Article Reference

Total Page:16

File Type:pdf, Size:1020Kb

Article Reference Article CLASPs prevent irreversible multipolarity by ensuring spindle-pole resistance to traction forces during chromosome alignment LOGARINHO, Elsa, et al. Abstract Loss of spindle-pole integrity during mitosis leads to multipolarity independent of centrosome amplification. Multipolar-spindle conformation favours incorrect kinetochore-microtubule attachments, compromising faithful chromosome segregation and daughter-cell viability. Spindle-pole organization influences and is influenced by kinetochore activity, but the molecular nature behind this critical force balance is unknown. CLASPs are microtubule-, kinetochore- and centrosome-associated proteins whose functional perturbation leads to three main spindle abnormalities: monopolarity, short spindles and multipolarity. The first two reflect a role at the kinetochore-microtubule interface through interaction with specific kinetochore partners, but how CLASPs prevent spindle multipolarity remains unclear. Here we found that human CLASPs ensure spindle-pole integrity after bipolarization in response to CENP-E- and Kid-mediated forces from misaligned chromosomes. This function is independent of end-on kinetochore-microtubule attachments and involves the recruitment of ninein to residual pericentriolar satellites. Distinctively, [...] Reference LOGARINHO, Elsa, et al. CLASPs prevent irreversible multipolarity by ensuring spindle-pole resistance to traction forces during chromosome alignment. Nature Cell Biology, 2012, vol. 14, no. 3, p. 295-303 DOI : 10.1038/ncb2423 PMID : 22307330 Available at: http://archive-ouverte.unige.ch/unige:28850 Disclaimer: layout of this document may differ from the published version. 1 / 1 LETTERS CLASPs prevent irreversible multipolarity by ensuring spindle-pole resistance to traction forces during chromosome alignment Elsa Logarinho1, Stefano Maffini1,4, Marin Barisic1, Andrea Marques1,4, Alberto Toso2,4, Patrick Meraldi2 and Helder Maiato1,3,5 Loss of spindle-pole integrity during mitosis leads to mechanism is related to multipolar-spindle formation independent multipolarity independent of centrosome amplification1–4. of centrosome amplification, for example due to premature centriole Multipolar-spindle conformation favours incorrect disengagement or loss of spindle-pole integrity1–4,15. To investigate the kinetochore–microtubule attachments, compromising faithful mechanism by which CLASPs (cytoplasmic linker-associated proteins) chromosome segregation and daughter-cell viability5,6. prevent spindle multipolarity in human cells, we used HeLa cells stably Spindle-pole organization influences and is influenced by expressing the centriole marker centrin–GFP and immunodetection kinetochore activity7,8, but the molecular nature behind this of γ-tubulin to determine the number of centrioles in each individual critical force balance is unknown. CLASPs are microtubule-, pole on CLASP1/2 depletion by RNAi. As positive controls, we used kinetochore- and centrosome-associated proteins whose cells treated with either 2 µM cytochalasin D, an inhibitor of actin functional perturbation leads to three main spindle polymerization and cytokinesis; astrin (also known as SPAG5, sperm- abnormalities: monopolarity, short spindles and associated antigen 5) short interfering RNA (siRNA), which leads to multipolarity9–13. The first two reflect a role at the premature centriole disengagement15; or TOGp (also known as CKAP5, kinetochore–microtubule interface through interaction with cytoskeleton-associated protein 5) siRNA, which perturbs spindle-pole specific kinetochore partners10,11,14, but how CLASPs prevent integrity2,3 (Fig. 1a–c and Supplementary Fig. S1a–d). All of these spindle multipolarity remains unclear. Here we found that treatments caused a significant increase in the percentage of mitotic cells human CLASPs ensure spindle-pole integrity after with multipolar spindles (Fig. 1a). Simultaneous depletion of CLASP1 bipolarization in response to CENP-E- and Kid-mediated forces and CLASP2 (Supplementary Fig. S1b) resulted in 17:3 ± 4:1% of from misaligned chromosomes. This function is independent of mitotic cells with multipolar spindles, whereas individual depletion of end-on kinetochore–microtubule attachments and involves the CLASP1 or CLASP2 caused, respectively, 6:3±0:9% and 5:1±0:2% of recruitment of ninein to residual pericentriolar satellites. multipolar mitosis (Fig. 1a). These frequencies are significantly higher Distinctively, multipolarity arising through this mechanism than in control cells (∼1%; Fig. 1a), indicating that the two human often persists through anaphase. We propose that CLASPs and CLASPs cooperate to prevent spindle multipolarity. Interestingly, ninein confer spindle-pole resistance to traction forces exerted 29:9 ± 9:5% of poles in CLASP1/2-depleted multipolar cells were during chromosome congression, thereby preventing acentriolar and 20:7 ± 8:5% had a single centriole, a phenotypic irreversible spindle multipolarity and aneuploidy. distribution that was distinct from that of cytochalasin D treatment or astrin RNAi, but resembled that of TOGp RNAi (Fig. 1b,c). However, Multipolar spindles are a hallmark of tumour cells and may arise CLASP1/2 depletion did not affect TOGp localization at spindle poles owing to supernumerary centrosomes resulting from centrosome (Supplementary Fig. S2), indicating that the observed multipolarity is overduplication or cytokinesis failure. However, multipolar mitosis independent of TOGp and is primarily caused by loss of spindle-pole is usually incompatible with cell viability and normally assumes a integrity and, to a lesser extent, due to centriole disengagement. transient nature due to the coalescence of extra centrosomes into We have previously identified astrin as part of a CLASP1 complex two functional spindle poles5,6. An alternative but less understood involved in the regulation of kinetochore–microtubule dynamics11,14. 1Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal. 2Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland. 3Department of Experimental Biology, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal. 4Present addresses: Max Planck Institute of Molecular Physiology, 44202 Dortmund, Germany (S.M.); Cell Biology, Faculty of Science, Utrecht University, 3584-CH Utrecht, The Netherlands (A.M.); Institute of Oncology Research, CH-6500 Bellinzona, Switzerland (A.T.). 5Correspondence should be addressed to H.M. (e-mail: [email protected]) Received 30 August 2011; accepted 15 December 2011; published online 5 February 2012; DOI: 10.1038/ncb2423 NATURE CELL BIOLOGY VOLUME 14 j NUMBER 3 j MARCH 2012 295 © 2012 Macmillan Publishers Limited. All rights reserved. LETTERS a b 50 100 01 234 45 40 centrioles 80 35 n 30 60 25 20 40 15 10 20 5 Percentage of multipolar cells 0 0 Cytoch D Astrin TOGp CLASP1/2 d Percentage of poles with RNAi2 RNAi RNAi RNAi RNAi Luc RNAi Untreate TOGp Astrin RNAi CLASP1CLASP2 CytochalasinCLASP1/ D c α-tubulin γ-tubulin Centrin–GFP DAPI α-tubulin γ-tubulin Centrin–GFP 1 1 2 Control 2 3 1 2 1 2 3 4 4 Cytochalasin D 1 1 2 Astrin 2 3 3 1 2 1 2 RNAi TOGp 3 3 3 1 1 2 CLASP1/2 2 3 4 4 Figure 1 CLASP1/2 depletion causes the formation of multipolar spindles. siRNAs against astrin, TOGp and CLASPs (mean ± s:d:; n D 30 cells). HeLa cells stably expressing the centriole marker centrin–GFP were (c) Examples of cells with multipolar spindles most typically found for either treated with 2 µM cytochalasin D or transfected with the indicated each treatment. Insets are magnifications of the centrin–GFP signal at the specific siRNA, and then stained for α-tubulin, γ-tubulin and DNA. indicated poles. Note that the possibility of centrosome overduplication was (a) Percentage of mitotic cells with multipolar spindles (mean ± s:d:; discarded because the frequency of CLASP1/2-depleted mononucleated n D 1,000 cells). Luciferase (Luc) RNAi was used as a negative control. cells entering mitosis with more than two centrosomes was less than (b) Percentage of poles with n centrioles found in cells with multipolar 1% (our unpublished observations). Quantitative data are means of three spindles generated by treatment with cytochalasin D (Cytoch D) or independent experiments. Scale bars, 5 µm. To determine whether the eventual centriole disengagement observed siRNAs. We found that ∼70% of CLASP1/2-depleted cells showed in CLASP1/2-depleted multipolar spindles arises from premature normal sister-chromatid cohesion, corresponding to 5- and 15-fold the activation of separase as seen on astrin depletion15, we quantified respective percentages in astrin- or Sgo1-depleted cells (Supplementary loss of sister-chromatid cohesion in chromosome spreads from cells Fig. S3a,b). Moreover, separase depletion, which rescues spindle transfected with control, SGOL1 (which encodes a centromeric protein bipolarity on astrin RNAi (ref. 15), had no effect in the observed involved in sister-chromatid cohesion, Sgo1)16, astrin or CLASP1/2 multipolarity after CLASP1/2 depletion (Supplementary Fig. S3c). 296 NATURE CELL BIOLOGY VOLUME 14 j NUMBER 3 j MARCH 2012 © 2012 Macmillan Publishers Limited. All rights reserved. LETTERS a d NEB Anaphase onset 1,000 1 1 1 1 1 1 1 1 2 2 2 2 100 Control 2 2 2 0:00 0:16 2 0:36 0:42 b Time (min) NEB 1 1 Pole fragmentation1 1 10 1 2 2 1 3 2 2 RNAi 1 3 3 3 1 1 2 2 2 2 CLASP1/2 RNAi 2 Control 0:00 0:17 1:06 3:06 CLASP1/2RNAi BPCLASP1/ Control + c RNAi MPMps1-IN-1 CLASP1/2RNAi MP NEB 1 1 Pole fragmentation1
Recommended publications
  • Title a New Centrosomal Protein Regulates Neurogenesis By
    Title A new centrosomal protein regulates neurogenesis by microtubule organization Authors: Germán Camargo Ortega1-3†, Sven Falk1,2†, Pia A. Johansson1,2†, Elise Peyre4, Sanjeeb Kumar Sahu5, Loïc Broic4, Camino De Juan Romero6, Kalina Draganova1,2, Stanislav Vinopal7, Kaviya Chinnappa1‡, Anna Gavranovic1, Tugay Karakaya1, Juliane Merl-Pham8, Arie Geerlof9, Regina Feederle10,11, Wei Shao12,13, Song-Hai Shi12,13, Stefanie M. Hauck8, Frank Bradke7, Victor Borrell6, Vijay K. Tiwari§, Wieland B. Huttner14, Michaela Wilsch- Bräuninger14, Laurent Nguyen4 and Magdalena Götz1,2,11* Affiliations: 1. Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany. 2. Physiological Genomics, Biomedical Center, Ludwig-Maximilian University Munich, Germany. 3. Graduate School of Systemic Neurosciences, Biocenter, Ludwig-Maximilian University Munich, Germany. 4. GIGA-Neurosciences, Molecular regulation of neurogenesis, University of Liège, Belgium 5. Institute of Molecular Biology (IMB), Mainz, Germany. 6. Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, Sant Joan d’Alacant, Spain. 7. Laboratory for Axon Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany. 8. Research Unit Protein Science, Helmholtz Centre Munich, German Research Center for Environmental Health, Munich, Germany. 9. Protein Expression and Purification Facility, Institute of Structural Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany. 10. Institute for Diabetes and Obesity, Monoclonal Antibody Core Facility, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany. 11. SYNERGY, Excellence Cluster of Systems Neurology, Biomedical Center, Ludwig- Maximilian University Munich, Germany. 12. Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, USA 13.
    [Show full text]
  • Bioinformatics Identi Cation of Prognostic Factors Associated With
    Bioinformatics Identication of Prognostic Factors Associated with Breast Cancer Ying Wei Sichuan University https://orcid.org/0000-0001-8178-4705 Shipeng Zhang College of Pharmacy, North Sichuan Medical College Li Xiao West China School of Basic Medical Sciences and Forensic Medicine Jing Zou West China School of Basic Medical Sciences and Forensic Medicine Yingqing Fu West China School of Basic Medical Sciences and Forensic Medicine Yi Ye West China School of Basic Medical Sciences and Forensic Medicine Linchuan Liao ( [email protected] ) West China School of Basic Medical Sciences and Forensic Medicine https://orcid.org/0000-0003-3700-8471 Research Keywords: Breast cancer, Differentially expressed genes, miRNAs, Transcription factors, Bioinformatic analysis Posted Date: December 2nd, 2020 DOI: https://doi.org/10.21203/rs.3.rs-117477/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/23 Abstract Background: Breast cancer (BRCA) remains one of the most common forms of cancer and is the most prominent driver of cancer-related death among women. The mechanistic basis for BRCA, however, remains incompletely understood. In particular, the relationships between driver mutations and signaling pathways in BRCA are poorly characterized, making it dicult to identify reliable clinical biomarkers that can be employed in diagnostic, therapeutic, or prognostic contexts. Methods: First, we downloaded publically available BRCA datasets (GSE45827, GSE42568, and GSE61304) from the Gene Expression Omnibus (GEO) database. We then compared gene expression proles between tumor and control tissues in these datasets using Venn diagrams and the GEO2R analytical tool. We further explore the functional relevance of BRCA-associated differentially expressed genes (DEGs) via functional and pathway enrichment analyses using the DAVID tool, and we then constructed a protein-protein interaction network incorporating DEGs of interest using the Search Tool for the Retrieval of Interacting Genes (STRING) database.
    [Show full text]
  • Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-Like Mouse Models: Tracking the Role of the Hairless Gene
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2006 Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-like Mouse Models: Tracking the Role of the Hairless Gene Yutao Liu University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Life Sciences Commons Recommended Citation Liu, Yutao, "Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino- like Mouse Models: Tracking the Role of the Hairless Gene. " PhD diss., University of Tennessee, 2006. https://trace.tennessee.edu/utk_graddiss/1824 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Yutao Liu entitled "Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-like Mouse Models: Tracking the Role of the Hairless Gene." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Life Sciences. Brynn H. Voy, Major Professor We have read this dissertation and recommend its acceptance: Naima Moustaid-Moussa, Yisong Wang, Rogert Hettich Accepted for the Council: Carolyn R.
    [Show full text]
  • The Basal Bodies of Chlamydomonas Reinhardtii Susan K
    Dutcher and O’Toole Cilia (2016) 5:18 DOI 10.1186/s13630-016-0039-z Cilia REVIEW Open Access The basal bodies of Chlamydomonas reinhardtii Susan K. Dutcher1* and Eileen T. O’Toole2 Abstract The unicellular green alga, Chlamydomonas reinhardtii, is a biflagellated cell that can swim or glide. C. reinhardtii cells are amenable to genetic, biochemical, proteomic, and microscopic analysis of its basal bodies. The basal bodies contain triplet microtubules and a well-ordered transition zone. Both the mother and daughter basal bodies assemble flagella. Many of the proteins found in other basal body-containing organisms are present in the Chlamydomonas genome, and mutants in these genes affect the assembly of basal bodies. Electron microscopic analysis shows that basal body duplication is site-specific and this may be important for the proper duplication and spatial organization of these organelles. Chlamydomonas is an excellent model for the study of basal bodies as well as the transition zone. Keywords: Site-specific basal body duplication, Cartwheel, Transition zone, Centrin fibers Phylogeny and conservation of proteins Centrin, SPD2/CEP192, Asterless/CEP152; CEP70, The green lineage or Viridiplantae consists of the green delta-tubulin, and epsilon-tubulin. Chlamydomonas has algae, which include Chlamydomonas, the angiosperms homologs of all of these based on sequence conservation (the land plants), and the gymnosperms (conifers, cycads, except PLK4, CEP152, and CEP192. Several lines of evi- ginkgos). They are grouped together because they have dence suggests that CEP152, CEP192, and PLK4 interact chlorophyll a and b and lack phycobiliproteins. The green [20, 52] and their concomitant absence in several organ- algae together with the cycads and ginkgos have basal isms suggests that other mechanisms exist that allow for bodies and cilia, while the angiosperms and conifers have control of duplication [4].
    [Show full text]
  • Par6c Is at the Mother Centriole and Controls Centrosomal Protein
    860 Research Article Par6c is at the mother centriole and controls centrosomal protein composition through a Par6a-dependent pathway Vale´rian Dormoy, Kati Tormanen and Christine Su¨ tterlin* Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697-2300, USA *Author for correspondence ([email protected]) Accepted 3 December 2012 Journal of Cell Science 126, 860–870 ß 2013. Published by The Company of Biologists Ltd doi: 10.1242/jcs.121186 Summary The centrosome contains two centrioles that differ in age, protein composition and function. This non-membrane bound organelle is known to regulate microtubule organization in dividing cells and ciliogenesis in quiescent cells. These specific roles depend on protein appendages at the older, or mother, centriole. In this study, we identified the polarity protein partitioning defective 6 homolog gamma (Par6c) as a novel component of the mother centriole. This specific localization required the Par6c C-terminus, but was independent of intact microtubules, the dynein/dynactin complex and the components of the PAR polarity complex. Par6c depletion resulted in altered centrosomal protein composition, with the loss of a large number of proteins, including Par6a and p150Glued, from the centrosome. As a consequence, there were defects in ciliogenesis, microtubule organization and centrosome reorientation during migration. Par6c interacted with Par3 and aPKC, but these proteins were not required for the regulation of centrosomal protein composition. Par6c also associated with Par6a, which controls protein recruitment to the centrosome through p150Glued. Our study is the first to identify Par6c as a component of the mother centriole and to report a role of a mother centriole protein in the regulation of centrosomal protein composition.
    [Show full text]
  • Supplemental Information Proximity Interactions Among Centrosome
    Current Biology, Volume 24 Supplemental Information Proximity Interactions among Centrosome Components Identify Regulators of Centriole Duplication Elif Nur Firat-Karalar, Navin Rauniyar, John R. Yates III, and Tim Stearns Figure S1 A Myc Streptavidin -tubulin Merge Myc Streptavidin -tubulin Merge BirA*-PLK4 BirA*-CEP63 BirA*- CEP192 BirA*- CEP152 - BirA*-CCDC67 BirA* CEP152 CPAP BirA*- B C Streptavidin PCM1 Merge Myc-BirA* -CEP63 PCM1 -tubulin Merge BirA*- CEP63 DMSO - BirA* CEP63 nocodazole BirA*- CCDC67 Figure S2 A GFP – + – + GFP-CEP152 + – + – Myc-CDK5RAP2 + + + + (225 kDa) Myc-CDK5RAP2 (216 kDa) GFP-CEP152 (27 kDa) GFP Input (5%) IP: GFP B GFP-CEP152 truncation proteins Inputs (5%) IP: GFP kDa 1-7481-10441-1290218-1654749-16541045-16541-7481-10441-1290218-1654749-16541045-1654 250- Myc-CDK5RAP2 150- 150- 100- 75- GFP-CEP152 Figure S3 A B CEP63 – – + – – + GFP CCDC14 KIAA0753 Centrosome + – – + – – GFP-CCDC14 CEP152 binding binding binding targeting – + – – + – GFP-KIAA0753 GFP-KIAA0753 (140 kDa) 1-496 N M C 150- 100- GFP-CCDC14 (115 kDa) 1-424 N M – 136-496 M C – 50- CEP63 (63 kDa) 1-135 N – 37- GFP (27 kDa) 136-424 M – kDa 425-496 C – – Inputs (2%) IP: GFP C GFP-CEP63 truncation proteins D GFP-CEP63 truncation proteins Inputs (5%) IP: GFP Inputs (5%) IP: GFP kDa kDa 1-135136-424425-4961-424136-496FL Ctl 1-135136-424425-4961-424136-496FL Ctl 1-135136-424425-4961-424136-496FL Ctl 1-135136-424425-4961-424136-496FL Ctl Myc- 150- Myc- 100- CCDC14 KIAA0753 100- 100- 75- 75- GFP- GFP- 50- CEP63 50- CEP63 37- 37- Figure S4 A siCtl
    [Show full text]
  • The P53/P73 - P21cip1 Tumor Suppressor Axis Guards Against Chromosomal Instability by Restraining CDK1 in Human Cancer Cells
    Oncogene (2021) 40:436–451 https://doi.org/10.1038/s41388-020-01524-4 ARTICLE The p53/p73 - p21CIP1 tumor suppressor axis guards against chromosomal instability by restraining CDK1 in human cancer cells 1 1 2 1 2 Ann-Kathrin Schmidt ● Karoline Pudelko ● Jan-Eric Boekenkamp ● Katharina Berger ● Maik Kschischo ● Holger Bastians 1 Received: 2 July 2020 / Revised: 2 October 2020 / Accepted: 13 October 2020 / Published online: 9 November 2020 © The Author(s) 2020. This article is published with open access Abstract Whole chromosome instability (W-CIN) is a hallmark of human cancer and contributes to the evolvement of aneuploidy. W-CIN can be induced by abnormally increased microtubule plus end assembly rates during mitosis leading to the generation of lagging chromosomes during anaphase as a major form of mitotic errors in human cancer cells. Here, we show that loss of the tumor suppressor genes TP53 and TP73 can trigger increased mitotic microtubule assembly rates, lagging chromosomes, and W-CIN. CDKN1A, encoding for the CDK inhibitor p21CIP1, represents a critical target gene of p53/p73. Loss of p21CIP1 unleashes CDK1 activity which causes W-CIN in otherwise chromosomally stable cancer cells. fi Vice versa 1234567890();,: 1234567890();,: Consequently, induction of CDK1 is suf cient to induce abnormal microtubule assembly rates and W-CIN. , partial inhibition of CDK1 activity in chromosomally unstable cancer cells corrects abnormal microtubule behavior and suppresses W-CIN. Thus, our study shows that the p53/p73 - p21CIP1 tumor suppressor axis, whose loss is associated with W-CIN in human cancer, safeguards against chromosome missegregation and aneuploidy by preventing abnormally increased CDK1 activity.
    [Show full text]
  • Cep57, a NEDD1-Binding Pericentriolar Material Component, Is Essential for Spindle Pole Integrity
    Cell Research (2012) :1-12. © 2012 IBCB, SIBS, CAS All rights reserved 1001-0602/12 $ 32.00 npg ORIGINAL ARTICLE www.nature.com/cr Cep57, a NEDD1-binding pericentriolar material component, is essential for spindle pole integrity Qixi Wu1, *, Runsheng He1, *, Haining Zhou1, Albert CH Yu2, Bo Zhang1, Junlin Teng1, Jianguo Chen1, 3 1The State Key Laboratory of Biomembrane and Membrane Bioengineering and The Key Laboratory of Cell Proliferation and Dif- ferentiation of Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China; 2Department of Neurobi- ology, Neuroscience Research Institute, School of Basic Medical Sciences, Peking University, Beijing 100191, China; 3The Center for Theoretical Biology, Peking University, Beijing 100871, China Formation of a bipolar spindle is indispensable for faithful chromosome segregation and cell division. Spindle in- tegrity is largely dependent on the centrosome and the microtubule network. Centrosome protein Cep57 can bundle microtubules in mammalian cells. Its related protein (Cep57R) in Xenopus was characterized as a stabilization factor for microtubule-kinetochore attachment. Here we show that Cep57 is a pericentriolar material (PCM) component. Its interaction with NEDD1 is necessary for the centrosome localization of Cep57. Depletion of Cep57 leads to unaligned chromosomes and a multipolar spindle, which is induced by PCM fragmentation. In the absence of Cep57, cen- trosome microtubule array assembly activity is weakened, and the spindle length and microtubule density decrease. As a spindle microtubule-binding protein, Cep57 is also responsible for the proper organization of the spindle micro- tubule and localization of spindle pole focusing proteins. Collectively, these results suggest that Cep57, as a NEDD1- binding centrosome component, could function as a spindle pole- and microtubule-stabilizing factor for establishing robust spindle architecture.
    [Show full text]
  • Supplemental Information
    Supplemental information Dissection of the genomic structure of the miR-183/96/182 gene. Previously, we showed that the miR-183/96/182 cluster is an intergenic miRNA cluster, located in a ~60-kb interval between the genes encoding nuclear respiratory factor-1 (Nrf1) and ubiquitin-conjugating enzyme E2H (Ube2h) on mouse chr6qA3.3 (1). To start to uncover the genomic structure of the miR- 183/96/182 gene, we first studied genomic features around miR-183/96/182 in the UCSC genome browser (http://genome.UCSC.edu/), and identified two CpG islands 3.4-6.5 kb 5’ of pre-miR-183, the most 5’ miRNA of the cluster (Fig. 1A; Fig. S1 and Seq. S1). A cDNA clone, AK044220, located at 3.2-4.6 kb 5’ to pre-miR-183, encompasses the second CpG island (Fig. 1A; Fig. S1). We hypothesized that this cDNA clone was derived from 5’ exon(s) of the primary transcript of the miR-183/96/182 gene, as CpG islands are often associated with promoters (2). Supporting this hypothesis, multiple expressed sequences detected by gene-trap clones, including clone D016D06 (3, 4), were co-localized with the cDNA clone AK044220 (Fig. 1A; Fig. S1). Clone D016D06, deposited by the German GeneTrap Consortium (GGTC) (http://tikus.gsf.de) (3, 4), was derived from insertion of a retroviral construct, rFlpROSAβgeo in 129S2 ES cells (Fig. 1A and C). The rFlpROSAβgeo construct carries a promoterless reporter gene, the β−geo cassette - an in-frame fusion of the β-galactosidase and neomycin resistance (Neor) gene (5), with a splicing acceptor (SA) immediately upstream, and a polyA signal downstream of the β−geo cassette (Fig.
    [Show full text]
  • Supplementary Data
    SUPPLEMENTARY DATA A cyclin D1-dependent transcriptional program predicts clinical outcome in mantle cell lymphoma Santiago Demajo et al. 1 SUPPLEMENTARY DATA INDEX Supplementary Methods p. 3 Supplementary References p. 8 Supplementary Tables (S1 to S5) p. 9 Supplementary Figures (S1 to S15) p. 17 2 SUPPLEMENTARY METHODS Western blot, immunoprecipitation, and qRT-PCR Western blot (WB) analysis was performed as previously described (1), using cyclin D1 (Santa Cruz Biotechnology, sc-753, RRID:AB_2070433) and tubulin (Sigma-Aldrich, T5168, RRID:AB_477579) antibodies. Co-immunoprecipitation assays were performed as described before (2), using cyclin D1 antibody (Santa Cruz Biotechnology, sc-8396, RRID:AB_627344) or control IgG (Santa Cruz Biotechnology, sc-2025, RRID:AB_737182) followed by protein G- magnetic beads (Invitrogen) incubation and elution with Glycine 100mM pH=2.5. Co-IP experiments were performed within five weeks after cell thawing. Cyclin D1 (Santa Cruz Biotechnology, sc-753), E2F4 (Bethyl, A302-134A, RRID:AB_1720353), FOXM1 (Santa Cruz Biotechnology, sc-502, RRID:AB_631523), and CBP (Santa Cruz Biotechnology, sc-7300, RRID:AB_626817) antibodies were used for WB detection. In figure 1A and supplementary figure S2A, the same blot was probed with cyclin D1 and tubulin antibodies by cutting the membrane. In figure 2H, cyclin D1 and CBP blots correspond to the same membrane while E2F4 and FOXM1 blots correspond to an independent membrane. Image acquisition was performed with ImageQuant LAS 4000 mini (GE Healthcare). Image processing and quantification were performed with Multi Gauge software (Fujifilm). For qRT-PCR analysis, cDNA was generated from 1 µg RNA with qScript cDNA Synthesis kit (Quantabio). qRT–PCR reaction was performed using SYBR green (Roche).
    [Show full text]
  • Ninein, a Microtubule Minus-End Anchoring Protein 3015 Analysis As Described Previously (Henderson Et Al., 1994)
    Journal of Cell Science 113, 3013-3023 (2000) 3013 Printed in Great Britain © The Company of Biologists Limited 2000 JCS1634 Microtubule minus-end anchorage at centrosomal and non-centrosomal sites: the role of ninein Mette M. Mogensen1,*, Azer Malik1, Matthieu Piel2, Veronique Bouckson-Castaing2 and Michel Bornens2 1Department of Anatomy and Physiology, MSI/WTB complex, Dow Street, University of Dundee, Dundee, DD1 5EH, UK 2Institute Curie, UMR 144-CNRS, 26 Rue d’Ulm, 75248 Paris Cedex 05, France *Author for correspondence (e-mail: [email protected]) Accepted 14 June; published on WWW 9 August 2000 SUMMARY The novel concept of a centrosomal anchoring complex, epithelial cells, where the vast majority of the microtubule which is distinct from the γ-tubulin nucleating complex, has minus-ends are associated with apical non-centrosomal previously been proposed following studies on cochlear sites, suggests that it is not directly involved in microtubule epithelial cells. In this investigation we present evidence nucleation. Ninein seems to play an important role in the from two different cell systems which suggests that the positioning and anchorage of the microtubule minus-ends centrosomal protein ninein is a strong candidate for the in these epithelial cells. Evidence is presented which proposed anchoring complex. suggests that ninein is released from the centrosome, Ninein has recently been observed in cultured fibroblast translocated with the microtubules, and is responsible for cells to localise primarily to the post-mitotic mother the anchorage of microtubule minus-ends to the apical centriole, which is the focus for a classic radial microtubule sites. We propose that ninein is a non-nucleating array.
    [Show full text]
  • AURKA, DLGAP5, TPX2, KIF11 and CKAP5: Five Specific Mitosis-Associated Genes Correlate with Poor Prognosis for Non-Small Cell Lung Cancer Patients
    INTERNATIONAL JOURNAL OF ONCOLOGY 50: 365-372, 2017 AURKA, DLGAP5, TPX2, KIF11 and CKAP5: Five specific mitosis-associated genes correlate with poor prognosis for non-small cell lung cancer patients MARC A. SCHNEIDER1,8, PETROS CHristopoulos2,8, THOMAS MULEY1,8, ARNE WartH5,8, URSULA KLINGMUELLER6,8,9, MICHAEL THOMAS2,8, FELIX J.F. HertH3,8, HENDRIK DIENEMANN4,8, NIKOLA S. MUELLER7,9, FABIAN THEIS7,9 and MICHAEL MEISTER1,8,9 1Translational Research Unit, 2Department of Thoracic Oncology, 3Department of Pneumology and Critical Care Medicine, and 4Department of Surgery, Thoraxklinik at University Hospital Heidelberg, Heidelberg; 5Institute of Pathology, University of Heidelberg, Heidelberg; 6Systems Biology of Signal Transduction, German Cancer Research Center, Heidelberg; 7Cellular Dynamics and Cell Patterning, Max Planck Institute of Biochemistry, Martinsried; 8Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL) Heidelberg; 9CancerSys network ‘LungSysII’, Heidelberg, Germany Received October 26, 2016; Accepted December 5, 2016 DOI: 10.3892/ijo.2017.3834 Abstract. The growth of a tumor depends to a certain extent genes AURKA, DLGAP5, TPX2, KIF11 and CKAP5 is asso- on an increase in mitotic events. Key steps during mitosis are ciated with the prognosis of NSCLC patients. the regulated assembly of the spindle apparatus and the sepa- ration of the sister chromatids. The microtubule-associated Introduction protein Aurora kinase A phosphorylates DLGAP5 in order to correctly segregate the chromatids. Its activity and recruitment Lung cancer is globally the leading cause of cancer-related to the spindle apparatus is regulated by TPX2. KIF11 and deaths (1). Non-small cell lung cancer (NSCLC), which accounts CKAP5 control the correct arrangement of the microtubules for more than 80% of all cases, is divided in adenocarcinoma and prevent their degradation.
    [Show full text]