Endometrial Effects of Serms Santiago Palacios

Total Page:16

File Type:pdf, Size:1020Kb

Endometrial Effects of Serms Santiago Palacios Chapter 11 Endometrial Effects of SERMs Santiago Palacios 11.1 Introduction SERMs(SelectiveEstrogenReceptorModulators)arecompoundswithamolec- ular structure different from that of steroids. They share with steroids their selective binding to estrogen receptors (ERs), which is followed by an agonistic or antagonistic effect, depending on the target cell and the hormonal environ- ment. Initially known as antiestrogens, and developed for treatment of breast cancer, the two better known SERMs tamoxifen and raloxifene are being used currently in the prevention and treatment of breast cancer and osteoporosis, respectively. A recently published review of a total of 37,000 women in 55 trials confirmed that, when used as an additional treatment, tamoxifen significantly improved 10-year survival in women with breast cancer positive for ER (Early Breast Cancer Trialists’ Collaborative Group 1998). Nevertheless, the incidence ofendometrialcancerappearedtodoubleafter1to2yearsoftreatment, and nearly quadrupled when treatment lasted for 5 years (Early Breast Cancer Trialists’ Collaborative Group 1998). These clinical observations demonstrate that the effect of tamoxifen and other SERMs on the endometrium needs to be studied in depth in order to offer objective evidence-based information on these compounds to our patients. This chapter provides a summary of the information available on the mechanism of action and on the clinical data of SERMs on the endometrium. 11.2 MechanismofActionintheEndometrium As has been widely commented in previous chapters, the agonist/antagonist profile of a given SERM is determined by the type of compound and the particular target tissue. Members of the different SERM families bind to the ligand-binding domain (LBD) of the ER, whose particular crystal structure has been revealed for estradiol and for raloxifene (Brzozowski et al. 1997). Once inserted into the binding cavity, estradiol makes direct hydrogen bonds bewteen its A-ring and 272 S. Palacios the carboxylate of Glu 353, the guanidinium group of Arg 394, and between a water molecule, and between its D-ring and His 524 (Brzozowski et al. 1997). As a consequence of the estradiol insertion within the LBD, the large helix 12 of the ER folds over and traps the steroid, thus exposing three specific amino acids, 540, 543, and 547, critical within the activating function-2 (AF-2) region for binding coactivators (Tzukerman et al. 1994). Raloxifene is also anchored to the same three amino acids as estradiol by direct hydrogen bonds, but it also interacts with Asp 351. The final orientation of raloxifene within the binding pocket determines that its side chain dis- places helix 12. Then, helix 12 becomes reoriented and cannot seal the pocket containing the ligand (MacGregor et al. 1998). The repositioned AF-2 region impairs the formation of transcription complex by coactivators, and the signal transduction is blocked. 11.2.1 Tamoxifen Together with other members of the triphenylethylene family, tamoxifen has been shown to act as an AF-2 antagonist, a trait shared with raloxifene. How- ever, tamoxifen and other triphenylethylene derivatives act as partial ago- nists in the uterus, an effect that seems opposite to that of raloxifene. It may, therefore, be postulated that at the endometrial level (where both ta- moxifen and raloxifene share the same tissue and promoter context), the contrasting action of those compounds may be due to particular details of the conformational change induced on the ligand–receptor complex, at ei- ther the AF-2 or other domain. Recent results obtained in mice further sup- port the notion that tamoxifen acts in the endometrium as a classical im- peded estrogen and that the AF-1 domain regulates its effects (Zhang et al. 2005). The proliferative effects of tamoxifen on the endometrium have been sup- ported by molecular data. The expression of both ER and progesterone recep- tors (PRs) was found to be consistently positive in endometria from women treated with tamoxifen for 1 month (Cano et al. 2000). That positivity has been reported to be even higher than that found in a control group of pre- menopausal women (Kommoss et al. 1998). Tamoxifen also mimicked estra- diol treatment in up-regulating ERs, c-fos, and glyceraldehyde phosphate de- hydrogenase mRNAs, together with other estrogen-induced genes (Rivera- Gonzalez et al. 1998; Robertson et al. 1998). The bromo-deoxyuridine index, an indicator of cell mitogenesis, has been shown to increase in endome- trial cells from tamoxifen-treated uteri (Karlsson et al. 1998; Carthew et al. 1999). In this connection, the expression of markers of proliferation, e.g., Ki67, was potentiated by tamoxifen in human endometrium (Elkas et al. 11 Endometrial Effects of SERMs 273 1998). More recently, tamoxifen increased Ki67 expression in the human endometrial adenocarcinoma Ishikawa cell line (Koda et al. 2004). An in- creased susceptibility to genetic lesions associated with carcinogenesis linked to tamoxifen was suggested by a study on endometrium of surgically post- menopausal cynomolgus macaques, where the drug induced p53 positivity, although at a lower level than conjugated equine estrogens (CEE) (Isaksson et al. 1999). The available experimental information is still of little help in clarifying whether tamoxifen is genotoxic and oncogenetic in human endometrium. There is, nonetheless, a great deal of debate about the actual relevance of minor concentrations of adducts (as detected by high-perfomance liquid chro- matography and other modern technology), compared with the high con- centrations induced in rat hepatic tumors, or the equally elevated concen- trations formed in human DNA as a result of enviromental sources (Swen- berg et al. 1997). Accordingly, if tamoxifen is an endometrial carcinogen, as classified by the International Agency for Research on Cancer (IARC), its mechanism of action is possibly different from that reported in rat liver. An alternative oncogenetic mode of action of tamoxifen on human en- dometrium may derive from its proliferative activity. It is possible that the increase in the rate of mitoses in a given tissue entails an augmented risk of mutation, the first step toward malignancy (Ames et al. 1990). Therefore, it is possible that the oncogenetic attributes of estrogens in tissues where they induce a proliferative effect (e.g., breast or endometrium) might be influ- enced by the mutagenic potential derived from a higher mitotic activity. This might also be the main pathway for the oncogenetic action of tamoxifen in the uterus, where one study showed that an increase in uterine weight by tamox- ifen was accompanied by a doubled uterine expression of insulinlike growth factor-I (IGF-I), whereas the opposite occurred when the pure antiestrogen ICI 182780 was used instead of tamoxifen (Huynh et al. 1993). In a subse- quent study, the same investigators showed that the expression of insulinlike growth factor-binding protein (IGFBP)-3, the principal quantitative binder of IGF-I, was similarly suppressed by estradiol and tamoxifen (Huynh et al. 1994). The dysregulation of transforming growth factor-β (TGFβ) has also been suggested as an additional epigenetic (nongenotoxic) mechanism of tamox- ifen carcinogenicity (Carmichael et al. 1998). It has been postulated that the tamoxifen-induced dysregulation of the TGFβ signalling pathway may cre- ate an environment that selects for the cells with genetic alterations in the signal system (Carmichael et al. 1998). Cells with mutations in this pathway become refractory to mitosis inhibitory signals, thus developing into end-stage tumors. 274 S. Palacios 11.2.2 Raloxifene Crystallographic studies have confirmed that a critical difference in the antie- strogenic action of raloxifene lies in the interaction of the alkylaminoethoxy side chain with the amino acid aspartate at position 351. The peculiar orienta- tion of this side chain of the raloxifene molecule, an essential determinant of the antiestrogenic properties of the drug, is believed to account for its lack of endometrial activity (Clark et al. 1976; Grese et al. 1997; Bryant et al. 1998). Biochemical data support the lack of agonistic activity of raloxifene on uter- ine tissue (Somjen et al. 1996). Raloxifene has exhibited little uterothropic activity in rodents (Black and Goode 1980, 1981; Black et al. 1983) and has not resulted in increases in uterine weight or in stimulation of epithelial cell height and eosinophilic infiltration (Bryant et al. 1998). In other experiments on ovariectomized rats, raloxifene was similar to the no-treatement controls with regard to uterine epithelial cell height myometrial thickness and stromal expansion (Black et al. 1994; Sato et al. 1996). There are, however, discrepant data showing increases in uterine weight and uterine epithelial thickness in ovariectomized (Sato et al. 1996) or immature (Ashby et al. 1997) rats. Interest- ingly, raloxifene has been shown to block the stimulating endometrial effects of estrogen and tamoxifen (Bryant et al. 1998; Black et al. 1994; Sato et al. 1996; Palacios et al. 2000), an effect confirmed on an endometrial carcinoma cell line grown in athymic mice (Kleinman et al. 1996). Table 11.1. Actions of SERMs on uterus. Preclinical data (Gottardis et al. 1990) – In ovariectomized rats • Tamoxifen produces a trophic effect: ·↑weight of uterus ·↑thickness of endometrium ·↑thickness of myometrium – Raloxifene produces a minimum effect on: • Weight of uterus • Endometrium • Myometrium – Ovariectomized rats treated with estrogens
Recommended publications
  • The Mechanisms and Managements of Hormone-Therapy Resistance in Breast and Prostate Cancers
    Endocrine-Related Cancer (2005) 12 511–532 REVIEW The mechanisms and managements of hormone-therapy resistance in breast and prostate cancers K-M Rau1,2*, H-Y Kang3,4*, T-L Cha1,5,6, S A Miller1 and M-C Hung1 1Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA 2Department of Hematology-Oncology, Chang Gung Memorial Hospital, Kaohsiung Medical Center, Kaohsiung, Taiwan 3Graduate Institute of Clinical Medical Sciences, Chang Gung University, Kaohsiung, Taiwan 4The Center for Menopause and Reproductive Medicine Research, Chang Gung Memorial Hospital, Kaohsiung Medical Center, Kaohsiung, Taiwan 5Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA 6Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (Requests for offprints should be addressed to M-C Hung; Email: [email protected]) *(K-M Rau and H-Y Kang contributed equally to this work) Abstract Breast and prostate cancer are the most well-characterized cancers of the type that have their development and growth controlled by the endocrine system. These cancers are the leading causes of cancer death in women and men, respectively, in the United States. Being hormone-dependent tumors, antihormone therapies usually are effective in prevention and treatment. However, the emergence of resistance is common, especially for locally advanced tumors and metastatic tumors, in which case resistance is predictable. The phenotypes of these resistant tumors include receptor- positive, ligand-dependent; receptor-positive, ligand-independent; and receptor-negative, ligand- independent. The underlying mechanisms of these phenotypes are complicated, involving not only sex hormones and sex hormone receptors, but also several growth factors and growth factor re- ceptors, with different signaling pathways existing alone or together, and with each pathway possibly linking to one another.
    [Show full text]
  • In Vitro and in Silico Analyses of the Inhibition of Human Aldehyde Oxidase By
    JPET Fast Forward. Published on July 9, 2019 as DOI: 10.1124/jpet.119.259267 This article has not been copyedited and formatted. The final version may differ from this version. JPET #259267 In Vitro and In Silico Analyses of the Inhibition of Human Aldehyde Oxidase by Bazedoxifene, Lasofoxifene, and Structural Analogues Shiyan Chen, Karl Austin-Muttitt, Linghua Harris Zhang, Jonathan G.L. Mullins, and Aik Jiang Lau Downloaded from Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore jpet.aspetjournals.org (S.C., A.J.L.); Institute of Life Science, Swansea University Medical School, United Kingdom (K.A-M, J.G.L.M.); NanoBioTec, LLC., Whippany, New Jersey, U.S.A. (L.H.Z.); at ASPET Journals on September 29, 2021 Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (A.J.L.) 1 JPET Fast Forward. Published on July 9, 2019 as DOI: 10.1124/jpet.119.259267 This article has not been copyedited and formatted. The final version may differ from this version. JPET #259267 Running Title In Vitro and In Silico Analyses of AOX Inhibition by SERMs Corresponding author: Dr. Aik Jiang Lau Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543. Downloaded from Tel.: 65-6601 3470, Fax: 65-6779 1554; E-mail: [email protected] jpet.aspetjournals.org Number of text pages: 35 Number of tables: 4 Number of figures: 8 at ASPET Journals on September 29, 2021 Number of references 60 Number of words in Abstract (maximum
    [Show full text]
  • Medication Use for the Risk Reduction of Primary Breast Cancer in Women: a Systematic Review for the U.S
    Evidence Synthesis Number 180 Medication Use for the Risk Reduction of Primary Breast Cancer in Women: A Systematic Review for the U.S. Preventive Services Task Force Prepared for: Agency for Healthcare Research and Quality U.S. Department of Health and Human Services 5600 Fishers Lane Rockville, MD 20857 www.ahrq.gov Contract No. HHSA-290-2015-00009-I, Task Order No. 7 Prepared by: Pacific Northwest Evidence-Based Practice Center Oregon Health & Science University Mail Code: BICC 3181 SW Sam Jackson Park Road Portland, OR 97239 www.ohsu.edu/epc Investigators: Heidi D. Nelson, MD, MPH Rongwei Fu, PhD Bernadette Zakher, MBBS Marian McDonagh, PharmD Miranda Pappas, MA L.B. Miller, BA Lucy Stillman, BS AHRQ Publication No. 19-05249-EF-1 January 2019 This report is based on research conducted by the Pacific Northwest Evidence-based Practice Center (EPC) under contract to the Agency for Healthcare Research and Quality (AHRQ), Rockville, MD (HHSA-290-2015-00009-I, Task Order No. 7). The findings and conclusions in this document are those of the authors, who are responsible for its contents, and do not necessarily represent the views of AHRQ. Therefore, no statement in this report should be construed as an official position of AHRQ or of the U.S. Department of Health and Human Services. The information in this report is intended to help health care decisionmakers—patients and clinicians, health system leaders, and policymakers, among others—make well-informed decisions and thereby improve the quality of health care services. This report is not intended to be a substitute for the application of clinical judgment.
    [Show full text]
  • WO 2009/137104 Al
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 12 November 2009 (12.11.2009) WO 2009/137104 Al (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 31/137 (2006.01) A61K 31/5685 (2006.01) kind of national protection available): AE, AG, AL, AM, A61K 31/138 (2006.01) A61P 35/00 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, A61K 31/4196 (2006.01) CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, (21) International Application Number: HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, PCT/US2009/002885 KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, (22) International Filing Date: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, 7 May 2009 (07.05.2009) NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, (25) Filing Language: English UG, US, UZ, VC, VN, ZA, ZM, ZW. (26) Publication Language: English (84) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of regional protection available): ARIPO (BW, GH, 61/127,025 9 May 2008 (09.05.2008) US GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, (71) Applicant (for all designated States except US): RA¬ TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, DIUS HEALTH, INC.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2009/0226431 A1 Habib (43) Pub
    US 20090226431A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2009/0226431 A1 Habib (43) Pub. Date: Sep. 10, 2009 (54) TREATMENT OF CANCER AND OTHER Publication Classification DISEASES (51) Int. Cl. A 6LX 3/575 (2006.01) (76)76) InventorInventor: Nabilabil Habib,Habib. Beirut (LB(LB) C07J 9/00 (2006.01) Correspondence Address: A 6LX 39/395 (2006.01) 101 FEDERAL STREET A6IP 29/00 (2006.01) A6IP35/00 (2006.01) (21) Appl. No.: 12/085,892 A6IP37/00 (2006.01) 1-1. (52) U.S. Cl. ...................... 424/133.1:552/551; 514/182: (22) PCT Filed: Nov.30, 2006 514/171 (86). PCT No.: PCT/US2O06/045665 (57) ABSTRACT .."St. Mar. 6, 2009 The present invention relates to a novel compound (e.g., 24-ethyl-cholestane-3B.5C,6C.-triol), its production, its use, and to methods of treating neoplasms and other tumors as Related U.S. Application Data well as other diseases including hypercholesterolemia, (60) Provisional application No. 60/741,725, filed on Dec. autoimmune diseases, viral diseases (e.g., hepatitis B, hepa 2, 2005. titis C, or HIV), and diabetes. F2: . - 2 . : F2z "..., . Cz: ".. .. 2. , tie - . 2 2. , "Sphagoshgelin , , re Cls Phosphatidiglethanolamine * - 2 .- . t - r y ... CBs .. A . - . Patent Application Publication Sep. 10, 2009 Sheet 1 of 16 US 2009/0226431 A1 E. e'' . Phosphatidylcholine. " . Ez'.. C.2 . Phosphatidylserias. * . - A. z' C. w E. a...2 .". is 2 - - " - B 2. Sphingoshgelin . Cls Phosphatidglethanglamine Figure 1 Patent Application Publication Sep. 10, 2009 Sheet 2 of 16 US 2009/0226431 A1 Chile Phosphater Glycerol Phosphatidylcholine E.
    [Show full text]
  • Breast-Cancer-Medications Surveillance
    AHRQ Comparative Effectiveness Review Surveillance Program CER # 17: Comparative Effectiveness of Medications To Reduce Risk of Primary Breast Cancer in Women Original release date: September 14, 2009 Surveillance Report 1st Assessment: November, 2011 Surveillance Report 2nd Assessment: July, 2012 Key Findings: • 2 of 6 conclusions for Key Question 1, 1 of 7 conclusions for Key Question 2, and 1 of 5 conclusions for Key Question 3 are probably out of date due to longer term followup of a major trial and the availability of new drugs for this indication. • All conclusions for Key Questions 4 and 5 are considered still valid. • There are no new significant safety concerns. These findings were unchanged from the 1st assessment Summary Decision This CER’s priority for updating is Medium (This is unchanged from the last assessment) i Authors: Jennifer Schneider Chafen, MS, MD Sydne Newberry, PhD Margaret Maglione, MPP Aneesa Motala, BA Roberta Shanman, MLS Paul Shekelle, MD, PhD None of the investigators has any affiliations or financial involvement that conflicts with the material presented in this report. ii Acknowledgments The authors gratefully acknowledge the following individuals for their contributions to this project: Subject Matter Experts Claudine Isaacs, MD Georgetown University Chevy Chase, Maryland Diana Petitti, MD Arizona State University Phoenix, Arizona Larry Wickerham, MD National Surgical Adjuvant Breast and Bowel Project Pittsburgh, Pennsylvania iii Contents 1. Introduction................................................................................................................................
    [Show full text]
  • Design and Synthesis of Selective Estrogen Receptor Β Agonists and Their Hp Armacology K
    Marquette University e-Publications@Marquette Dissertations (2009 -) Dissertations, Theses, and Professional Projects Design and Synthesis of Selective Estrogen Receptor β Agonists and Their hP armacology K. L. Iresha Sampathi Perera Marquette University Recommended Citation Perera, K. L. Iresha Sampathi, "Design and Synthesis of Selective Estrogen Receptor β Agonists and Their hP armacology" (2017). Dissertations (2009 -). 735. https://epublications.marquette.edu/dissertations_mu/735 DESIGN AND SYNTHESIS OF SELECTIVE ESTROGEN RECEPTOR β AGONISTS AND THEIR PHARMACOLOGY by K. L. Iresha Sampathi Perera, B.Sc. (Hons), M.Sc. A Dissertation Submitted to the Faculty of the Graduate School, Marquette University, in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Milwaukee, Wisconsin August 2017 ABSTRACT DESIGN AND SYNTHESIS OF SELECTIVE ESTROGEN RECEPTOR β AGONISTS AND THEIR PHARMACOLOGY K. L. Iresha Sampathi Perera, B.Sc. (Hons), M.Sc. Marquette University, 2017 Estrogens (17β-estradiol, E2) have garnered considerable attention in influencing cognitive process in relation to phases of the menstrual cycle, aging and menopausal symptoms. However, hormone replacement therapy can have deleterious effects leading to breast and endometrial cancer, predominantly mediated by estrogen receptor-alpha (ERα) the major isoform present in the mammary gland and uterus. Further evidence supports a dominant role of estrogen receptor-beta (ERβ) for improved cognitive effects such as enhanced hippocampal signaling and memory consolidation via estrogen activated signaling cascades. Creation of the ERβ selective ligands is challenging due to high structural similarity of both receptors. Thus far, several ERβ selective agonists have been developed, however, none of these have made it to clinical use due to their lower selectivity or considerable side effects.
    [Show full text]
  • Once-Promising Arzoxifene Flunks Phase III Trial
    10 OSTEOPOROSIS JANUARY 2010 • CLINICAL ENDOCRINOLOGY NEWS Once-Promising Arzoxifene Flunks Phase III Trial BY BRUCE JANCIN Arzoxifene also significantly reduced the incidence of vertebral fractures by Arzoxifene Reduces Risk For Vertebral, But Not Other Fractures S AN A NTONIO — Arzoxifene, a once- 41% after 36 months of follow-up in Arzoxifene Placebo Risk promising selective estrogen-receptor GENERATIONS participants, who were (n=4,678) (n=4,676) Reduction P Value modulator, experienced a fatal meltdown aged 60-85 years at enrollment. All breast cancers 22 53 58% < .001 EWS in a phase III trial involving nearly 10,000 But there was a deal breaker: the se- N women. lective estrogen-receptor modulator Invasive breast ca 19 43 56% .002 Arzoxifene was being developed for (SERM) produced no significant reduc- Invasive ER+ breast cancer 9 30 70% .001 EDICAL prevention of both tion in nonverte- Vertebral fractures 80 134 41% .001 M Nonvertebral fractures 203 208 none .71 fractures and It’s disappointing, bral fractures. LOBAL G breast cancer in given the time “This is disap- Note: Based on a study of 9,354 postmenopausal women with osteoporosis. postmenopausal and effort ‘put into pointing because Source: Dr. Powles LSEVIER women with os- a major trial with as an antiosteo- E teoporosis or os- good preclinical porosis drug we teopenia. and early clinical really need to have “The overall benefit/risk profile of ar- well as for invasive breast cancer risk re- But the 9,354-pa- data.’ a SERM that zoxifene does not represent a meaning- duction in such women who are at high tient randomized, would not only re- ful advancement in the treatment of os- risk for the cancer or who have osteo- double-blind, DR.
    [Show full text]
  • Raloxifene Or Calcitonin
    Appendices Table of Contents Appendix A. Search Strategy ................................................................................................... A-1 Appendix B. Risk of Bias Assessment Decision Aid .............................................................. B-1 Appendix C. Included References Risk of Bias Assessment ................................................. C-1 Appendix D. Evidence Tables .................................................................................................. D-1 Table D1. Characteristics of observational studies with low or medium risk of bias ............ D-1 Table D2. Characteristics of RCTs and CCTs with low or medium risk of bias .................... D-6 Table D3. Key Questions 1 & 2 Evidence Overview ........................................................... D-15 Table D4. Key Questions 3 & 4 Evidence Overview ........................................................... D-28 Table D5. Key Questions 5 & 6 Evidence Overview ........................................................... D-45 Table D6. Key Questions 7 & 8 Evidence Overview ........................................................... D-50 Table D7. Characteristics of eligible studies with high risk of bias ..................................... D-52 Strength of Evidence Tables ..................................................................................................... 57 Alendronate ....................................................................................................................... D-57 Table D8.
    [Show full text]
  • 022247Orig1s000
    CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: 022247Orig1s000 PHARMACOLOGY REVIEW(S) NDA 22247 Duavee (conjugated estrogens/bzedoxifene) tablets Comments from A. Jacobs, AD Date Oct 2, 2013 1. I concur that there are no outstanding pharm/tox issues. 2. I concur that the pregnancy labeling is appropriate 3. I have previously conveyed comments to the pharm/tox reviewer on the pharm/tox review and labeling, and they have been addressed as appropriate. Reference ID: 3382471 --------------------------------------------------------------------------------------------------------- This is a representation of an electronic record that was signed electronically and this page is the manifestation of the electronic signature. --------------------------------------------------------------------------------------------------------- /s/ ---------------------------------------------------- ABIGAIL C JACOBS 10/02/2013 Reference ID: 3382471 DEPARTMENT OF HEALTH AND HUMAN SERVICES PUBLIC HEALTH SERVICE FOOD AND DRUG ADMINISTRATION CENTER FOR DRUG EVALUATION AND RESEARCH PHARMACOLOGY/TOXICOLOGY NDA REVIEW AND EVALUATION Application number: 22-247 Supporting document/s: SDN #1 Applicant’s letter date: October 3, 2012 CDER stamp date: October 3, 2012 Product: Bazedoxifene and conjugated estrogens Vasomotor symptoms, vulvar vaginal atrophy Indication: and prevention of osteoporosis in postmenopausal women Wyeth Pharmaceuticals Inc. Applicant: Wholly owned subsidiary of Pfizer Inc. Review Division: Division of Reproductive and Urologic Drugs Reviewer:
    [Show full text]
  • Stembook 2018.Pdf
    The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 WHO/EMP/RHT/TSN/2018.1 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances. Geneva: World Health Organization; 2018 (WHO/EMP/RHT/TSN/2018.1). Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data.
    [Show full text]
  • Osteoporosis Therapy Pipeline Is Chock Full
    14 Osteoporosis R HEUMATOLOGY N EWS • October 2006 Osteoporosis Therapy Anastrozole Shaves Bone Density, Pipeline Is Chock Full But Wards Off Breast Ca Recurrence BY JANE SALODOF MACNEIL About a third of the anastrozole patients had BY ROBERT FINN an NDA is planned for 2007 for a Southwest Bureau not reached 5 years of follow-up, however. San Francisco Bureau combination of bazedoxifene and es- They were categorized as “not recorded” in Dr. trogen for osteoporosis treatment ATLANTA — Anastrozole decreased bone Coleman’s analysis. S AN F RANCISCO — “It’s a pret- and possible premenopausal use. Re- mineral density by an average of 6.1% in the In a discussion of the trial, Dr. Julie Gralow, ty exciting time for drug develop- sults from a phase III trial of arzox- lumbar spine and 7.2% in the hip over the 5 of the University of Washington, Seattle, ex- ment in osteoporosis,” Dr. Deborah ifene are not expected until 2010. years that postmenopausal breast cancer pa- cluded the 27 unrecorded patients, 6 of whom Sellmeyer said at a meeting on os- Tibolone is a drug that “likes every tients were enrolled in a study presented by Dr. started out with normal BMD, from a recal- teoporosis sponsored by the Uni- steroid receptor it ever met,” in Dr. Robert E. Coleman at the annual meeting of culation of the data. When she looked only at versity of California, San Francisco. Sellmeyer’s words. Its three metabo- the American Society of Clinical Oncology. patients for whom 5-year data were available, While joking that her information lites separately have affinities for es- Osteoporosis risk appeared limited to women she found that 53% of the women who start- was “sourced from Google and ru- trogen, progesterone, and androgen who were osteopenic before starting treatment ed with normal BMD became osteopenic on mor and various investment receptors.
    [Show full text]