Buried Alive in Patches: 6 Months of Picking up the Pieces of the Linux 2.5 Kernel
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Linux: Kernel Release Number, Part II
Linux: Kernel Release Number, Part II Posted by jeremy on Friday, March 4, 2005 - 07:05 In the continued discussion on release numbering for the Linux kernel [story], Linux creator Linus Torvalds decided against trying to add meaning to the odd/even least significant number. Instead, the new plan is to go from the current 2.6.x numbering to a finer-grained 2.6.x.y. Linus will continue to maintain only the 2.6.x releases, and the -rc releases in between. Others will add trivial patches to create the 2.6.x.y releases. Linus cautions that the task of maintaining a 2.6.x.y tree is not going to be enjoyable: "I'll tell you what the problem is: I don't think you'll find anybody to do the parallell 'only trivial patches' tree. They'll go crazy in a couple of weeks. Why? Because it's a _damn_ hard problem. Where do you draw the line? What's an acceptable patch? And if you get it wrong, people will complain _very_ loudly, since by now you've 'promised' them a kernel that is better than the mainline. In other words: there's almost zero glory, there are no interesting problems, and there will absolutely be people who claim that you're a dick-head and worse, probably on a weekly basis." He went on to add, "that said, I think in theory it's a great idea. It might even be technically feasible if there was some hard technical criteria for each patch that gets accepted, so that you don't have the burn-out problem." His suggested criteria included limiting the patch to being 100 lines or less, and requiring that it fix an oops, a hang, or an exploitable security hole. -
Open Source Software Notice
OPEN SOURCE SOFTWARE NOTICE DCS Touch Display Software V2.00.XXX Schüco International KG Karolinenstraße 1-15 33609 Bielefeld OPEN SOURCE SOFTWARE NOTICE Seite 1 von 32 10000507685_02_EN OPEN SOURCE SOFTWARE NOTICE This document contains information about open source software for this product. The rights granted under open source software licenses are granted by the respective right holders. In the event of conflicts between SCHÜCO’S license conditions and the applicable open source licenses, the open source license conditions take precedence over SCHÜCO’S license conditions with regard to the respective open source software. You are allowed to modify SCHÜCO’S proprietary programs and to conduct reverse engineering for the purpose of debugging such modifications, to the extent such programs are linked to libraries licensed under the GNU Lesser General Public License. You are not allowed to distribute information resulting from such reverse engineering or to distribute the modified proprietary programs. The rightholders of the open source software require to refer to the following disclaimer, which shall apply with regard to those rightholders: Warranty Disclaimer THE OPEN SOURCE SOFTWARE IN THIS PRODUCT IS DISTRIBUTED ON AN "AS IS" BASIS AND IN THE HOPE THAT IT WILL BE USEFUL, BUT WITHOUT ANY WARRANTY OF ANY KIND, WITHOUT EVEN THE IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. SEE THE APPLICABLE LICENSES FOR MORE DETAILS. OPEN SOURCE SOFTWARE NOTICE Seite 2 von 32 10000507685_02_EN Copyright Notices and License Texts (please see the source code for all details) Software: iptables Copyright notice: Copyright (C) 1989, 1991 Free Software Foundation, Inc. Copyright Google, Inc. -
Filesystem Hierarchy Standard
Filesystem Hierarchy Standard LSB Workgroup, The Linux Foundation Filesystem Hierarchy Standard LSB Workgroup, The Linux Foundation Version 3.0 Publication date March 19, 2015 Copyright © 2015 The Linux Foundation Copyright © 1994-2004 Daniel Quinlan Copyright © 2001-2004 Paul 'Rusty' Russell Copyright © 2003-2004 Christopher Yeoh Abstract This standard consists of a set of requirements and guidelines for file and directory placement under UNIX-like operating systems. The guidelines are intended to support interoperability of applications, system administration tools, development tools, and scripts as well as greater uniformity of documentation for these systems. All trademarks and copyrights are owned by their owners, unless specifically noted otherwise. Use of a term in this document should not be regarded as affecting the validity of any trademark or service mark. Permission is granted to make and distribute verbatim copies of this standard provided the copyright and this permission notice are preserved on all copies. Permission is granted to copy and distribute modified versions of this standard under the conditions for verbatim copying, provided also that the title page is labeled as modified including a reference to the original standard, provided that information on retrieving the original standard is included, and provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one. Permission is granted to copy and distribute translations of this standard into another language, under the above conditions for modified versions, except that this permission notice may be stated in a translation approved by the copyright holder. Dedication This release is dedicated to the memory of Christopher Yeoh, a long-time friend and colleague, and one of the original editors of the FHS. -
Hardware-Driven Evolution in Storage Software by Zev Weiss A
Hardware-Driven Evolution in Storage Software by Zev Weiss A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Computer Sciences) at the UNIVERSITY OF WISCONSIN–MADISON 2018 Date of final oral examination: June 8, 2018 ii The dissertation is approved by the following members of the Final Oral Committee: Andrea C. Arpaci-Dusseau, Professor, Computer Sciences Remzi H. Arpaci-Dusseau, Professor, Computer Sciences Michael M. Swift, Professor, Computer Sciences Karthikeyan Sankaralingam, Professor, Computer Sciences Johannes Wallmann, Associate Professor, Mead Witter School of Music i © Copyright by Zev Weiss 2018 All Rights Reserved ii To my parents, for their endless support, and my cousin Charlie, one of the kindest people I’ve ever known. iii Acknowledgments I have taken what might be politely called a “scenic route” of sorts through grad school. While Ph.D. students more focused on a rapid graduation turnaround time might find this regrettable, I am glad to have done so, in part because it has afforded me the opportunities to meet and work with so many excellent people along the way. I owe debts of gratitude to a large cast of characters: To my advisors, Andrea and Remzi Arpaci-Dusseau. It is one of the most common pieces of wisdom imparted on incoming grad students that one’s relationship with one’s advisor (or advisors) is perhaps the single most important factor in whether these years of your life will be pleasant or unpleasant, and I feel exceptionally fortunate to have ended up iv with the advisors that I’ve had. -
Communicating Between the Kernel and User-Space in Linux Using Netlink Sockets
SOFTWARE—PRACTICE AND EXPERIENCE Softw. Pract. Exper. 2010; 00:1–7 Prepared using speauth.cls [Version: 2002/09/23 v2.2] Communicating between the kernel and user-space in Linux using Netlink sockets Pablo Neira Ayuso∗,∗1, Rafael M. Gasca1 and Laurent Lefevre2 1 QUIVIR Research Group, Departament of Computer Languages and Systems, University of Seville, Spain. 2 RESO/LIP team, INRIA, University of Lyon, France. SUMMARY When developing Linux kernel features, it is a good practise to expose the necessary details to user-space to enable extensibility. This allows the development of new features and sophisticated configurations from user-space. Commonly, software developers have to face the task of looking for a good way to communicate between kernel and user-space in Linux. This tutorial introduces you to Netlink sockets, a flexible and extensible messaging system that provides communication between kernel and user-space. In this tutorial, we provide fundamental guidelines for practitioners who wish to develop Netlink-based interfaces. key words: kernel interfaces, netlink, linux 1. INTRODUCTION Portable open-source operating systems like Linux [1] provide a good environment to develop applications for the real-world since they can be used in very different platforms: from very small embedded devices, like smartphones and PDAs, to standalone computers and large scale clusters. Moreover, the availability of the source code also allows its study and modification, this renders Linux useful for both the industry and the academia. The core of Linux, like many modern operating systems, follows a monolithic † design for performance reasons. The main bricks that compose the operating system are implemented ∗Correspondence to: Pablo Neira Ayuso, ETS Ingenieria Informatica, Department of Computer Languages and Systems. -
Linux Kernel and Driver Development Training Slides
Linux Kernel and Driver Development Training Linux Kernel and Driver Development Training © Copyright 2004-2021, Bootlin. Creative Commons BY-SA 3.0 license. Latest update: October 9, 2021. Document updates and sources: https://bootlin.com/doc/training/linux-kernel Corrections, suggestions, contributions and translations are welcome! embedded Linux and kernel engineering Send them to [email protected] - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/470 Rights to copy © Copyright 2004-2021, Bootlin License: Creative Commons Attribution - Share Alike 3.0 https://creativecommons.org/licenses/by-sa/3.0/legalcode You are free: I to copy, distribute, display, and perform the work I to make derivative works I to make commercial use of the work Under the following conditions: I Attribution. You must give the original author credit. I Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under a license identical to this one. I For any reuse or distribution, you must make clear to others the license terms of this work. I Any of these conditions can be waived if you get permission from the copyright holder. Your fair use and other rights are in no way affected by the above. Document sources: https://github.com/bootlin/training-materials/ - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/470 Hyperlinks in the document There are many hyperlinks in the document I Regular hyperlinks: https://kernel.org/ I Kernel documentation links: dev-tools/kasan I Links to kernel source files and directories: drivers/input/ include/linux/fb.h I Links to the declarations, definitions and instances of kernel symbols (functions, types, data, structures): platform_get_irq() GFP_KERNEL struct file_operations - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/470 Company at a glance I Engineering company created in 2004, named ”Free Electrons” until Feb. -
Achieving Keyless Cdns with Conclaves
ARTIFACT EVALUATED Achieving Keyless CDNs with Conclaves PASSED Stephen Herwig Christina Garman Dave Levin University of Maryland Purdue University University of Maryland Abstract tamper with all of their customers, including virtually all of the world’s major banks, online shops, and many government Content Delivery Networks (CDNs) serve a large and in- sites. creasing portion of today’s web content. Beyond caching, The messy relationship between HTTPS and CDNs is CDNs provide their customers with a variety of services, in- made all the more challenging by the fact that CDNs today cluding protection against DDoS and targeted attacks. As the do far more than merely host the bulk of the web’s content. web shifts from HTTP to HTTPS, CDNs continue to provide They also use web application firewalls (WAFs) to analyze such services by also assuming control of their customers’ clients’ requests for evidence of targeted attacks like SQL private keys, thereby breaking a fundamental security princi- injection or cross-site scripting, and filter them before up- ple: private keys must only be known by their owner. loading to their customers [8]. CDN customers benefit from We present the design and implementation of Phoenix, the this service because it scrubs attack traffic far from their own first truly “keyless CDN”. Phoenix uses secure enclaves (in networks. And yet, running a WAF on a CDN requires the particular Intel SGX) to host web content, store sensitive key CDN to have access to the website’s unencrypted traffic. material, apply web application firewalls, and more on oth- There have been recent advances to address aspects of this erwise untrusted machines. -
Building Embedded Linux Systems ,Roadmap.18084 Page Ii Wednesday, August 6, 2008 9:05 AM
Building Embedded Linux Systems ,roadmap.18084 Page ii Wednesday, August 6, 2008 9:05 AM Other Linux resources from O’Reilly Related titles Designing Embedded Programming Embedded Hardware Systems Linux Device Drivers Running Linux Linux in a Nutshell Understanding the Linux Linux Network Adminis- Kernel trator’s Guide Linux Books linux.oreilly.com is a complete catalog of O’Reilly’s books on Resource Center Linux and Unix and related technologies, including sample chapters and code examples. ONLamp.com is the premier site for the open source web plat- form: Linux, Apache, MySQL, and either Perl, Python, or PHP. Conferences O’Reilly brings diverse innovators together to nurture the ideas that spark revolutionary industries. We specialize in document- ing the latest tools and systems, translating the innovator’s knowledge into useful skills for those in the trenches. Visit con- ferences.oreilly.com for our upcoming events. Safari Bookshelf (safari.oreilly.com) is the premier online refer- ence library for programmers and IT professionals. Conduct searches across more than 1,000 books. Subscribers can zero in on answers to time-critical questions in a matter of seconds. Read the books on your Bookshelf from cover to cover or sim- ply flip to the page you need. Try it today for free. main.title Page iii Monday, May 19, 2008 11:21 AM SECOND EDITION Building Embedded Linux SystemsTomcat ™ The Definitive Guide Karim Yaghmour, JonJason Masters, Brittain Gilad and Ben-Yossef, Ian F. Darwin and Philippe Gerum Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo Building Embedded Linux Systems, Second Edition by Karim Yaghmour, Jon Masters, Gilad Ben-Yossef, and Philippe Gerum Copyright © 2008 Karim Yaghmour and Jon Masters. -
Linux 2.5 Kernel Developers Summit
conference reports This issue’s reports are on the Linux 2.5 Linux 2.5 Kernel Developers Linux development, but I certainly Kernel Developers Summit Summit thought that, in all of this time, someone would have brought this group together OUR THANKS TO THE SUMMARIZER: SAN JOSE, CALIFORNIA before. Rik Farrow, with thanks to La Monte MARCH 30-31, 2001 Yarroll and Chris Mason for sharing their Summarized by Rik Farrow Another difference appeared when the notes. first session started on Friday morning. The purpose of this workshop was to The conference room was set up with cir- provide a forum for discussion of cular tables, each with power strips for changes to be made in the 2.5 release of For additional information on the Linux laptops, and only a few attendees were Linux (a trademark of Linus Torvalds). I not using a laptop. USENIX had pro- 2.5 Kernel Developers Summit, see the assume that many people reading this vided Aeronet wireless setup via the following sites: will be familiar with Linux, and I will hotel’s T1 link, and people were busy <http://lwn.net/2001/features/KernelSummit/> attempt to explain things that might be typing and compiling. Chris Mason of unfamiliar to others. That said, the odd- <http://cgi.zdnet.com/slink?91362:12284618> OSDN noticed that Dave Miller had numbered releases, like 2.3 and now 2.5, <http://www.osdn.com/conferences/kernel/> written a utility to modulate the speed of are development releases where the the CPU fans based upon the tempera- intent is to try out new features or make ture reading from his motherboard. -
Linux Kernel 8.1 Introduction
Page 1 of 6 Linux Kernel 8.1 Introduction: The Linux kernel is a Unix-like operating system kernel used by a variety of operating systems based on it, which are usually in the form of Linux distributions. The Linux kernel is a prominent example of free and open source software. The Linux kernel is released under the GNU General Public License version 2 (GPLv2) (plus some firmware images with various non-free licenses), and is developed by contributors worldwide. Day-to-day development discussions take place on the Linux kernel mailing list. The Linux kernel was initially conceived and created in 1991 by Finnish computer science student Linus Torvalds. Linux rapidly accumulated developers and users who adapted code from other free software projects for use with the new operating system. The Linux kernel has received contributions from thousands of programmers. 8.2 History: History In April 1991, Linus Torvalds, a 21-year-old student at the University of Helsinki, Finland started working on some simple ideas for an operating system. He started with a task switcher in Intel 80386 assembly language and a terminal driver. On 25 August 1991, Torvalds posted the following to comp.os.minix, a newsgroup on Usenet: I'm doing a (free) operating system (just a hobby, won't be big and professional like gnu) for 386(486) AT clones. This has been brewing since April, and is starting to get ready. I'd like any feedback on things people like/dislike in minix, as my OS resembles it somewhat (same physical layout of the file-system (due to practical reasons) among other things). -
Proceedings of the Linux Symposium Volume
Proceedings of the Linux Symposium Volume Two July 19th–22nd, 2006 Ottawa, Ontario Canada Contents Evolution in Kernel Debugging using Hardware Virtualization With Xen 1 Nitin A. Kamble Improving Linux Startup Time Using Software Resume (and other techniques) 17 Hiroki Kaminaga Automated Regression Hunting 27 A. Bowen, P. Fox, J. Kenefick, A. Romney, J. Ruesch, J. Wilde, & J. Wilson Hacking the Linux Automounter—Current Limitations and Future Directions 37 Ian Maxwell Kent & Jeff Moyer Why NFS Sucks 51 Olaf Kirch Efficient Use of the Page Cache with 64 KB Pages 65 Dave Kleikamp and Badari Pulavarty Startup Time in the 21st Century: Filesystem Hacks and Assorted Tweaks 71 Benjamin C.R. LaHaise Using Hugetlbfs for Mapping Application Text Regions 75 H.J. Lu, K. Doshi, R. Seth, & J. Tran Towards a Better SCM: Revlog and Mercurial 83 Matt Mackall Roadmap to a GL-based composited desktop for Linux 91 K.E. Martin and K. Packard Probing the Guts of Kprobes 101 A. Mavinakayanahalli, P. Panchamukhi, J. Keniston, A. Keshavamurthy, & M. Hiramatsu Shared Page Tables Redux 117 Dave McCracken Extending RCU for Realtime and Embedded Workloads 123 Paul E. McKenney OSTRA: Experiments With on-the-fly Source Patching 139 Arnaldo Carvalho de Melo Design and Implementation to Support Multiple Key Exchange Protocols for IPsec 143 K. Miyazawa, S. Sakane, K. Kamada, M. Kanda, & A. Fukumoto The State of Linux Power Management 2006 151 Patrick Mochel I/O Workload Fingerprinting in the Genetic-Library 165 Jake Moilanen X86-64 XenLinux: Architecture, Implementation, and Optimizations 173 Jun Nakajima, Asit Mallick GCC—An Architectural Overview, Current Status, and Future Directions 185 Diego Novillo Shared-Subtree Concept, Implementation, and Applications in Linux 201 Al Viro & Ram Pai The Ondemand Governor 215 Venkatesh Pallipadi & Alexey Starikovskiy Linux Bootup Time Reduction for Digital Still Camera 231 Chan-Ju Park A Lockless Pagecache in Linux—Introduction, Progress, Performance 241 Nick Piggin The Ongoing Evolution of Xen 255 I. -
Fuss, Futexes and Furwocks: Fast Userlevel Locking in Linux
Fuss, Futexes and Furwocks: Fast Userlevel Locking in Linux Hubertus Franke Rusty Russell IBM Thomas J. Watson Research Center IBM Linux Technology Center [email protected] [email protected] Matthew Kirkwood [email protected] Abstract makes it now feasible to deploy even more de- manding enterprise applications such as high Fast userlevel locking is an alternative locking end databases, business intelligence software mechanism to the typically heavy weight ker- and application servers. As a result, whole en- nel approaches such as fcntl locking and Sys- terprise business suites and middleware such 2 tem V semaphores. Here, multiple processes as SAP™, Websphere™, Oracle, DB2™ , etc., communicate locking state through shared are now available for Linux. memory regions and atomic operations. Ker- For these enterprise applications to run effi- nel involvement is only necessary when there ciently on Linux, or on any other operating is contention on a lock, in order to perform system for that matter, the OS must provide queueing and scheduling functions. In this pa- the proper abstractions and services. Enter- per we discuss the issues related to user level prise applications and applications suites are locking by following the history of ideas and increasingly built as multi process / multi- the code to the current day. We present the ef- threaded applications. Multi-threaded appli- ficacy of "futexes" through benchmarks, both cations can take better advantage of SMP synthetic and through adaptations to existing hardware, while multiple processes allows for databases. We conclude by presenting the po- higher degrees of fault tolerance, i.e., a single tential future directions of the "futex" inter- process abort does not necessarily bring the en- face.