The Freshwater Biological Association 30

Total Page:16

File Type:pdf, Size:1020Kb

The Freshwater Biological Association 30 AnnuatRqport . .1993-1994 1 For ewor d The past year has been one of considerable change in NIERC, both in the focus of its science and in its structures. The catalyst for these changes was the publication of the White Paper Reali7ing our Potential. NERC was given a new mission for its science to embrace the concepts of meeting the needs of its user communities and contributing to wealth creation and the quality of life. We have, of course, always paid close attention to these objectives, but there is now a clear need for a sharper focus and better articulation of what we do in these areas. Basic science and long- tenn monitoring are also included in our mission, and due weight must also be given to these when developing our science strategies. The science directorates will cease to exist towards the end of 1994, and new structures will be put in place. If D Institutes are being regrouped as the Centre for Ecology and Hydrology. However, the report of the Multi- Departmental Scrutiny of Public Sector Research Establishments is awaited, and decisions arising from this may result in further organisational changes within NERC. An important activity during the year has been the preparation of a new science and technology strategy for the terrestrial and freshwater sciences. Publication is expected in July, and a number of research areas will be identified for priority support over the next five years. This is my second and fmal foreword. During my relatively short time with NERC, I have come to appreciate and value the breadth and strength of our work in the terrestrial, freshwater and hydrological sciences. The last year has seen changes in the senior managementposts at IFE. ProfessOr I G Jones relinquished his duties as Director to concentrate on his FBA post and Professor A D Pickering is Acting Director I would like to express my appreciation to both of them. As this Report shows, there have been exciting developments in all the main areas of IFE science, including IFE's involvement in the LOIS (Land-Ocean Interaction Study) Community Research Programme and UK Environmental Change Network. Finally, I should like to state how much I have appreciated the friendships that I have established with so many members of our community. It is these that will be my most valued and lasting memories of NERC. C Anne Director of Terrestrial and Freshwater Sciences Front Cover Illustration: Electrofishing in the outflow stream of Scoat tarn, Wasdale, at an altitude of 1500 ft, for the national acid waters monitoring programme. Report of the Institute of Freshwater Ecology 1993/1994 Natural Environment Research Council á Contents Foreword Director's introduction Management of lakes and reservoirs Managing water quality - why it matters Modelling algal growth The phosphorus cycle Local applications Ecology of large lowland rivers Introduction Food resources in river channels Invertebrates in marinas Discussion Land-river interactions Introduction Faunal richness of headwater streams Habitat/fauna relationships - application to management Microbes in the aquatic environment 10 Methanogens in ciliates Electron microscopy Culture Collection of Algae and Protozoa Bioremediation TIGER Immunodetection of toxic flagellates Fish population dynamics and management 13 Post-Chernobyl radiocaesiurn in brown trout and Arctic charr from six Cuntbrian lakes The relative benefits of "point-stocking" and "scatter-stocking" with unfed Atlantic salmon fry Ecology of schelly in Haweswater The endocrine response of trout alevins and fry to environmental stress during a "critical period" Physico-chemical processes in catchments 17 Chemical modelling Radiocaesium in aquatic systems Silicon dynamics in rivers Biological response to the remediation of an acid lake Sediment studies Chemical analysis River ecosystem processes 20 Control of Simulium posticatum in the River Stour Ecological characteristics of coarse fish in rivers Conservation classification of rivers Aggressive invasive water plants Assessment and prediction of changes in the aquatic environment 21 Introduction Changes over hours to seasons - pH fluctuations in Esthwaite Water Relationship between Windermere sediment accumulation and the weekly plankton records over the last 50 years The impact of daily weather changes on our perception of algal blooms at Loch Leven Laboratory Services 24 The library and information service Electronics and instrumentation Property, buildings and equipment Staff and external activities 26 Staff changes NERC activities Scientific Societies Collaboration With universities International meetings and visits The Freshwater Biological Association 30 Appendices 31 1 Finance 2 Staff list 3 Project list 4 Publications Addresses 44 Director s introduc ion this, 16 Technoissyy c _sight Panels have algal blooms as lakes and reservoirs, are been armoimed, each to review a specific still a majosr- concern to the ",Arater industry' d-ea of aeliVily Didring the consultation (flits .broaded sense) and to ffie generM orocese it has become Clear that bublic Sob-PAM:Mated computer models envdronmental mailers are assuming an based on a inmdamental dndersta_nding of inoreaMng Mnportance, with freshwater all the important factors controlling dlgal issues at Me centre of mans-rot the gisaw-th, have (liven the Mc, an international did:II-scions, In Lids Context I hope tb see a lead in this dea of science, Application of high profile for freshWater science When this technology to 'problem' waters allows the final reports are published. the identficaton cif the most suitable and costseffectve masagernent option. The Focusing more closely to home, the recent incorporation of a venical, announcement ef the appointment of Prof statiff cation component to the model now JelinKrebs as the haw Chief Executive of ektends the fang-a of application from fully NERO. Was made in January 1994 Prof Mixed systems to deep, stratified water Kreb's rest acturirm programme for NERC bodies. Moreover, application of these includes the establishment of the Centre process:- based models has changed ,PUr for Ecology and Hydrology (CM), fundamental understanding and' thereby promoting eyen eloper apprediation of the importance of miLdent collaboration between its cOmponent recycling processes, oartioularly - Ins-Motes (lit ITt TB and NEW Prof shallow, vieli-mixed likes. ci or Alan. Pickedog Brian_ Willdoson ,as [solingDirector of slating Director is,oyetseeing the development of II'S Theinflikenceof changes in weather • 'science programthe„ struSture patterns on algal prodirOtivity in freshwater As Acting Director of tne instjtute of adininistration Within the Inslitute of systems can be detected and, ultimately, Freshwater Ecology, this is my first Freshwater Ecolooy, Prof John Hilton has Modelled over iimeshales varying from opportunity to review our achievements been appointed as Head of the Regional hours (eg the ishotosynthetO activity of OVer the pad year and fo look forwarat Laboratories (River Laboratory, Easterri ohytoplankton in Esthwaita Water) to the future: However, to be given this Rivers Laiporatory, Edinburgh LaboratorY) decades (diatom r;edirnentation in opportunity at a time of major channecm JobaSs exoerciSe add experience in Windermere, the phytoplankon the way in ssihirM UK science is strategic research, combined with his SuCcession in irodh Levels), Such long- administered and foridedinci:easesthe knowledge of Use water industry, will Senn-data sets are an in,valuable resource, challenga Indeed,,dming my 25 years eay strengthen the HE management not only for ffie WE, but dao for UK science with the FFE and the FBA, I cannot recall team and ensure a full' y listegrated in general. The,recent discovery that another pehod of such fundamental research prograrmne across the Mstitnte, long-teliti, cyclical changes Lii roopiankton chan.ges populations in the English-Lake DiStribt are Against:this background of chancre, it is paralleled by changes in rOad-r.;ide Following. on dolt the Government's important to -recognise that onebf the vegetation in Oxfordshire (Mulct be seen to White Paper 'ReatisMg our Potential'', stengths of Instinde science is -the ability be nothing but all odd coMmidance were it -published in May 1993, in which the to put tbaether multdisciplimmy teams for not fq -the fact that both observations also Reseamh Councils were restructured and the pi:lipase of undertaking long-term cerrelate well with cyglical fluctuations in given riew mission statements, •the Office environMental research, In thiS Way, the the latitude of the Gulf Stream! Long- term of Public Service and Science Efficiency Instituteocoopies a unique role and one data set8 in the fields of limnology, Unit's mulUdepartmental scrutiny of 53 which cannot be adequately undertaken terrestrial ecology„oceamography an ptfoho sector reSearch establishments was by other organisations, However, to make meteorologyare now helping us to rnitiated in late 1993 At the Ulric of writina important scientific advances in this area understand mnd predict 119,1V the oceall this- inoduction, the Unit s report has of reSeat att requir es a stability of Structure Currents cad via changes:in:regional been pubhshed but we are stiff in a and funding, a point that must be Weather patternshave important Knpacts 'consultation phasewith regard to Me recognised by the 'user' communist. With on terrestrial and freshwater ecoSystelms options put forward for the future sdooture such considerations in nund t is- my Lndeed, lakes are pdhcularlyresponsite
Recommended publications
  • Protist Phylogeny and the High-Level Classification of Protozoa
    Europ. J. Protistol. 39, 338–348 (2003) © Urban & Fischer Verlag http://www.urbanfischer.de/journals/ejp Protist phylogeny and the high-level classification of Protozoa Thomas Cavalier-Smith Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK; E-mail: [email protected] Received 1 September 2003; 29 September 2003. Accepted: 29 September 2003 Protist large-scale phylogeny is briefly reviewed and a revised higher classification of the kingdom Pro- tozoa into 11 phyla presented. Complementary gene fusions reveal a fundamental bifurcation among eu- karyotes between two major clades: the ancestrally uniciliate (often unicentriolar) unikonts and the an- cestrally biciliate bikonts, which undergo ciliary transformation by converting a younger anterior cilium into a dissimilar older posterior cilium. Unikonts comprise the ancestrally unikont protozoan phylum Amoebozoa and the opisthokonts (kingdom Animalia, phylum Choanozoa, their sisters or ancestors; and kingdom Fungi). They share a derived triple-gene fusion, absent from bikonts. Bikonts contrastingly share a derived gene fusion between dihydrofolate reductase and thymidylate synthase and include plants and all other protists, comprising the protozoan infrakingdoms Rhizaria [phyla Cercozoa and Re- taria (Radiozoa, Foraminifera)] and Excavata (phyla Loukozoa, Metamonada, Euglenozoa, Percolozoa), plus the kingdom Plantae [Viridaeplantae, Rhodophyta (sisters); Glaucophyta], the chromalveolate clade, and the protozoan phylum Apusozoa (Thecomonadea, Diphylleida). Chromalveolates comprise kingdom Chromista (Cryptista, Heterokonta, Haptophyta) and the protozoan infrakingdom Alveolata [phyla Cilio- phora and Miozoa (= Protalveolata, Dinozoa, Apicomplexa)], which diverged from a common ancestor that enslaved a red alga and evolved novel plastid protein-targeting machinery via the host rough ER and the enslaved algal plasma membrane (periplastid membrane).
    [Show full text]
  • Protistology an International Journal Vol
    Protistology An International Journal Vol. 10, Number 2, 2016 ___________________________________________________________________________________ CONTENTS INTERNATIONAL SCIENTIFIC FORUM «PROTIST–2016» Yuri Mazei (Vice-Chairman) Welcome Address 2 Organizing Committee 3 Organizers and Sponsors 4 Abstracts 5 Author Index 94 Forum “PROTIST-2016” June 6–10, 2016 Moscow, Russia Website: http://onlinereg.ru/protist-2016 WELCOME ADDRESS Dear colleagues! Republic) entitled “Diplonemids – new kids on the block”. The third lecture will be given by Alexey The Forum “PROTIST–2016” aims at gathering Smirnov (Saint Petersburg State University, Russia): the researchers in all protistological fields, from “Phylogeny, diversity, and evolution of Amoebozoa: molecular biology to ecology, to stimulate cross- new findings and new problems”. Then Sandra disciplinary interactions and establish long-term Baldauf (Uppsala University, Sweden) will make a international scientific cooperation. The conference plenary presentation “The search for the eukaryote will cover a wide range of fundamental and applied root, now you see it now you don’t”, and the fifth topics in Protistology, with the major focus on plenary lecture “Protist-based methods for assessing evolution and phylogeny, taxonomy, systematics and marine water quality” will be made by Alan Warren DNA barcoding, genomics and molecular biology, (Natural History Museum, United Kingdom). cell biology, organismal biology, parasitology, diversity and biogeography, ecology of soil and There will be two symposia sponsored by ISoP: aquatic protists, bioindicators and palaeoecology. “Integrative co-evolution between mitochondria and their hosts” organized by Sergio A. Muñoz- The Forum is organized jointly by the International Gómez, Claudio H. Slamovits, and Andrew J. Society of Protistologists (ISoP), International Roger, and “Protists of Marine Sediments” orga- Society for Evolutionary Protistology (ISEP), nized by Jun Gong and Virginia Edgcomb.
    [Show full text]
  • Protozoologica ACTA Doi:10.4467/16890027AP.17.016.7497 PROTOZOOLOGICA
    Acta Protozool. (2017) 56: 181–189 www.ejournals.eu/Acta-Protozoologica ACTA doi:10.4467/16890027AP.17.016.7497 PROTOZOOLOGICA Allovahlkampfia minuta nov. sp., (Acrasidae, Heterolobosea, Excavata) a New Soil Amoeba at the Boundary of the Acrasid Cellular Slime Moulds Alvaro DE OBESO FERNADEZ DEL VALLE, Sutherland K. MACIVER Biomedical Sciences, Edinburgh Medical School, University of Edinburgh, Scotland, UK Abstract. We report the isolation of a new species of Allovahlkampfia, a small cyst-forming heterolobosean soil amoeba. Phylogenetic analysis of the 18S rDNA and the internal transcribed spacers indicates that Allovahlkampfia is more closely related to the acrasids than to other heterolobosean groups and indicates that the new strain (GF1) groups with Allovahlkampfia tibetiensisand A. nederlandiensis despite being significantly smaller than these and any other described Allovahlkampfia species. GF1 forms aggregated cyst masses similar to the early stages of Acrasis sorocarp development, in agreement with the view that it shares ancestry with the acrasids. Time-lapse video mi- croscopy reveals that trophozoites are attracted to individuals that have already begun to encyst or that have formed cysts. Although some members of the genus are known to be pathogenic the strain GF1 does not grow above 28oC nor at elevated osmotic conditions, indicating that it is unlikely to be a pathogen. INTRODUCTION and habit. The heterolobosean acrasid slime moulds are very similar to the amoebozoan slime moulds too in life cycle, but these remarkable similarities in ap- The class heterolobosea was first created on mor- pearance and function are most probably due to parallel phological grounds to unite the schizopyrenid amoe- bae/amoeboflagellates with the acrasid slime moulds evolution.
    [Show full text]
  • The Microbial Food Web of the Coastal Southern Baltic Sea As Influenced by Wind-Induced Sediment Resuspension
    THE MICROBIAL FOOD WEB OF THE COASTAL SOUTHERN BALTIC SEA AS INFLUENCED BY WIND-INDUCED SEDIMENT RESUSPENSION I n a u g u r a l - D i s s e r t a t i o n zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln vorgelegt von TOBIAS GARSTECKI aus Magdeburg Köln, 2001 Berichterstatter: Prof. Dr. STEPHEN A. WICKHAM Prof. Dr. HARTMUT ARNDT Tag der letzten mündlichen Prüfung: 29.06.2001 Inhaltsverzeichnis Angabe von verwendeten Fremddaten .............................................. 5 Abkürzungsverzeichnis ..................................................................... 6 1. Einleitung ........................................................................................................ 7 1.1. Begründung der Fragestellung ......................................................... 7 1.2. Herangehensweise ..................................................................... 11 2. A comparison of benthic and planktonic heterotrophic protistan community structure in shallow inlets of the Southern Baltic Sea ........… 13 2.1. Summary ................... ........................................................................ 13 2.2. Introduction ................................................................................. 14 2.3. Materials and Methods ..................................................................... 15 2.3.1. Study sites ..................................................................... 15 2.3.2. Sampling design ........................................................
    [Show full text]
  • This Thesis Has Been Submitted in Fulfilment of the Requirements for a Postgraduate Degree (E.G
    This thesis has been submitted in fulfilment of the requirements for a postgraduate degree (e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following terms and conditions of use: This work is protected by copyright and other intellectual property rights, which are retained by the thesis author, unless otherwise stated. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given. Protein secretion and encystation in Acanthamoeba Alvaro de Obeso Fernández del Valle Doctor of Philosophy The University of Edinburgh 2018 Abstract Free-living amoebae (FLA) are protists of ubiquitous distribution characterised by their changing morphology and their crawling movements. They have no common phylogenetic origin but can be found in most protist evolutionary branches. Acanthamoeba is a common FLA that can be found worldwide and is capable of infecting humans. The main disease is a life altering infection of the cornea named Acanthamoeba keratitis. Additionally, Acanthamoeba has a close relationship to bacteria. Acanthamoeba feeds on bacteria. At the same time, some bacteria have adapted to survive inside Acanthamoeba and use it as transport or protection to increase survival. When conditions are adverse, Acanthamoeba is capable of differentiating into a protective cyst.
    [Show full text]
  • Actions of Cannabinoids on Amoebae
    Actions of Cannabinoids on Amoebae By Israa Al-hammadi This thesis is submitted for the degree of Doctor of Philosophy April 2020 Department of Biomedical and Life Sciences 2nd April 2020 To Whom It May Concern: Declaration Actions of cannabinoids on amoebae. This thesis has not been submitted in support of an application for another degree at this or any other university. It is the result of my own work and includes nothing that is the outcome of work done in collaboration except where specifically indicated. Many of the ideas in this thesis were the product of discussion with my supervisor Dr. Jackie Parry and Dr. Karen Wright. Israa Al-hammadi MSc. BSc. Table of contents Abstract 1 Chapter 1: General Introduction 3 1.1 Introduction 3 1.2 The Endocannabinoid System (ECS) in humans 3 1.2.1 General overview 3 1.2.2 Main ligands of the endocannabinoid system 3 1.2.2.1 Endocannabinoids 4 1.2.2.2 Phytocannabinoids 7 1.2.3 Main cannabinoid receptors 10 1.2.3.1. CB1 and CB2 receptors 10 1.2.3.2 The transient receptor potential vanilloid type 1 (TRPV1) 11 1.2.3.3 G-protein coupled receptor 55 (GPR55) 11 1.2.4 Other receptors 12 1.2.4.1 Peroxisome Proliferator-activated Receptors (PPARs) 12 1.2.4.2 Dopamine Receptors 14 1.2.4.3 Serotonin receptors (5-HT) 16 1.3. Existence of an endocannabinoid system in single-celled eukaryotes 17 1.3.1. Endocannabinoids in Tetrahymena 18 1.3.2. Enzymes in Tetrahymena 19 1.3.3.
    [Show full text]
  • Diversity, Phylogeny and Phylogeography of Free-Living Amoebae
    School of Doctoral Studies in Biological Sciences University of South Bohemia in České Budějovice Faculty of Science Diversity, phylogeny and phylogeography of free-living amoebae Ph.D. Thesis RNDr. Tomáš Tyml Supervisor: Mgr. Martin Kostka, Ph.D. Department of Parasitology, Faculty of Science, University of South Bohemia in České Budějovice Specialist adviser: Prof. MVDr. Iva Dyková, Dr.Sc. Department of Botany and Zoology, Faculty of Science, Masaryk University České Budějovice 2016 This thesis should be cited as: Tyml, T. 2016. Diversity, phylogeny and phylogeography of free living amoebae. Ph.D. Thesis Series, No. 13. University of South Bohemia, Faculty of Science, School of Doctoral Studies in Biological Sciences, České Budějovice, Czech Republic, 135 pp. Annotation This thesis consists of seven published papers on free-living amoebae (FLA), members of Amoebozoa, Excavata: Heterolobosea, and Cercozoa, and covers three main topics: (i) FLA as potential fish pathogens, (ii) diversity and phylogeography of FLA, and (iii) FLA as hosts of prokaryotic organisms. Diverse methodological approaches were used including culture-dependent techniques for isolation and identification of free-living amoebae, molecular phylogenetics, fluorescent in situ hybridization, and transmission electron microscopy. Declaration [in Czech] Prohlašuji, že svoji disertační práci jsem vypracoval samostatně pouze s použitím pramenů a literatury uvedených v seznamu citované literatury. Prohlašuji, že v souladu s § 47b zákona č. 111/1998 Sb. v platném znění souhlasím se zveřejněním své disertační práce, a to v úpravě vzniklé vypuštěním vyznačených částí archivovaných Přírodovědeckou fakultou elektronickou cestou ve veřejně přístupné části databáze STAG provozované Jihočeskou univerzitou v Českých Budějovicích na jejích internetových stránkách, a to se zachováním mého autorského práva k odevzdanému textu této kvalifikační práce.
    [Show full text]
  • Protozoologica
    Acta Protozool. (2011) 50: 43–50 ActA http://www.eko.uj.edu.pl/ap Protozoologica A New Thermophilic Heterolobosean Amoeba, Fumarolamoeba ceborucoi, gen. nov., sp. nov., Isolated Near a Fumarole at a Volcano in Mexico Johan F. De JoNckHeere1,2, Jun MurAse3 and Fred r. opperDoes4 1 research unit for Tropical Diseases, de Duve Institute, B-1200 Brussels, Belgium; 3 scientific Institute of public Health, B-1050 Brussels, Belgium; 3Graduate school of Bioagricultural sciences, Nagoya university, Nagoya, Japan; 4 université catholique de Louvain, B-1200 Brussels, Belgium summary. An amoeba was isolated from a soil sample collected at the edge of a fumarole of the volcano Ceboruco in the state of Nayarit, Mexico. The trophozoites of this new isolate have eruptive pseudopodes and do not transform into flagellates. The strain forms cysts that have a double wall. This thermophilic amoeba grows at temperatures up to 50°C. Molecular phylogenetic analysis of the small subunit ribosomal DNA (SSU rDNA) places the amoeba into the Heterolobosea. The closest relatives are Paravahlkampfia spp. Like some other heterolobosean species, this new isolate has a group I intron in the SSU rDNA. Because of its position in the molecular phylogenetic tree, and because there is no species found in the literature with similar morphological and physiological characteristics, this isolate is described as a new genus and a new species, Fumarolamoeba ceborucoi gen. nov., sp. nov. key words: Group I intron, Heterolobosea, new genus, new species, SSU rDNA, thermophilic. INTroDucTIoN one Vahlkampfia sp. did transform into flagellates it was transferred to a newly established genus, Paratetrami- tus (Darbyshire et al.
    [Show full text]
  • Marine Biological Laboratory) Data Are All from EST Analyses
    TABLE S1. Data characterized for this study. rDNA 3 - - Culture 3 - etK sp70cyt rc5 f1a f2 ps22a ps23a Lineage Taxon accession # Lab sec61 SSU 14 40S Actin Atub Btub E E G H Hsp90 M R R T SUM Cercomonadida Heteromita globosa 50780 Katz 1 1 Cercomonadida Bodomorpha minima 50339 Katz 1 1 Euglyphida Capsellina sp. 50039 Katz 1 1 1 1 4 Gymnophrea Gymnophrys sp. 50923 Katz 1 1 2 Cercomonadida Massisteria marina 50266 Katz 1 1 1 1 4 Foraminifera Ammonia sp. T7 Katz 1 1 2 Foraminifera Ovammina opaca Katz 1 1 1 1 4 Gromia Gromia sp. Antarctica Katz 1 1 Proleptomonas Proleptomonas faecicola 50735 Katz 1 1 1 1 4 Theratromyxa Theratromyxa weberi 50200 Katz 1 1 Ministeria Ministeria vibrans 50519 Katz 1 1 Fornicata Trepomonas agilis 50286 Katz 1 1 Soginia “Soginia anisocystis” 50646 Katz 1 1 1 1 1 5 Stephanopogon Stephanopogon apogon 50096 Katz 1 1 Carolina Tubulinea Arcella hemisphaerica 13-1310 Katz 1 1 2 Cercomonadida Heteromita sp. PRA-74 MBL 1 1 1 1 1 1 1 7 Rhizaria Corallomyxa tenera 50975 MBL 1 1 1 3 Euglenozoa Diplonema papillatum 50162 MBL 1 1 1 1 1 1 1 1 8 Euglenozoa Bodo saltans CCAP1907 MBL 1 1 1 1 1 5 Alveolates Chilodonella uncinata 50194 MBL 1 1 1 1 4 Amoebozoa Arachnula sp. 50593 MBL 1 1 2 Katz lab work based on genomic PCRs and MBL (Marine Biological Laboratory) data are all from EST analyses. Culture accession number is ATTC unless noted. GenBank accession numbers for new sequences (including paralogs) are GQ377645-GQ377715 and HM244866-HM244878.
    [Show full text]
  • The Hydrogenosomes of Psalteriomonas Lanterna
    BMC Evolutionary Biology BioMed Central Research article Open Access The hydrogenosomes of Psalteriomonas lanterna Rob M de Graaf†1, Isabel Duarte†2, Theo A van Alen1, Jan WP Kuiper1,4, Klaas Schotanus1,5, Jörg Rosenberg3, Martijn A Huynen2,6 and Johannes HP Hackstein*1 Address: 1Department of Evolutionary Microbiology, IWWR, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands, 2Center for Molecular and Biomolecular Informatics, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Geert Grooteplein 28, 6525GA Nijmegen, The Netherlands, 3Sommerhaus 45, D-50129 Bergheim, Germany, 4CIHR Group in Matrix Dynamics, University of Toronto, 150 College Street, Toronto, Ontario, Canada M5S 3E2, 5Department of Ecology and Evolutionary Biology, 106A Guyot Hall, Princeton University, Princeton NJ 08554-2016, USA and 6Netherlands Bioinformatic Centre, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands Email: Rob M de Graaf - [email protected]; Isabel Duarte - [email protected]; Theo A van Alen - [email protected]; Jan WP Kuiper - [email protected]; Klaas Schotanus - [email protected]; Jörg Rosenberg - [email protected]; Martijn A Huynen - [email protected]; Johannes HP Hackstein* - [email protected] * Corresponding author †Equal contributors Published: 9 December 2009 Received: 20 July 2009 Accepted: 9 December 2009 BMC Evolutionary Biology 2009, 9:287 doi:10.1186/1471-2148-9-287 This article is available from: http://www.biomedcentral.com/1471-2148/9/287 © 2009 de Graaf et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    [Show full text]
  • Isolation of Naegleria Spp. from a Brazilian Water Source
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 December 2019 doi:10.20944/preprints201912.0038.v1 Peer-reviewed version available at Pathogens 2020, 9, 90; doi:10.3390/pathogens9020090 Article Isolation of Naegleria spp. from a Brazilian Water Source Natália Karla Bellini1,2; Ana Letícia Moreira da Fonseca1, María Reyes-Batlle2, Jacob Lorenzo-Morales2, Odete Rocha3, Otavio Henrique Thiemann1,4, * 1 Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, 13560-590, São Carlos, SP, Brazil; NKB ([email protected]); 2 Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Tenerife, Canary Islands, Spain; MRB ([email protected]); JLM ([email protected]); 3 Departamento de Ecologia e Biologia Evolutiva, Universidade Federal de São Carlos, Rodovia Washington Luis, km 235, CEP 13565-905, São Carlos, SP, Brazil ; OR ([email protected]) 4 Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil * Correspondence: OHT Tel: 55-16-3373-8089, e-mail: [email protected] Abstract: The genus Naegleria, of free-living amoeba (FLA) group, has been investigated mainly due to its human health impact resulting in deadly infections and their worldwide distribution on freshwater systems. Naegleria fowleri, colloquially known as the “brain-eating amoeba”, is the most studied Naegleria species because it causes Primary Amoebic Meningoencephalitis (PAM) of high lethality. The assessment of FLA biodiversity is fundamental to evaluate the presence of pathogenic species and the possibility of human contamination. However, the knowledge of FLA distribution in Brazil is unknown, and to rectify this situation we present a research on identifying Naegleria spp.
    [Show full text]
  • Cartography of Free-Living Amoebae in Soil in Guadeloupe (French West Indies) Using DNA Metabarcoding
    pathogens Article Cartography of Free-Living Amoebae in Soil in Guadeloupe (French West Indies) Using DNA Metabarcoding Yann Reynaud, Célia Ducat, Antoine Talarmin and Isabel Marcelino * TReD-Path Unit (Transmission, Réservoirs et Diversité des Pathogènes), LEMic (Laboratoire Interactions des Ecosystèmes Microbiens), Institut Pasteur de la Guadeloupe, Morne Jolivière, 97183 Abymes, France; [email protected] (Y.R.); [email protected] (C.D.); [email protected] (A.T.) * Correspondence: [email protected]; Tel.: +33-590-590-89-7664 Received: 14 April 2020; Accepted: 3 May 2020; Published: 4 June 2020 Abstract: Free-living amoebae (FLA) are ubiquitous protists. Pathogenic FLA such as N. fowleri can be found in hot springs in Guadeloupe, soil being the origin of this contamination. Herein, we analyzed the diversity and distribution of FLA in soil using a targeted metataxonomic analysis. Soil samples (n = 107) were collected from 40 sites. DNA was extracted directly from soil samples or from FLA cultivated at different temperatures (30, 37 and 44 ◦C). Metabarcoding studies were then conducted through FLA 18SrDNA amplicons sequencing; amplicon sequence variants (ASV) were extracted from each sample and taxonomy assigned against SILVA database using QIIME2 and SHAMAN pipelines. Vermamoeba were detected in DNA extracted directly from the soil, but to detect other FLA an amoebal enrichment step was necessary. V. vermiformis was by far the most represented species of FLA, being detected throughout the islands. Although Naegleria were mainly found in Basse-Terre region, N. fowleri was also detected in Grand Terre and Les Saintes Islands. Acanthamoeba were mainly found in areas where temperature is approx.
    [Show full text]