Major Drug Interactions with Cyclosporine and Tacrolimus

Total Page:16

File Type:pdf, Size:1020Kb

Major Drug Interactions with Cyclosporine and Tacrolimus Major drug interactions with cyclosporine and tacrolimus Major drug interactions with cyclosporine (CsA) and tacrolimus (TAC):1,2 éé Increased immunosuppressant concentration êê Decreased immunosuppressant concentration Interacting class Interacting agents Effect(s) Management suggestions Anticonvulsants Carbamazepine, êê CsA or TAC concentration Closely monitor CsA or TAC serum con- pentobarbital, centration. Effect of CYP3A4 induction phenobarbital, may occur over weeks. phenytoin, primodone Antimicrobials Antifungals Fluconazole, éé CsA or TAC concentration Closely monitor CsA or TAC serum itraconazole, concentration. The following empiric ketoconazole (oral), Additive QTc prolongation due initial dose adjustments may be posaconazole, to fluconazole or voriconazole considered. voriconazole with TAC For TAC: • decrease dose by 66% if initiating posaconazole or voriconazole, or by 40% if initiating fluconazole ≥ 200 mg/day For CsA: • decrease dose by 50% if initiating voriconazole, or by 25% if initiating posaconazole or fluconazole ≥ 200 mg/day. Antimalarials Mefloquine, quinine, é CsA or TAC concentration Closely monitor CsA or TAC serum quinidine concentration. Additive QTc prolongation due to tacrolimus with anti- Monitor for QTc prolongation if antima- malarials larial treatment must be initiated in a patient receiving tacrolimus. Antimycobacterial Rifabutin, rifampin êê CsA or TAC concentration Closely monitor CsA or TAC serum concentration. HIV and hepatitis Atazanavir, cobicistat, éé CsA or TAC concentration Closely monitor CsA or TAC serum C virus (HCV) darunavir, delavirdine, concentration. antiretrovirals fosamprenavir, indina- CsA may increase protease vir, lopinavir-ritonavir, inhibitor concentrations If used with CsA, monitor protease nelfinavir, ritonavir, inhibitor(s) for toxicity and serum saquinavir, tipranavir concentrations where available. Early consultation with HIV/HCV infectious diseases specialist is recommended. Efavirenz, etravirine, êê CsA or TAC concentration Closely monitor CsA or TAC serum nevirapine, tipranavir concentration. Macrolide antibiotics Clarithromycin, eryth- éé CsA or TAC concentration Consider substituting a noninteracting romycin antibiotic. Azithromycin and spiramycin are less likely to interact. Continued on next page... BC Provincial Renal Agency • Suite 700-1380 Burrard St. • Vancouver, BC • V6Z 2H3 • 604.875.7340 • BCRenalAgency.ca January 2016 1 of 4 Major drug interactions with cyclosporine and tacrolimus Other anti-infectives Chloramphenicol, le- é CsA or TAC concentration Closely monitor CsA or TAC serum vofloxacin, metronida- concentration. zole, norfloxacin (with CsA), tetracycline, tigecycline Antineoplastic Bicalutamide, nilotinib, é CsA or TAC concentration Closely monitor CsA or TAC serum sunitinib, tamoxifen, concentration. vandetanib, vemu- rafenib Antineoplastic agents CsA, and to a lesser degree Monitor antineoplastic for exaggerated that are dependent TAC, may é antineoplastic toxicity and monitor CsA or TAC upon CYP3A4 and/or concentrations. serum concentration when used with P-gp for metabolism doxorubicin or vinblastine. (e.g. doxorubicin, Doxorubicin or vinblastine may vinblastine) ê CsA or TAC concentration Crizotinib é CsA or TAC concentration Closely monitor CsA or TAC serum concentration. Increased QTc prolongation with TAC Avoid crizotinib with TAC or monitor for QTc prolongation. Benzodiazepines Alprazolam, clonaz- é benzodiazepine Monitor benzodiazepine effect to deter- epam, diazepam, flu- concentration with CsA mine whether dose alteration needed. razepam, midazolam, triazolam Cardiovascular Antiarrhythmics Amiodarone, dronedar- é CsA or TAC concentration Closely monitor CsA or TAC serum one, lidocaine (sys- concentration. temic), quinidine Additive QTc prolongation with TAC Avoid QTc prolonging agents with TAC or closely monitor for QTc prolongation. Anticoagulants Apixaban, dabigatran, é anticoagulant concentration Monitor for signs of excessive antico- (direct thrombin rivaroxaban agulation. inhibitors and direct factor Xa inhibitors) Avoid in patients receiving CsA or TAC with renal insufficiency (CrCl < 50 mL/min). Calcium channel Diltiazem, verapamil é é CsA or TAC concentra- Closely monitor CsA or TAC serum blockers (CCB) tion concentration. Amlodipine, felodipine, é é TAC concentration Closely monitor TAC serum concentra- nifedipine tion. Amlodipine, felodipine, é dihydropyridine CCB con- Monitor for exaggerated dihydropyridine nifedipine, nimodipine centration with CsA CCB effects. Continued on next page... BC Provincial Renal Agency • Suite 700-1380 Burrard St. • Vancouver, BC • V6Z 2H3 • 604.875.7340 • BCRenalAgency.ca January 2016 2 of 4 Major drug interactions with cyclosporine and tacrolimus HMG-CoA reductase Atorvastatin, lovastatin, é statin concentration and Avoid simvastatin. inhibitors (“statins”) pravastatin, rosuvas- risk of statin toxicity including Fluvastatin and pravastatin may have a tatin, simvastatin myotoxicity with CsA lower risk of interaction. TAC does not appear to alter Avoid using maximum doses of statins atorvastatin concentrations as the statin blood levels are likely in one pK study. There is one higher than expected from the dose. case report associating TAC and simvastatin usage with rhabdomyolysis. Other cardiovascular Carvedilol, dipyri- é CsA or TAC concentration Closely monitor CsA or TAC serum damole, propranolol, concentration. TAC is less likely to be reserpine altered than CsA. Dietary Grapefruit juice and é CsA or TAC concentration Avoid grapefruit juice and grapefruit with grapefruit CsA or TAC. Gastrointestinal Aprepitant, cimetidine, é CsA or TAC concentration Closely monitor CsA or TAC serum fosaprepitant concentration Metoclopramide é CsA or TAC concentration Octreotide é CsA (orally administered) CsA microemulsion may be less likely to interact with octreotide. Additive QTc prolongation with TAC Orlistat êê CsA concentration Closely monitor CsA serum concentra- tion Omeprazole, lansopra- é TAC concentration Pantoprazole and rabeprazole are less zole likely to interact. Glucocorticoids and anti-gout Anti-gout Allopurinol éé CsA concentration. The Closely monitor CsA serum concentra- mechanism is unknown. tion Colchicine é colchicine toxicity. Monitor for toxicity and consider dose reduction if co-administration is un- Toxic effects more pro- avoidable. nounced with renal and/or hepatic insufficiency. For patients with normal renal and hepatic function, the following dose reductions are suggested: acute gout: 0.6 mg once followed by 0.3 mg one hour later. Do not repeat before 72 hours. Gout prophylaxis: reduce dose by 50%; double interval. Herbs St. Johns wort êê CsA or TAC concentration Avoid St. John's wort with CsA or TAC. Schisandra é TAC concentration Avoid Schisandra with CsA or TAC. Hormones Estrogen preparations é CsA concentration Closely monitor CsA serum concentra- tion Testosterone prepa- é CsA or TAC concentration Closely monitor CsA or TAC serum rations (including concentration if concurrent use cannot danazol, methyltestos- be avoided. terone, testosterone) Continued on next page... BC Provincial Renal Agency • Suite 700-1380 Burrard St. • Vancouver, BC • V6Z 2H3 • 604.875.7340 • BCRenalAgency.ca January 2016 3 of 4 Major drug interactions with cyclosporine and tacrolimus Hypnotic (also see zopiclone, zolpidem é in hypnotic concentration Monitor hypnotic effect to determine benzodiazepines with CsA whether dose alteration is needed. above) Hypoglycemic Sulfonylureas including é CsA concentration Monitor CsA concentrations closely. gliclazide, glimepiride, glyburide Immunosuppres- Cyclosporine (CsA) Increased risk of serious Alteration of mycophenolate dosing is sant renal, hematologic, and other usually required when CsA is initiated, toxicities in combination with stopped, or added. sirolimus When used with everolimus, reduction êê mycophenolate concen- of CsA dose and target concentration is tration generally necessary. éé everolimus concentration It is suggested that oral doses of siro- limus be administered four hours after éé sirolimus (with cyclospo- cyclosporine doses. rine microemulsion) Tacrolimus (TAC) Increased risk of serious renal, Avoid concomitant use with sirolimus. hematologic, or other toxicities with sirolimus If everolimus is used with TAC, closely monitor everolimus serum concentra- é everolimus concentration tions. Psychiatry Desipramine, halo- é CsA or TAC concentration Consider antidepressants that do not peridol, fluoxetine, interact; closely monitor CsA or TAC fluvoxamine, sertraline, serum concentration if used. trazodone Pimozide Elevated pimozide level and/or Avoid use of pimozide due to increased increased QTc prolongation risk of cardiotoxicity. Other Bosentan êê CsA or TAC concentration Closely monitor CsA or TAC serum concentration. Cinacalcet ê CsA or TAC concentration Sevelamer ê TAC concentration êê CsA concentration References 1. Major drug interactions with immunosuppressants: Lexi-interact 1978-2016 2. Baxter K, Baxter P, Claire, L. Immunosuppressant monograph: Stockley’s drug interactions 10th ed. 2013 BC Provincial Renal Agency • Suite 700-1380 Burrard St. • Vancouver, BC • V6Z 2H3 • 604.875.7340 • BCRenalAgency.ca January 2016 4 of 4.
Recommended publications
  • Pharmacokinetic Interactions Between Herbal Medicines and Drugs: Their Mechanisms and Clinical Relevance
    life Review Pharmacokinetic Interactions between Herbal Medicines and Drugs: Their Mechanisms and Clinical Relevance Laura Rombolà 1 , Damiana Scuteri 1,2 , Straface Marilisa 1, Chizuko Watanabe 3, Luigi Antonio Morrone 1, Giacinto Bagetta 1,2,* and Maria Tiziana Corasaniti 4 1 Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, Section of Preclinical and Translational Pharmacology, University of Calabria, 87036 Rende, Italy; [email protected] (L.R.); [email protected] (D.S.); [email protected] (S.M.); [email protected] (L.A.M.) 2 Pharmacotechnology Documentation and Transfer Unit, Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy 3 Department of Physiology and Anatomy, Tohoku Pharmaceutical University, 981-8558 Sendai, Japan; [email protected] 4 School of Hospital Pharmacy, University “Magna Graecia” of Catanzaro and Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-0984-493462 Received: 28 May 2020; Accepted: 30 June 2020; Published: 4 July 2020 Abstract: The therapeutic efficacy of a drug or its unexpected unwanted side effects may depend on the concurrent use of a medicinal plant. In particular, constituents in the medicinal plant extracts may influence drug bioavailability, metabolism and half-life, leading to drug toxicity or failure to obtain a therapeutic response. This narrative review focuses on clinical studies improving knowledge on the ability of selected herbal medicines to influence the pharmacokinetics of co-administered drugs. Moreover, in vitro studies are useful to anticipate potential herbal medicine-drug interactions.
    [Show full text]
  • ( 12 ) United States Patent
    US010376507B2 (12 ) United States Patent (10 ) Patent No. : US 10 , 376 , 507 B2 Srinivasan et al. (45 ) Date of Patent: Aug. 13 , 2019 CRESEMBA® ( isavuconazonium sulfate ) , Highlights of Prescrib (54 ) METHOD OF TREATING A PATIENT WITH ing Information , Label ; Patient Information approved by the U . S . A CYP3A4 SUBSTRATE DRUG Food and Drug Administration ; Astellas Pharma US , Inc. ( Licensed from Basilea Pharmaceutics International Ltd . ) , Illinois, USA , Ini (71 ) Applicant: Bow River LLC , Corona Del Mar , CA tial U . S . Approval: 2015 , Revised Mar. 2015 , Reference ID : 3712237, ( US ) 28 pages . DIFLUCAN® ( fluconazole ), Label ; Patient Information , Reference ( 72 ) Inventors : Sundar Srinivasan , Corona Del Mar, ID : 3650838 , Roerig , Division of Pfizer Inc ., New York , NY, Revised Mar. 2013 , 35 pages. CA (US ) ; Christina Chow , Seattle , WA NIZORAL® (ketoconazole )Label ; Patient Information approved by (US ) the U . S . Food and Drug Administration , Reference ID : 3458324 , Copyright 2014 Janssen Pharmaceuticals, Inc . , New Jersey, USA , ( 73 ) Assignee : BOW RIVER LLC , Corona del Mar , Revised Feb . 2014 , 23 pages . NOXAFIL® (posaconazole ) , Highlights of Prescribing Informa CA (US ) tion , Label ; Patient Information approved by the U . S . Food and Drug Administration ; Copyright © 2006 , 2010 , 2013 , 2014 Merck ( * ) Notice : Subject to any disclaimer , the term of this Sharp & Dohme Corp . , a subsidiary of Merck & Co ., Inc ., New patent is extended or adjusted under 35 Jersey , USA , Revised Sep . 2016 , Reference ID : 3983525, 37 pages . U . S . C . 154 (b ) by 0 days. ORAVIG® (miconazole ) , Highlights of Prescribing Information , Label ; Patient Information approved by the U . S . Food and Drug Administration ; Copyright 2012 Praelia Pharmaceuticals , Inc . , North (21 ) Appl.
    [Show full text]
  • The Antimycobacterial Activity of Hypericum Perforatum Herb and the Effects of Surfactants
    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 8-2012 The Antimycobacterial Activity of Hypericum perforatum Herb and the Effects of Surfactants Shujie Shen Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Engineering Commons Recommended Citation Shen, Shujie, "The Antimycobacterial Activity of Hypericum perforatum Herb and the Effects of Surfactants" (2012). All Graduate Theses and Dissertations. 1322. https://digitalcommons.usu.edu/etd/1322 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. i THE ANTIMYCOBACTERIAL ACTIVITY OF HYPERICUM PERFORATUM HERB AND THE EFFECTS OF SURFACTANTS by Shujie Shen A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Biological Engineering Approved: Charles D. Miller, PhD Ronald C. Sims, PhD Major Professor Committee Member Marie K. Walsh, PhD Mark R. McLellan, PhD Committee Member Vice President for Research and Dean of the School of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2012 ii Copyright © Shujie Shen 2012 All Rights Reserved iii ABSTRACT The Antimycobacterial Activity of Hypericum perforatum Herb and the Effects of Surfactants by Shujie Shen, Master of Science Utah State University, 2012 Major Professor: Dr. Charles D. Miller Department: Biological Engineering Due to the essential demands for novel anti-tuberculosis treatments for global tuberculosis control, this research investigated the antimycobacterial activity of Hypericum perforatum herb (commonly known as St.
    [Show full text]
  • The Differential Effects of Statins on the Metastatic Behaviour of Prostate Cancer
    British Journal of Cancer (2012) 106, 1689–1696 & 2012 Cancer Research UK All rights reserved 0007 – 0920/12 www.bjcancer.com The differential effects of statins on the metastatic behaviour of prostate cancer *,1 1 1 2,3 2,3 2,4 1,2,4 M Brown , C Hart , T Tawadros , V Ramani , V Sangar , M Lau and N Clarke 1 Genito Urinary Cancer Research Group, University of Manchester, Paterson Institute for Cancer Research, Manchester Academic Health Science Centre, 2 The Christie NHS Foundation Trust, Wilmslow Road, Withington, Manchester M20 4BX, UK; Department of Urology, The Christie NHS Foundation 3 Trust, Wilmslow Road, Manchester M20 4BX, UK; Department of Urology, University Hospital of South Manchester NHS Trust, Manchester M23 9LT, 4 UK; Department of Urology, Salford Royal NHS Foundation Trust, Stott Lane, Manchester M6 8HD, UK BACKGROUND: Although statins do not affect the incidence of prostate cancer (CaP), usage reduces the risk of clinical progression and mortality. Although statins are known to downregulate the mevalonate pathway, the mechanism by which statins reduce CaP progression is unknown. METHODS: Bone marrow stroma (BMS) was isolated with ethical approval from consenting patients undergoing surgery for non- malignant disease. PC-3 binding, invasion and colony formation within BMS was assessed by standardised in vitro co-culture assays in the presence of different statins. RESULTS: Statins act directly on PC-3 cells with atorvastatin, mevastatin, simvastatin (1 mM) and rosuvastatin (5 mM), but not pravastatin, significantly reducing invasion towards BMS by an average of 66.68% (range 53.93–77.04%; Po0.05) and significantly reducing both 2 2 number (76.2±8.29 vs 122.9±2.48; P ¼ 0.0055) and size (0.2±0.0058 mm vs 0.27±0.012 mm ; P ¼ 0.0019) of colonies formed within BMS.
    [Show full text]
  • What Precautions Should We Use with Statins for Women of Childbearing
    CLINICAL INQUIRIES What precautions should we use with statins for women of childbearing age? Chaitany Patel, MD, Lisa Edgerton, PharmD New Hanover Regional Medical Center, Wilmington, North Carolina Donna Flake, MSLS, MSAS Coastal Area Health Education Center, Wilmington, NC EVIDENCE- BASED ANSWER Statins are contraindicated for women who are on its low tissue-penetration properties. pregnant or breastfeeding. Data evaluating statin Cholesterol-lowering with simvastatin 40 mg/d did use for women of childbearing age is limited; how- not disrupt menstrual cycles or effect luteal phase ever, they may be used cautiously with adequate duration (strength of recommendation: C). contraception. Pravastatin may be preferred based CLINICAL COMMENTARY Use statins only as a last resort Before reading this review, I had not been for women of childbearing age ® Dowdenaware Health of the serious Media effects of statin medications I try to follow the USPSTF recommendations and on the developing fetus. In conversations with not screen women aged <45 years without coro- my colleagues, I found that the adverse effects nary artery disease riskCopyright factors for Fhyperlipidemia.or personalof usestatins onlyduring pregnancy are not readily When a woman of any age needs treatment, my known. Such information needs to be more first-line therapy is lifestyle modification. Given the widely disseminated. risks of statin drugs to the developing fetus, Ariel Smits, MD women with childbearing potential should give Department of Family Medicine, Oregon Health & Science fully informed consent and be offered reliable University, Portland contraception before stating statin therapy. I Evidence summary anal, cardiac, tracheal, esophageal, renal, Hydroxymethyl glutaryl coenzyme A and limb deficiency (VACTERL associa- (HMG CoA) reductase inhibitors, com- tion), intrauterine growth retardation monly called statins, have been on the (IUGR), and demise in fetuses exposed market since the late 1980s.
    [Show full text]
  • Addyi Generic Name: Flibanserin Manufacturer
    Brand Name: Addyi Generic Name: Flibanserin Manufacturer: Sprout Pharmaceuticals Drug Class: Central Nervous System Agent, Serotonin Agonist, Dopamine antagonist Uses: Labeled Uses: Indicated for the treatment of premenopausal women with acquired, generalized hypoactive sexual desire disorder (HSDD) as characterized by low sexual desire that causes marked distress or interpersonal difficulty and is NOT due to: A co-existing medical or psychiatric condition, problems within the relationship, or the effects of a medication or other drug substance. Unlabeled Uses: none. Mechanism of Action: The mechanism of action for flibanserin in the treatment of hypoactive sexual desire disorder is unknown. Flibanserin has high affinity for serotonin (5-hydroxytryptamine or 5-HT) 1A receptors, as an agonist, and 5-HT2A receptors, as an antagonist, and moderate affinity for 5- HT2B, 5-HT2C, and dopamine D4 receptors as an antagonist Pharmacokinetics: Absorption: Tmax 0.75 hours Vd 50L t ½ 11 hours Clearance Not reported Protein binding 98% (albumin) Bioavailability 33% Metabolism: Flibanserin is extensively metabolized primarily by CYP3A4 and, to a lesser extent, CYP2C19 to at least 35 metabolites, with most of the metabolites occurring in low concentrations in plasma. Elimination: Flibanserin is primarily excreted through the kidneys in to urine (44%) and feces (51%). Two metabolites could be characterized that showed plasma concentration similar to that achieved with flibanserin: 6,21-dihydroxy-flibanserin-6,21-disulfate and 6- hydroxy-flibanserin-6-sulfate. These two metabolites are inactive. Efficacy: Katz M, DeRogatis LR, Ackerman R, et al. Efficacy of flibanserin in women with hypoactive sexual desire disorder: results from the BEGONIA trial. J Sex Med.
    [Show full text]
  • Revised Use-Function Classification (2007)
    INTERNATIONAL PROGRAMME ON CHEMICAL SAFETY IPCS INTOX Data Management System (INTOX DMS) Revised Use-Function Classification (2007) The Use-Function Classification is used in two places in the INTOX Data Management System: the Communication Record and the Agent/Product Record. The two records are linked: if there is an agent record for a Centre Agent that is the subject of a call, the appropriate Intended Use-Function can be selected automatically in the Communication Record. The Use-Function Classification is used when generating reports, both standard and customized, and for searching the case and agent databases. In particular, INTOX standard reports use the top level headings of the Intended Use-Functions that were selected for Centre Agents in the Communication Record (e.g. if an agent was classified as an Analgesic for Human Use in the Communication Record, it would be logged as a Pharmaceutical for Human Use in the report). The Use-Function classification is very important for ensuring harmonized data collection. In version 4.4 of the software, 5 new additions were made to the top levels of the classification provided with the system for the classification of organisms (items XIV to XVIII). This is a 'convenience' classification to facilitate searching of the Communications database. A taxonomic classification for organisms is provided within the INTOX DMS Agent Explorer. In May/June 2006 INTOX users were surveyed to find out whether they had made any changes to the Use-Function Classification. These changes were then discussed at the 4th and 5th Meetings of INTOX Users. Version 4.5 of the INTOX DMS includes the revised pesticides classification (shown in full below).
    [Show full text]
  • M2021: Pharmacogenetic Testing
    Pharmacogenetic Testing Policy Number: AHS – M2021 – Pharmacogenetic Prior Policy Name and Number, as applicable: Testing • M2021 – Cytochrome P450 Initial Presentation Date: 06/16/2021 Revision Date: N/A I. Policy Description Pharmacogenetics is defined as the study of variability in drug response due to heredity (Nebert, 1999). Cytochrome (CYP) P450 enzymes are a class of enzymes essential in the synthesis and breakdown metabolism of various molecules and chemicals. Found primarily in the liver, these enzymes are also essential for the metabolism of many medications. CYP P450 are essential to produce many biochemical building blocks, such as cholesterol, fatty acids, and bile acids. Additional cytochrome P450 are involved in the metabolism of drugs, carcinogens, and internal substances, such as toxins formed within cells. Mutations in CYP P450 genes can result in the inability to properly metabolize medications and other substances, leading to increased levels of toxic substances in the body. Approximately 58 CYP genes are in humans (Bains, 2013; Tantisira & Weiss, 2019). Thiopurine methyltransferase (TPMT) is an enzyme that methylates azathioprine, mercaptopurine and thioguanine into active thioguanine nucleotide metabolites. Azathioprine and mercaptopurine are used for treatment of nonmalignant immunologic disorders; mercaptopurine is used for treatment of lymphoid malignancies; and thioguanine is used for treatment of myeloid leukemias (Relling et al., 2011). Dihydropyrimidine dehydrogenase (DPD), encoded by the gene DPYD, is a rate-limiting enzyme responsible for fluoropyrimidine catabolism. The fluoropyrimidines (5-fluorouracil and capecitabine) are drugs used in the treatment of solid tumors, such as colorectal, breast, and aerodigestive tract tumors (Amstutz et al., 2018). A variety of cell surface proteins, such as antigen-presenting molecules and other proteins, are encoded by the human leukocyte antigen genes (HLAs).
    [Show full text]
  • Antimycobacterial Natural Products – an Opportunity for the Colombian Biodiversity
    Review Juan Bueno1, Ericsson David Coy2, Antimycobacterial natural products – an Elena Stashenko3 opportunity for the Colombian biodiversity 1Grupo Micobacterias, Subdirección Red Nacional de Laboratorios, Instituto Nacional de Salud, Bogotá, D.C., Centro Colombiano de Investigación en Tuberculosis CCITB, Bogotá, Colombia. 2Laboratorio de Investigación en Productos Naturales Vegetales, Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia. 3Laboratorio de Cromatografía, Centro de Investigación en Biomoléculas, CIBIMOL, CENIVAM, Universidad Industrial de Santander, Bucaramanga, Colombia. ABSTRACT centaje de los individuos afectados desarrollará clínicamente la enfermedad, cada año esta ocasiona aproximadamente ocho It is estimated that one-third part of the world population millones de nuevos casos y dos millones de muertes. Mycobac- is infected with the tubercle bacillus. While only a small per- terium tuberculosis es el agente infeccioso que produce la ma- centage of infected individuals will develop clinical tuberculo- yor mortalidad humana, comparado con cualquier otra especie sis, each year there are approximately eight million new cases microbiana. Los objetivos de los distintos programas para el and two million deaths. Mycobacterium tuberculosis is thus control de la tuberculosis son la cura y diagnóstico de la infec- responsible for more human mortality than any other single ción activa, la prevención de recaídas, la reducción de trans- microbial species. The goals of tuberculosis control are focused misión y evitar la aparición de la resistencia a los medicamen- to cure active disease, prevent relapse, reduce transmission tos. Por más de 50 años, los productos naturales han sido útiles and avert the emergence of drug-resistance. For over 50 years, en combatir bacterias y hongos patógenos.
    [Show full text]
  • Prevalence of Drug Interactions in Hospitalized Elderly Patients: a Systematic Review
    Supplementary material Eur J Hosp Pharm Prevalence of drug interactions in hospitalized elderly patients: a systematic review Luciana Mello de Oliveira 1,2; Juliana do Amaral Carneiro Diel1; Alessandra Nunes3; Tatiane da Silva Dal Pizzol 1,2,3 1Programa de Pós-Graduação em Epidemiologia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul. 2Programa de Pós-Graduação em Assistência Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul. 3Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul. Corresponding author: Luciana Mello de Oliveira – [email protected] and Tatiane da Silva Dal Pizzol - [email protected] Supplementary Table 3: Number of patients with interaction, number of DDI per patient with at least one DDI, drugs or drug classes mostly involved with DDI and drug combinations mostly involved with DDI. In cases which prevalence were described, we reported the three drugs mostly involved with drug interactions or the three drug combinations (or drug classes) mostly involved with DDI. ACE: angiotensin-converting enzyme. NA: not available. NSAID: non-steroidal anti-inflammatory drugs. PPI: proton-pump inhibitors. # of patients with # of DDI per patient with First autor interactions interaction Drugs or drug classes mostly involved with DDI Drug combinations mostly involved with DDI Barak-Tsarfir O, et al (61) Unclear: around 56 patients NA NA NA Warfarin; digitoxin; prednisolone antithrombotic agents; non-steroidal anti- 70 (evaluated only serious or inflammatory agents; angiotensin converting enzyme Blix HS, et al (29) contraindicated DDI) NA inhibitors N/A Serious: chlorpromazine + promethazine; chlorpromazine + haloperidol; haloperidol + promethazine; diazepam + phenobarbital; risperidone + haloperidol; carbamazepine + ketoconazole; carbamazepine + chlorpromazine; haloperidol + ketoconazole; chlorpromazine + ketoconazole; chlorpromazine + sodium phosphate.
    [Show full text]
  • Against the Plasmodium Falciparum Apicoplast
    A Systematic In Silico Search for Target Similarity Identifies Several Approved Drugs with Potential Activity against the Plasmodium falciparum Apicoplast Nadlla Alves Bispo1, Richard Culleton2, Lourival Almeida Silva1, Pedro Cravo1,3* 1 Instituto de Patologia Tropical e Sau´de Pu´blica/Universidade Federal de Goia´s/Goiaˆnia, Brazil, 2 Malaria Unit/Institute of Tropical Medicine (NEKKEN)/Nagasaki University/ Nagasaki, Japan, 3 Centro de Mala´ria e Doenc¸as Tropicais.LA/IHMT/Universidade Nova de Lisboa/Lisboa, Portugal Abstract Most of the drugs in use against Plasmodium falciparum share similar modes of action and, consequently, there is a need to identify alternative potential drug targets. Here, we focus on the apicoplast, a malarial plastid-like organelle of algal source which evolved through secondary endosymbiosis. We undertake a systematic in silico target-based identification approach for detecting drugs already approved for clinical use in humans that may be able to interfere with the P. falciparum apicoplast. The P. falciparum genome database GeneDB was used to compile a list of <600 proteins containing apicoplast signal peptides. Each of these proteins was treated as a potential drug target and its predicted sequence was used to interrogate three different freely available databases (Therapeutic Target Database, DrugBank and STITCH3.1) that provide synoptic data on drugs and their primary or putative drug targets. We were able to identify several drugs that are expected to interact with forty-seven (47) peptides predicted to be involved in the biology of the P. falciparum apicoplast. Fifteen (15) of these putative targets are predicted to have affinity to drugs that are already approved for clinical use but have never been evaluated against malaria parasites.
    [Show full text]
  • An Update on the Efficacy of Anti-Inflammatory Agents for Patients with Schizophrenia: Cambridge.Org/Psm a Meta-Analysis
    Psychological Medicine An update on the efficacy of anti-inflammatory agents for patients with schizophrenia: cambridge.org/psm a meta-analysis 1,2 2,3,4 2,5 6 Review Article N. Çakici , N. J. M. van Beveren , G. Judge-Hundal , M. M. Koola and I. E. C. Sommer5 Cite this article: Çakici N, van Beveren NJM, Judge-Hundal G, Koola MM, Sommer IEC 1Department of Psychiatry and Amsterdam Neuroscience, Academic Medical Center, Meibergdreef 9, 1105 AZ (2019). An update on the efficacy of anti- Amsterdam, the Netherlands; 2Antes Center for Mental Health Care, Albrandswaardsedijk 74, 3172 AA, Poortugaal, inflammatory agents for patients with 3 schizophrenia: a meta-analysis. Psychological the Netherlands; Department of Psychiatry, Erasmus Medical Center, Doctor Molewaterplein 40, 3015 GD 4 Medicine 49, 2307–2319. https://doi.org/ Rotterdam, the Netherlands; Department of Neuroscience, Erasmus Medical Center, Doctor Molewaterplein 40, 5 10.1017/S0033291719001995 3015 GD Rotterdam, the Netherlands; Department of Psychiatry and Biomedical Sciences of Cells and Systems, University Medical Center Groningen, Deusinglaan 2, 9713AW Groningen, the Netherlands and 6Department of Received: 13 February 2019 Psychiatry and Behavioral Sciences, George Washington University School of Medicine and Health Sciences, 2300I Revised: 4 July 2019 St NW, Washington, DC 20052, USA Accepted: 16 July 2019 First published online: 23 August 2019 Abstract Key words: Background. Accumulating evidence shows that a propensity towards a pro-inflammatory Add-on antipsychotic therapy; estrogens; fatty acids; minocycline; N-acetylcysteine status in the brain plays an important role in schizophrenia. Anti-inflammatory drugs might compensate this propensity. This study provides an update regarding the efficacy of Author for correspondence: agents with some anti-inflammatory actions for schizophrenia symptoms tested in rando- N.
    [Show full text]