A&A 499, 215–232 (2009) Astronomy DOI: 10.1051/0004-6361/200811550 & c ESO 2009 Astrophysics Increased complexity in interstellar chemistry: detection and chemical modeling of ethyl formate and n-propyl cyanide in Sagittarius B2(N), A. Belloche1,R.T.Garrod2,1,H.S.P.Müller3,1,K.M.Menten1, C. Comito1, and P. Schilke1 1 Max-Planck Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany e-mail: [belloche;kmenten;ccomito;schilke]@mpifr-bonn.mpg.de 2 Department of Astronomy, Cornell University, 106 Space Sciences Building, Ithaca, NY 14853, USA e-mail:
[email protected] 3 I. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, 50937 Köln, Germany e-mail:
[email protected] Received 19 December 2008 / Accepted 17 February 2009 ABSTRACT Context. In recent years, organic molecules of increasing complexity have been found toward the prolific Galactic center source Sagittarius B2. Aims. We wish to explore the degree of complexity that the interstellar chemistry can reach in star-forming regions. Methods. We carried out a complete line survey of the hot cores Sgr B2(N) and (M) with the IRAM 30 m telescope in the 3 mm range, plus partial surveys at 2 and 1.3 mm. We analyzed this spectral survey in the local thermodynamical equilibrium approximation. We modeled the emission of all known molecules simultaneously, which allows us to search for less abundant, more complex molecules. We compared the derived column densities with the predictions of a coupled gas-phase and grain-surface chemical code. Results. We report the first detection in space of ethyl formate (C2H5OCHO) and n-propyl cyanide (C3H7CN) toward Sgr B2(N).