SO3 and a molecular formula of S3O9. What is the molar mass of the molecule? Calculating empirical formula from percent composition Answer this question: What is the empirical formula of a compound that contains 25.53% Mg and 74.47% Cl? Steps: 1.
    [Show full text]
  • Carbohydrates: Occurrence, Structures and Chemistry
    Carbohydrates: Occurrence, Structures and Chemistry FRIEDER W. LICHTENTHALER, Clemens-Schopf-Institut€ fur€ Organische Chemie und Biochemie, Technische Universit€at Darmstadt, Darmstadt, Germany 1. Introduction..................... 1 6.3. Isomerization .................. 17 2. Monosaccharides ................. 2 6.4. Decomposition ................. 18 2.1. Structure and Configuration ...... 2 7. Reactions at the Carbonyl Group . 18 2.2. Ring Forms of Sugars: Cyclic 7.1. Glycosides .................... 18 Hemiacetals ................... 3 7.2. Thioacetals and Thioglycosides .... 19 2.3. Conformation of Pyranoses and 7.3. Glycosylamines, Hydrazones, and Furanoses..................... 4 Osazones ..................... 19 2.4. Structural Variations of 7.4. Chain Extension................ 20 Monosaccharides ............... 6 7.5. Chain Degradation. ........... 21 3. Oligosaccharides ................. 7 7.6. Reductions to Alditols ........... 21 3.1. Common Disaccharides .......... 7 7.7. Oxidation .................... 23 3.2. Cyclodextrins .................. 10 8. Reactions at the Hydroxyl Groups. 23 4. Polysaccharides ................. 11 8.1. Ethers ....................... 23 5. Nomenclature .................. 15 8.2. Esters of Inorganic Acids......... 24 6. General Reactions . ............ 16 8.3. Esters of Organic Acids .......... 25 6.1. Hydrolysis .................... 16 8.4. Acylated Glycosyl Halides ........ 25 6.2. Dehydration ................... 16 8.5. Acetals ....................... 26 1. Introduction replacement of one or more hydroxyl group (s) by a hydrogen atom, an amino group, a thiol Terrestrial biomass constitutes a multifaceted group, or similar heteroatomic groups. A simi- conglomeration of low and high molecular mass larly broad meaning applies to the word ‘sugar’, products, exemplified by sugars, hydroxy and which is often used as a synonym for amino acids, lipids, and biopolymers such as ‘monosaccharide’, but may also be applied to cellulose, hemicelluloses, chitin, starch, lignin simple compounds containing more than one and proteins.
    [Show full text]
  • Material Safety Data Sheet
    MATERIAL SAFETY DATA SHEET InfosafeNo.: ACOFS Issue Date: March 2001 Issued by: Medical Developments International Limited Revision No.: 4 Revision Date: Nov 2011 Product Name: METHOXYFLURANEINHALATIONANALGESIC (Classified as hazardous according to criteria of NOHSC) COMPANY DETAILS Company Name Medical Developments International Pty. Ltd. (ABN 14 106 340 667) Address 7/56 Smith Road, Springvale, Victoria, Australia, 3171 Tel +61 (3) 9547 1888 Fax +61 (3) 9547 0262 IDENTIFICATION Product Code ME-MEOTH, ME-7590-45, ME-MS245, ME-MS246, ME-MS260 Product Name METHOXYFLURANE INHALATION ANALGESIC Proper Shipping None Allocated Name 2,2-dichloro-1 , 1 -difluoroethyl methyl ether UN Number None Allocated DG Class None Allocated Packing Group None Allocated Hazchem Code None Allocated Poisons Schedule S4 Product Use Inhalant analgesic for pre-hospital pain relief and short surgical procedures. PENTHROX INHALER Methoxyflurane must only be administered using the Penthrox Inhaler, a polyethylene tube incorporating a polypropylene wick. Do not exceed recommended dose.. The Penthrox Inhaler is a single-patient use device. After use, replace in the carton and seal in a clean, dry, vapour-tight impervious container (polyethylene bag or jar) for disposal. The container should be clear so that the carton labeling is clearly visible. PHYSICAL DATA Appearance Clear colourless liquid with a fruity odour. Melting Point -35°C Boiling Point 104.6°C Vapour Pressure 2.66 kPa @ 17.7°C Specific Gravity 1.426 @ 25°C Flash Point 62.8°C (as tested using Closed Cup method) Flamm. Limit LEL 7% Flamm. Limit UEL Not available Solubility in Water <1 mg/L @ 19°C OTHER PROPERTIES Volatile Component 100% Evaporation Rate <1 (Ether = 1) Vapour Density >1 pH Value Not applicable Solubility in Organic Soluble in acetone, alcohol, chloroform, ether, oils and rubber.
    [Show full text]
  • Bonding, Alkanes, Alcohols & Alkyl Halides
    Chemistry 2050 Introduction to Organic Chemistry Fall Semester 2005, Dr. Rainer Glaser Examination #1 “Bonding, Alkanes, Alcohols & Alkyl Halides” Wednesday, 09/14/05, 11–11:50 am. Name: Answer Key Question 1. Structural Formula of Organic Molecules 20 Question 2. Atomic Structure, Lewis Structures & Bonding 20 Question 3. Isomers and Combustion 20 Question 4. Conformation and Stereoisomers 20 Question 5. Alcohols and Alkylhalides 20 Total 100 — 1 — Question 1. Structural Formula of Organic Molecules. (20 points) (a) Draw a complete structural formula of pentane. (4 points) H H H H H H C C C C C H H H H H H (b) Draw a condensed structural formula of pentane. (1 points) H3C−CH2−CH2−CH2−CH3 (c) Draw a simplified structural formula (aka bond-line formula) of pentane. (1 points) (d) Provide the complete structural formula and the name of one structural isomer of pentane. (6 p.) Structure: Name: H H H C H H H 2-methylbutane H C C C C H H H H H (e) Size and shape of acyclic alkanes. (8 p.) Approximate angle ∠(C−C−C) Typical length of a C−C single bond: _154_ pm in acyclic alkanes: > 109.5° Approximate angle ∠(H−C−C) Typical length of a C−H bond: __105_ pm in acyclic alkanes: > 109.5° Hybridization of C in acyclic alkanes: sp3 Tetrahedral angle: 109.5° — 2 — Question 2. Atomic Structure, Lewis Structures & Bonding. (20 points) (a) A neutral oxygen atom contains __8_ protons, __8_ neutrons, _2_ core electrons, and __6_ valence electrons. In the left box, complete the electron configuration of a neutral oxygen atom by provision of the exponents (e.g.
    [Show full text]
  • Biological Chemistry
    CHAPTER 23 Biological Chemistry Chemical reactions occur in all living organisms. Honeybee Pollinating a Poppy Carbohydrates SECTION 1 and Lipids OBJECTIVES Describe the structural char- acteristics of simple carbohy- drates and complex carbohydrates. B iochemistry is the study of the chemicals and reactions that occur in living things. Biochemical compounds are often large and complex organ- Explain the role of carbohy- ic molecules, but their chemistry is similar to that of the smaller organic drates in living systems. molecules you studied in Chapter 22. Now you will study many important biochemical molecules and learn why they are needed to stay healthy. Describe the structural char- Two of the most common types of molecules that you may know about acteristics of lipid molecules. are carbohydrates and lipids. These molecules are important parts of the food that you eat and provide most of the energy that your body needs. Identify the functions of lipids in living cells. Carbohydrates Sugars, starches, and cellulose belong to the large group of biochemical molecules called carbohydrates. Carbohydrates are molecules that are composed of carbon, hydrogen, and oxygen atoms in a 1:2:1 ratio, and provide nutrients to the cells of living things. They are produced by plants through a process called photosynthesis. Cellulose provides struc- ture and support for plants and starch stores energy in plants. Because animals cannot make all of their own carbohydrates, they must get them FIGURE 1 Glucose and fructose from food. Carbohydrates provide nearly all of the energy that is avail- both have 6 C, 12 H, and 6 O atoms.
    [Show full text]
  • Product Monograph
    PRODUCT MONOGRAPH NSATIVEX delta-9-tetrahydrocannabinol 27mg/ml (from Tetranabinex - Cannabis sativa L. extract) and cannabidiol 25mg/ml (from Nabidiolex - Cannabis sativa L. extract) Buccal spray Cannabinoid Analgesic Standard marketing authorization: SATIVEX® is useful as adjunctive treatment for symptomatic relief of spasticity in adult patients with multiple sclerosis (MS) who have not responded adequately to other therapy and who demonstrate meaningful improvement during an initial trial of therapy. Marketing authorization with conditions: SATIVEX® may be useful as adjunctive treatment for the symptomatic relief of neuropathic pain in adult patients with multiple sclerosis. Marketing authorization with conditions: SATIVEX® may be useful as adjunctive analgesic treatment in adult patients with advanced cancer who experience moderate to severe pain during the highest tolerated dose of strong opioid therapy for persistent background pain. Marketing authorisations with conditions reflect the promising nature of the clinical evidence and the need for confirmatory studies to verify the clinical benefit. Patients should be advised of the conditional nature of the authorizations with conditions. GW Pharma Ltd. Distributed in Canada by: Date of Revision: Salisbury, Wiltshire Bayer Inc., March 30, 2012 U.K. SP4 0JQ Toronto, Ontario M9W 1G6 Control No: 149598 Page 1 of 55 This product has been approved under the Notice of Compliance with Conditions (NOC/c) Policy for its uses in adult patients with MS neuropathic pain and with cancer pain. What is a Notice of Compliance with Conditions (NOC/c)? An NOC/c is a form of market approval granted to a product on the basis of promising evidence of clinical effectiveness following review of the submission by Health Canada.
    [Show full text]
  • Jöns Jacob Berzelius 1 Jöns Jacob Berzelius
    Jöns Jacob Berzelius 1 Jöns Jacob Berzelius J. J. Berzelius Jöns Jacob Berzelius (1779–1848) Born 20 August 1779 Väversunda, Östergötland, Sweden Died 7 August 1848 (aged 68) Stockholm, Sweden Nationality Sweden Fields Chemistry Institutions Karolinska Institute Alma mater Uppsala University Doctoral advisor Johann Afzelius Doctoral students James Finlay Weir Johnston Heinrich Rose Known for Atomic weights Chemical notation Silicon Selenium Thorium Cerium Notable awards Copley medal Jöns Jacob Berzelius (Swedish: [jœns ˌjɑːkɔb bæɹˈseːliɵs]; 20 August 1779 – 7 August 1848) was a Swedish chemist. He worked out the modern technique of chemical formula notation, and is together with John Dalton, Antoine Lavoisier, and Robert Boyle considered a father of modern chemistry.[1] He began his career as a physician but his researches in physical chemistry were of lasting significance in the development of the subject. He achieved much in later life as secretary of the Swedish Academy. He is known in Sweden as the Father of Swedish Chemistry. Berzelius Day is celebrated on 20 August in honour of him[2]. Biography Born at Väversunda in Östergötland in Sweden, Berzelius lost both his parents at an early age. Relatives in Linköping took care of him, and there he attended the school today known as Katedralskolan. He then enrolled at Uppsala University where he learned the profession of medical doctor from 1796 to 1801; Anders Gustaf Ekeberg, the discoverer of tantalum, taught him chemistry. He worked as an apprentice in a pharmacy and with a physician in the Medevi mineral springs. During this time he conducted analysis of the spring water. For his medical studies he examined the influence of galvanic current on several diseases and graduated as M.D.
    [Show full text]
  • Empirical Formulas.Doc Homework Review for Class
    6.2H Empirical Formulas.doc Homework Review for Class Calculating an Empirical Formula Given the following information calculate the empirical formula for the molecule. 1. 56.33 % Oxygen, 43.67 % Phosphorus Solution:P2O5 STEP 1. Change the percent to grams If 100 grams of this compound were present there would be: Phosphorus 43.67 grams Oxygen 56.33 grams STEP 2. Calculate the number of moles of each element. You will need the molar mass for each element. Atom Mass 1 Moles Molar _ Mass 43.67grams 1mole Phosphorus 1.4 moles of P 1 30.97grams Oxygen 56.33grams 1mole 3.5 moles of O 1 16.00grams STEP 3. Calculate the Subscripts for the Empirical Formula. 1.4 moles of Phosphorus 3.5 moles of Oxygen DIVIDE ALL NUMBERS BY THE SMALLEST NUMBER 1.4 / 1.4 = 1.00 Phosphorus 3.5 / 1.4 = 2.5 Oxygen To adjust these numbers to whole numbers multiply both by 2 to get 2 and 5. The 2 will go with the Phosphorus and the 5 goes with the O. P2O5 2. 32.38% Sodium, 22.65 % Sulfur, 44.99% Oxygen Solution:Na2SO4 STEP 1. Change the percent to grams If 100 grams of this compound were present there would be: Sodium 32.38 grams Sulfur 22.65 grams Oxygen 44.99 grams STEP 2. Calculate the number of moles of each element. You will need the molar mass for each element. Atom Mass Moles 32.38grams 1mole Sodium 1.4 moles of Na 1 23.00grams1 22.65grams Molar1mole_ Mass Sulfur .7 moles of S 1 32.06grams Oxygen 44.99grams 2.8 moles of O 1 1mole 16.00grams STEP 3.
    [Show full text]