Lyotropic Chromonic Liquid Crystals: from Viscoelastic Properties to Living

Total Page:16

File Type:pdf, Size:1020Kb

Load more

LYOTROPIC CHROMONIC LIQUID CRYSTALS: FROM VISCOELASTIC PROPERTIES TO LIVING LIQUID CRYSTALS A dissertation submitted to Kent State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy by Shuang Zhou May, 2016 © Copyright All rights reserved Except for previously published materials Dissertation written by Shuang Zhou B. S., Xi’an Jiaotong University, China, 2003 Ph.D., Kent State University, USA, 2016 Approved by Dr. Oleg D. Lavrentovich , Chair, Doctoral Dissertation Committee Dr. Peter Palffy-Muhoray , Members, Doctoral Dissertation Committee Dr. Qi-Huo Wei , Dr. Samuel Sprunt , Dr. Roger Gregory , Accepted by Dr. Hiroshi Yokoyama , Chair, Chemical Physics Interdisciplinary Program Dr. James L. Blank , Dean, College of Arts and Sciences ii TABLE OF CONTENTS LIST OF FIGURES ...................................................................................................... VII LIST OF TABLES .........................................................................................................XV DEDICATION.............................................................................................................. XVI ACKNOWLEDGEMENTS ...................................................................................... XVII CHAPTER 1 INTRODUCTION ..................................................................................... 1 1.1 Lyotropic Chromonic Liquid Crystals ...................................................................... 1 1.2 Active Colloids and Collective Behavior .................................................................. 6 1.3 Scope and Objectives of the Dissertation ................................................................ 13 CHAPTER 2 ELASTICITY OF LYOTROPIC CHROMONIC LIQUID CRYSTALS PROBED BY DIRECTOR REORIENTATION IN MAGNETIC FIELD ........................................................................................... 18 2.1 Introduction ............................................................................................................. 18 2.2 Samples and Experimental Set-up ........................................................................... 20 2.3 Results ..................................................................................................................... 22 2.3.1 Homeotropic cells, bend constant K3 ........................................................... 22 2.3.2 Planar cells, splay constant K1 ...................................................................... 24 2.3.3 Planar cells, twist constant K2 ...................................................................... 25 2.4 Discussion and Conclusion ..................................................................................... 26 2.5 Supplemental Information ....................................................................................... 32 2.5.1 Estimation of average aggregation length ..................................................... 32 2.5.2 Measurement of ..................................................................................... 34 iii 2.5.3 Volume fraction measurements ..................................................................... 35 2.5.4 Optical response of bend distortion ............................................................... 38 2.5.5 Optical simulation to determine splay constant K1 ...................................... 39 2.5.6 Planar cells, twist constant K2 ...................................................................... 42 CHAPTER 3 IONIC-CONTENT DEPENDENCE OF VISCOELASTICITY OF THE LYOTROPIC CHROMONIC LIQUID CRYSTAL SUNSET YELLOW............................................................................................................. 46 3.1 Introduction ............................................................................................................. 46 3.2 Material and Methods .............................................................................................. 47 3.2.1 LCLC SSY with ionic additives .................................................................... 49 3.2.2 Viscoelastic constants measurement ............................................................. 50 3.3 Results ..................................................................................................................... 50 3.3.1 Splay constant K1 ......................................................................................... 50 3.3.2 Bend constant K3 .......................................................................................... 54 3.3.3 Twist constant K2 ......................................................................................... 56 3.3.4 Rotation viscosity 1 .................................................................................... 58 3.4 Conclusion ............................................................................................................... 60 3.5 Supplemental Information ....................................................................................... 61 3.5.1 Estimation of Ee ........................................................................................... 61 3.5.2 Measurement of volume fraction .............................................................. 62 3.5.3 Measurement of rotation viscosity 1 ........................................................... 63 iv CHAPTER 4 : ELASTICITY, VISCOSITY, AND ORIENTATIONAL FLUCTUATIONS OF A LYOTROPIC CHROMONIC NEMATIC LIQUID CRYSTAL DISODIUM CROMOGLYCATE ................................................. 67 4.1 Introduction ............................................................................................................. 67 4.2 Experimental Details ............................................................................................... 69 4.2.1 Materials ........................................................................................................ 69 4.2.2 Experimental set-up....................................................................................... 71 4.3 Results ..................................................................................................................... 75 4.3.1 Elastic constants ............................................................................................ 75 4.3.2 Viscosities ..................................................................................................... 78 4.3.3 An additional mode in bend geometry .......................................................... 81 4.4 Discussion ............................................................................................................... 82 4.4.1 Elastic constants ............................................................................................ 83 4.4.2 Viscosities ..................................................................................................... 93 4.4.3 Origin of the additional fluctuation mode in the bend geometry .................. 95 4.5 Conclusions ........................................................................................................... 101 CHAPTER 5 : LIVING LIQUID CRYSTALS .......................................................... 103 5.1 Introduction ........................................................................................................... 103 5.2 Materials and Methods .......................................................................................... 104 5.2.1 Bacteria........................................................................................................ 104 5.2.2 LLC preparation .......................................................................................... 105 5.2.3 Videomicroscopy ........................................................................................ 105 v 5.2.4 PolScope microscopy .................................................................................. 106 5.3 Results ................................................................................................................... 106 5.3.1 Single bacteria motion ................................................................................. 109 5.3.2 Collective behavior ..................................................................................... 112 5.4 Discussion and conclusion .................................................................................... 117 5.5 Supplemental information ..................................................................................... 120 5.5.1 Optics of director patterns in the wake of a moving bacterium .................. 120 5.5.2 Optics of director patterns distorted by flows produced by individual bacterium ................................................................................................................. 122 CHAPTER 6 SUMMARY ............................................................................................ 127 REFERENCES .............................................................................................................. 132 vi LIST OF FIGURES Figure 1.1: Molecular structures of some lyotropic chromonic liquid crystal materials. ... 2 Figure 1.2: Molecular structure and schematic of a SSY-water LCLC. (a) Molecular structure and schematic of disassociation of sodium ions from a single molecule in water. (b) Schematic of SSY assembly in water (represented by the blue background) to form nematic LCLC; aromatic centers stack on top of each other while the sodium ions are disassociated, leaving the aggregates
Recommended publications
  • Flow Coupling Between Active and Passive Fluids Across Water–Oil

    Flow Coupling Between Active and Passive Fluids Across Water–Oil

    www.nature.com/scientificreports OPEN Flow coupling between active and passive fuids across water–oil interfaces Yen‑Chen Chen1, Brock Jolicoeur2, Chih‑Che Chueh3 & Kun‑Ta Wu1,2,4* Active fuid droplets surrounded by oil can spontaneously develop circulatory fows. However, the dynamics of the surrounding oil and their infuence on the active fuid remain poorly understood. To investigate interactions between the active fuid and the passive oil across their interface, kinesin‑ driven microtubule‑based active fuid droplets were immersed in oil and compressed into a cylinder‑ like shape. The droplet geometry supported intradroplet circulatory fows, but the circulation was suppressed when the thickness of the oil layer surrounding the droplet decreased. Experiments with tracers and network structure analyses and continuum models based on the dynamics of self‑ elongating rods demonstrated that the fow transition resulted from fow coupling across the interface between active fuid and oil, with a millimeter–scale coupling length. In addition, two novel millifuidic devices were developed that could trigger and suppress intradroplet circulatory fows in real time: one by changing the thickness of the surrounding oil layer and the other by locally deforming the droplet. This work highlights the role of interfacial dynamics in the active fuid droplet system and shows that circulatory fows within droplets can be afected by millimeter–scale fow coupling across the interface between the active fuid and the oil. Active fuids fow without external energy input owing to force generated by active entities that consume local fuel to generate kinetic energy1–10. Active fuids can self-organize into circulatory fows that are sensitive to confnement shape11–25.
  • Modeling and Simulations of Dynamics and Motility in Active Fluids

    Modeling and Simulations of Dynamics and Motility in Active Fluids

    Modeling and simulations of dynamics and motility in active fluids Giuseppe Negro Dottorato in Fisica XXXII ciclo Supervisor Università degli studi di Bari "A. Moro" Prof. Giuseppe Gonnella Dr. Antonio Lamura Modeling and simulations o dynamics and motility in active fluids Dottorato in Fisica XXXII Ciclo Università degli studi di Bari "A. Moro'1 by Giuseppe Negro to obtain the degree of PhD Project duration: November 1,2016 - November 1,2019 Supervisor Prof. G. Gonnella Dipartimento di Fisica "M. Merlin" Bari Dr. A. Lamura CNR, Bari CONTENTS 1 Active Matter 1 1.1 Order and collective m otion......................................................................................... ...2 1.2 Active matter confined in droplets................................................................................7 1.3 Rheology 8 1.4 Outline of the Thesis 8 2 Dynamical models for multiphase and active fluids 11 2.1 Order parameters 12 2.2 Free energy 13 2.2.1 Chiral liquid cry stals......................................................................................... ...15 2.2.2 Anchoring ............................................................................................................ ...15 2.2.3 Topological d efects................................................................................................17 2.3 Active Forces 20 2.3.1 Fluid mixtures with an active com ponent ...................................................22 2.4 Hydrodynamic equations 25 2.5 Spontaneous flow 27 3 Lattice Boltzmann Methods 33 3.1 General features
  • From Order to Chaos to Defect Ordering

    From Order to Chaos to Defect Ordering

    PHYSICAL REVIEW X 9, 041047 (2019) Hydrodynamics of Active Defects: From Order to Chaos to Defect Ordering Suraj Shankar1 and M. Cristina Marchetti2 1Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA 2Department of Physics, University of California Santa Barbara, Santa Barbara, California 93106, USA (Received 16 July 2019; revised manuscript received 25 September 2019; published 4 December 2019) Topological defects play a prominent role in the physics of two-dimensional materials. When driven out of equilibrium in active nematics, disclinations can acquire spontaneous self-propulsion and drive self- sustained flows upon proliferation. Here, we construct a general hydrodynamic theory for a two- dimensional active nematic interrupted by a large number of such defects. Our equations describe the flows and spatiotemporal defect chaos characterizing active turbulence, even close to the defect-unbinding transition. At high activity, nonequilibrium torques combined with many-body screening cause the active disclinations to spontaneously break rotational symmetry, forming a collectively moving defect-ordered polar liquid. By recognizing defects as the relevant quasiparticle excitations, we construct a comprehensive phase diagram for two-dimensional active nematics. Using our hydrodynamic approach, we additionally show that activity gradients can act like “electric fields,” driving the sorting of topological charge. This result demonstrates the versatility of our continuum model and its relevance for quantifying the
  • Living Liquid Crystals

    Living Liquid Crystals

    Classification: Physical Sciences, Applied Physical Sciences Living Liquid Crystals Shuang Zhoua,1, Andrey Sokolovb,1, Oleg D Lavrentovicha, 2 , Igor S Aransonb,c,2 aLiquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH 44242, USA b Materials Science Division, Argonne National Laboratory, Argonne, IL60439 c Engineering Sciences and Applied Mathematics, Northwestern University, 2145 Sheridan Road, Evanston, IL 60202, USA Key words: active nematic, lyotropic chromonic liquid crystals, bacteria, flagella motion, flow, instability, correlation length, The authors declare no conflict of interest. 1 S.Z. and A.S. contributed equally to this work. 2 To whom correspondence should be addressed. E-mail: [email protected], or [email protected] 1 Abstract Collective motion of self-propelled organisms or synthetic particles often termed “active fluid” has attracted enormous attention in broad scientific community because of it fundamentally non-equilibrium nature. Energy input and interactions among the moving units and the medium lead to complex dynamics. Here we introduce a new class of active matter – living liquid crystals (LLCs) that combine living swimming bacteria with a lyotropic liquid crystal. The physical properties of LLCs can be controlled by the amount of oxygen available to bacteria, by concentration of ingredients, or by temperature. Our studies reveal a wealth of new intriguing dynamic phenomena, caused by the coupling between the activity-triggered flow and long-range orientational order of the medium. Among these are (a) non-linear trajectories of bacterial motion guided by non-uniform director, (b) local melting of the liquid crystal caused by the bacteria- produced shear flows, (c) activity-triggered transition from a non-flowing uniform state into a flowing one-dimensional periodic pattern and its evolution into a turbulent array of topological defects; (d) birefringence-enabled visualization of microflow generated by the nanometers-thick bacterial flagella.