Lineage Imply Later Origin of Modern Ray-Finned Fishes Giles, Sam; Xu, Guang-Hui; Near, Tom; Friedman, Matt

Total Page:16

File Type:pdf, Size:1020Kb

Lineage Imply Later Origin of Modern Ray-Finned Fishes Giles, Sam; Xu, Guang-Hui; Near, Tom; Friedman, Matt University of Birmingham Early members of ‘living fossil’ lineage imply later origin of modern ray-finned fishes Giles, Sam; Xu, Guang-Hui; Near, Tom; Friedman, Matt DOI: 10.1038/nature23654 License: Other (please specify with Rights Statement) Document Version Peer reviewed version Citation for published version (Harvard): Giles, S, Xu, G-H, Near, T & Friedman, M 2017, 'Early members of ‘living fossil’ lineage imply later origin of modern ray-finned fishes', Nature, vol. 549, no. 7671, pp. 265–268. https://doi.org/10.1038/nature23654 Link to publication on Research at Birmingham portal Publisher Rights Statement: Checked for eligibility: 23/10/2018 This is the accepted manuscript of a paper published in its final form in Nature which can be found at: https://doi.org/10.1038/nature23654 General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. •User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain. Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document. When citing, please reference the published version. Take down policy While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive. If you believe that this is the case for this document, please contact [email protected] providing details and we will remove access to the work immediately and investigate. Download date: 29. Sep. 2021 1 Early members of ‘living fossil’ lineage imply later origin of modern ray-finned 2 fishes 3 4 Sam Giles1*, Guang-Hui Xu2, Thomas J. Near3, Matt Friedman1,4 5 6 1Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, 7 OX1 3AN, UK. 8 9 2 Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of 10 Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese 11 Academy of Sciences, Beijing 100044, China 12 3Department of Ecology & Evolutionary Biology and Peabody Museum of Natural 13 History, Yale University, 165 Prospect St, New Haven, CT 06520, USA 14 4Museum of Paleontology and Department of Earth and Environmental Sciences, 15 University of Michigan, 1109 Geddes Ave, Ann Arbor, MI 48109, USA 16 17 *Corresponding author. E-mail: [email protected] 18 19 20 Modern ray-finned fishes (Actinopterygii) comprise half of extant vertebrate 21 species and are widely thought to have originated before or near the end of the 22 Middle Devonian (~385 million years (Myr) ago)1-4. Polypterids (bichirs and 23 ropefish) represent the earliest-diverging lineage of living actinopterygians, with 24 almost all Palaeozoic taxa interpreted as more closely related to other extant 25 actinopterygians than to polypterids5-10. By contrast, the earliest material 26 assigned to the polypterid lineage is mid-Cretaceous (ca. 100 Mya) in age11, 27 implying a quarter-of-a-billion-year palaeontological gap. We show that 28 scanilepiforms, a widely distributed Triassic (ca. 252-201 Mya) radiation, are 29 stem polypterids. Significantly, these fossils break the long polypterid branch 30 and expose many supposedly primitive features of extant polypterids as 31 reversals. This shifts numerous Palaeozoic ray-fins to the actinopterygian stem, 32 reducing the minimum age for the crown lineage by roughly 45 Myr. 33 Recalibration of molecular clocks to exclude phylogenetically reassigned 34 Palaeozoic taxa results in age estimates for the actinopterygian crown lineage 35 ~20–40 million years younger than previous molecular analyses1-4. These new 36 dates are broadly consistent with our revised palaeontological timescale and 37 coincident with an interval of conspicuous morphological and taxonomic 38 diversification among ray-fins centred on the Devonian-Carboniferous 39 boundary12-14. A shifting timescale, combined with ambiguity in the relationships 40 of late Palaeozoic actinopterygians, highlights this part of the fossil record as a 41 major frontier in understanding the evolutionary assembly of modern vertebrate 42 diversity. 43 44 The roughly dozen living species of polypterids have long vexed vertebrate 45 biologists15. These freshwater, African endemics were only recognized as ray-finned 46 fishes in the early 20th century16,17, although this view was resisted by some until the 47 1970s18. Anatomical and molecular data now support placement of polypterids as the 48 living sister group of all other extant actinopterygians1-7,9,19. Morphological analyses 49 generally resolve polypterids as one of the earliest diverging ray-finned lineages, with 50 only the Middle-Late Devonian Cheirolepis consistently falling on the 51 actinopterygian stem5-7,9,20. Despite apparently ancient evolutionary origins and 52 perceived status as ‘living fossils’15, polypterids have a meagre palaeontological 53 record consisting largely of fragments10,11. The oldest polypterids are mid-Cretaceous 54 in age21, postdating the predicted origin of the lineage by at least 285 Myr, and show 55 few differences from modern species17,22,23, which originated in the Miocene (ca. 20 56 Myr15). The lack of specializations found in early representatives of other living ray- 57 fin groups suggests an ancient origin for polypterids, but several of these absences 58 concern distinctive aspects of polypterid morphology that do not closely resemble the 59 anatomy of the oldest ray-finned fishes10,15. Fossils have played an important role in 60 establishing relationships among living actinopterygian lineages16,19, so the lack of 61 early polypterids leaves an outstanding gap in our understanding of the evolutionary 62 history of this group and of vertebrates more generally. 63 64 Scanilepiformes is a widespread group of Triassic ‘palaeoniscoid’ fishes known from 65 continental or marginal marine deposits in Sweden, Russia, China, Kyrgyzstan and 66 the United States. Links between scanilepiforms and polypterids have been made 67 based on morphological similarity, referencing a mix of ancestral (e.g., large gular 68 plates) and derived, but homoplastic (e.g., long-based dorsal fin), characters24-25. 69 However, past cladistic analyses resolve scanilepiforms as actinopterans, specifically 70 stem-group neopterygians9,26, rejecting a close phylogenetic relationship with 71 polypterids. 72 73 Most scanilepiform fossils are heavily compressed, limiting investigations to external 74 anatomy. The Middle Triassic Fukangichthys represents an important exception (Fig. 75 1, Extended Data Figures 1–3). High-resolution micro-computed tomography (µCT) 76 of three-dimensionally preserved skulls illuminates internal cranial anatomy of 77 scanilepiforms. The trough-shaped interorbital walls, which do not contact at the 78 midline (Fig. 1c and Extended Data Figure 1c), are separated from the weakly ossified 79 otic and occipital regions of the neurocranium (Extended Data Figure 1a). The optic 80 foramen is ventrally positioned, and the parasphenoid contributes to its lower margin 81 (Fig. 1b,c and Extended Data Figure 1b,c). The parasphenoid has long but simple 82 ascending processes, a triangular corpus pierced by a hypophysial canal, and no 83 posterior stalk (Fig. 1b,e and Extended Data Figure 1b,e). A small median vomer lies 84 anterior to the parasphenoid (Fig. 1e and Extended Data Figure 1e). Dermal bones on 85 the inner surface of the palate include the accessory vomer, dermetapterygoid, three 86 dermopalatines, entopterygoid, and an ectopterygoid bearing a lateral process that 87 articulates with the inner face of the maxilla (Fig. 1e and Extended Data Figures 1e, 88 4). Like the maxilla and premaxilla, the dentary bears a single row of peg-like teeth. 89 The hook-shaped coronoid process is composed exclusively of the prearticular (Fig. 90 1b and Extended Data Figures 1a, 4e). A modest opercular process extends from the 91 ‘L’-shaped hyomandibula, which is imperforate and unfused to the dermohyal (Fig. 92 1b and Extended Data Figure 1b). Plate-like ceratohyals, which bear a groove for the 93 afferent hyoid artery, flank the four pairs of ceratobranchials and hypobranchials (Fig. 94 1d and Extended Data Figures 1d, 5). Epibranchials bear uncinate processes, and 95 multiple basibranchial ossifications may be present (Fig. 1d and Extended Data 96 Figures 1d, 5). 97 98 We conducted a revised analysis of actinopterygian interrelationships based on an 99 expanded morphological dataset27 (93 taxa, 265 characters), and an analysis of this 100 morphological dataset combined with DNA sequences of 12 nuclear genes. 101 Phylogenies were inferred using both parsimony (Fig. 2 and Extended Data Figures 6, 102 7) and Bayesian methods (Extended Data Figure 8). In contrast to some, but not all28- 103 29, previous studies, we have rooted our analyses on a set of non-actinopterygian 104 outgroups,
Recommended publications
  • Table S1.Xlsx
    Bone type Bone type Taxonomy Order/series Family Valid binomial Outdated binomial Notes Reference(s) (skeletal bone) (scales) Actinopterygii Incertae sedis Incertae sedis Incertae sedis †Birgeria stensioei cellular this study †Birgeria groenlandica cellular Ørvig, 1978 †Eurynotus crenatus cellular Goodrich, 1907; Schultze, 2016 †Mimipiscis toombsi †Mimia toombsi cellular Richter & Smith, 1995 †Moythomasia sp. cellular cellular Sire et al., 2009; Schultze, 2016 †Cheirolepidiformes †Cheirolepididae †Cheirolepis canadensis cellular cellular Goodrich, 1907; Sire et al., 2009; Zylberberg et al., 2016; Meunier et al. 2018a; this study Cladistia Polypteriformes Polypteridae †Bawitius sp. cellular Meunier et al., 2016 †Dajetella sudamericana cellular cellular Gayet & Meunier, 1992 Erpetoichthys calabaricus Calamoichthys sp. cellular Moss, 1961a; this study †Pollia suarezi cellular cellular Meunier & Gayet, 1996 Polypterus bichir cellular cellular Kölliker, 1859; Stéphan, 1900; Goodrich, 1907; Ørvig, 1978 Polypterus delhezi cellular this study Polypterus ornatipinnis cellular Totland et al., 2011 Polypterus senegalus cellular Sire et al., 2009 Polypterus sp. cellular Moss, 1961a †Scanilepis sp. cellular Sire et al., 2009 †Scanilepis dubia cellular cellular Ørvig, 1978 †Saurichthyiformes †Saurichthyidae †Saurichthys sp. cellular Scheyer et al., 2014 Chondrostei †Chondrosteiformes †Chondrosteidae †Chondrosteus acipenseroides cellular this study Acipenseriformes Acipenseridae Acipenser baerii cellular Leprévost et al., 2017 Acipenser gueldenstaedtii
    [Show full text]
  • A Late Permian Ichthyofauna from the Zechstein Basin, Lithuania-Latvia Region
    bioRxiv preprint doi: https://doi.org/10.1101/554998; this version posted February 20, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 A late Permian ichthyofauna from the Zechstein Basin, Lithuania-Latvia Region 2 3 Darja Dankina-Beyer1*, Andrej Spiridonov1,4, Ģirts Stinkulis2, Esther Manzanares3, 4 Sigitas Radzevičius1 5 6 1 Department of Geology and Mineralogy, Vilnius University, Vilnius, Lithuania 7 2 Chairman of Bedrock Geology, Faculty of Geography and Earth Sciences, University 8 of Latvia, Riga, Latvia 9 3 Department of Botany and Geology, University of Valencia, Valencia, Spain 10 4 Laboratory of Bedrock Geology, Nature Research Centre, Vilnius, Lithuania 11 12 *[email protected] (DD-B) 13 14 Abstract 15 The late Permian is a transformative time, which ended in one of the most 16 significant extinction events in Earth’s history. Fish assemblages are a major 17 component of marine foods webs. The macroevolution and biogeographic patterns of 18 late Permian fish are currently insufficiently known. In this contribution, the late Permian 19 fish fauna from Kūmas quarry (southern Latvia) is described for the first time. As a 20 result, the studied late Permian Latvian assemblage consisted of isolated 21 chondrichthyan teeth of Helodus sp., ?Acrodus sp., ?Omanoselache sp. and 22 euselachian type dermal denticles as well as many osteichthyan scales of the 23 Haplolepidae and Elonichthydae; numerous teeth of Palaeoniscus, rare teeth findings of 1 bioRxiv preprint doi: https://doi.org/10.1101/554998; this version posted February 20, 2019.
    [Show full text]
  • Chondrichthyes:Elasmobranchi)
    Dissertação de Mestrado Lucas Romero de Oliveira Anatomia comparada e importância filogenética da musculatura branquial em tubarões da superordem Galeomorphi (Chondrichthyes:Elasmobranchi) Comparative anatomy and phylogenetic importance of the branchial musculature in sharks of the superorder Galeomorphi (Chondrichthyes:Elasmobranchi) Instituto de Biociências – Universidade de São Paulo São Paulo Novembro de 2017 1 Dissertação de Mestrado Lucas Romero de Oliveira Anatomia comparada e importância filogenética da musculatura branquial em tubarões da superordem Galeomorphi (Chondrichthyes:Elasmobranchi) Compartive anatomy and phylogenetic importance of the branchial musculature in sharks of the superorder Galeomorphi (Chondrichthyes:Elasmobranchi) Dissertação apresentada ao Instituto de Biociências da Universidade de São Paulo para a obtenção de Título de Mestre em Zoologia, na Área de Anatomia comparada Supervisora: Mônica de Toledo Piza Ragazzo Instituto de Biociências – Universidade de São Paulo São Paulo Novembro de 2017 2 Introduction Extant sharks are currently divided into two monophyletic groups based on morphological (Compagno, 1977; Shirai, 1992a, 1992b, 1996; de Carvalho, 1996; de Carvalho & Maisey, 1996) and molecular (Douady et al., 2003; Winchell et al. 2004; Naylor et al., 2005, 2012; Human et al., 2006; Heinicke et al., 2009)data: Galeomorphi and Squalomorphi. Molecular data support that rays, forming a group named Batoidea, are the sister-group to a clade comprising both galeomorph and squalomorph sharks. Results from many older morphological studies also considered both body plans (sharks and rays) as indicative of monophyletic groups, but some recent works based on morphological data suggested that rays form a monophyletic group nested within squalomorph sharks (Shirai, 1992; de Carvalho & Maisey, 1996; de Carvalho, 1996). In studies based on both types of dataset, the Galeomorphi comprehend only shark groups.
    [Show full text]
  • Geological Survey of Ohio
    GEOLOGICAL SURVEY OF OHIO. VOL. I.—PART II. PALÆONTOLOGY. SECTION II. DESCRIPTIONS OF FOSSIL FISHES. BY J. S. NEWBERRY. Digital version copyrighted ©2012 by Don Chesnut. THE CLASSIFICATION AND GEOLOGICAL DISTRIBUTION OF OUR FOSSIL FISHES. So little is generally known in regard to American fossil fishes, that I have thought the notes which I now give upon some of them would be more interesting and intelligible if those into whose hands they will fall could have a more comprehensive view of this branch of palæontology than they afford. I shall therefore preface the descriptions which follow with a few words on the geological distribution of our Palæozoic fishes, and on the relations which they sustain to fossil forms found in other countries, and to living fishes. This seems the more necessary, as no summary of what is known of our fossil fishes has ever been given, and the literature of the subject is so scattered through scientific journals and the proceedings of learned societies, as to be practically inaccessible to most of those who will be readers of this report. I. THE ZOOLOGICAL RELATIONS OF OUR FOSSIL FISHES. To the common observer, the class of Fishes seems to be well defined and quite distin ct from all the other groups o f vertebrate animals; but the comparative anatomist finds in certain unusual and aberrant forms peculiarities of structure which link the Fishes to the Invertebrates below and Amphibians above, in such a way as to render it difficult, if not impossible, to draw the lines sharply between these great groups.
    [Show full text]
  • Syndromes of the First and Second Branchial Arches, Part 1: Embryology and Characteristic REVIEW ARTICLE Defects
    Syndromes of the First and Second Branchial Arches, Part 1: Embryology and Characteristic REVIEW ARTICLE Defects J.M. Johnson SUMMARY: A variety of congenital syndromes affecting the face occur due to defects involving the G. Moonis first and second BAs. Radiographic evaluation of craniofacial deformities is necessary to define aberrant anatomy, plan surgical procedures, and evaluate the effects of craniofacial growth and G.E. Green surgical reconstructions. High-resolution CT has proved vital in determining the nature and extent of R. Carmody these syndromes. The radiologic evaluation of syndromes of the first and second BAs should begin H.N. Burbank first by studying a series of isolated defects: CL with or without CP, micrognathia, and EAC atresia, which compose the major features of these syndromes and allow more specific diagnosis. After discussion of these defects and the associated embryology, we proceed to discuss the VCFS, PRS, ACS, TCS, Stickler syndrome, and HFM. ABBREVIATIONS: ACS ϭ auriculocondylar syndrome; BA ϭ branchial arch; CL ϭ cleft lip; CL/P ϭ cleft lip/palate; CP ϭ cleft palate; EAC ϭ external auditory canal; HFM ϭ hemifacial microsomia; MDCT ϭ multidetector CT; PRS ϭ Pierre Robin sequence; TCS ϭ Treacher Collins syndrome; VCFS ϭ velocardiofacial syndrome adiographic evaluation of craniofacial deformities is nec- major features of the syndromes of the first and second BAs. Ressary to define aberrant anatomy, plan surgical proce- Part 2 of this review discusses the syndromes and their radio- dures, and evaluate the effects of craniofacial growth and sur- graphic features: PRS, HFM, ACS, TCS, Stickler syndrome, gical reconstructions.1 The recent rapid proliferation of and VCFS.
    [Show full text]
  • APS Bulletin June 1987
    VOLUME 2, NUMBER 2 JUNE 1987 - 1 - ALBERTA PALAEONTOLOGICAL SOCIETY OFFICERS: President Wayne Braunberger 278-5154 Vice President Don Sabo 238-1190 Secretary Susan Lancaster 228-0773 Treasurer Les Adler 289-9972 DIRECTORS: Editor Geoffrey Barrett 246-8738 Education & Programs Don Sabo 238-1190 Membership & Fund RaisingIrene Markhasin 253-2860 Librarian Karen Weinhold 274-3576 Curator & Field Trip Co-ordinator Harvey Negrich 249-4497 Director at Large Dr. Michael C. Wilson 239-8289 The Society was incorporated in 1986, a non-profit organization formed to: A. Promote the science of palaeontology through study and education. B. Make contributions to the science by: 1) Discovery 2) Collection 3) Description, curation, and display 4) Education of the general public 5) Preserve material for study and the future C. Provide information and expertise to other collectors. D. Work with professionals at museums and universities to add to the palaeontological collections of the Province (preserve Alberta's heritage). MEMBERSHIP: Any person with a sincere interest in palaeontology is eligible to present their application for membership in the Society. Single Membership $10.00 annually Family or Institution $15.00 annually OUR BULLETIN WILL BE PUBLISHED QUARTERLY: March 1, June 1, September 1, and December 1 annually DEADLINE FOR SUBMITTING MATERIAL FOR PUBLICATION IS THE 15TH OF THE MONTH PRIOR TO PUBLICATION. Mailing Address: Alberta Palaeontological Society P. O. Box 7371, Station E Calgary, Alberta, Canada T3C 3M2 Meeting Room: Room 1032 (Rock Lab) Mount Royal College 4825 Richard Road S. W. Calgary, Alberta, Canada - 2 - PRESIDENT'S VIEWPOINT Wayne F. Braunberger Over the past several months, controversy has raged over several articles published in various newspapers and magazines on the subject of ammonites and mining.
    [Show full text]
  • Holocephalan Embryos Provide Evidence for Gill Arch Appendage Reduction and Opercular Evolution in Cartilaginous fishes
    Holocephalan embryos provide evidence for gill arch appendage reduction and opercular evolution in cartilaginous fishes J. Andrew Gillisa,1, Kate A. Rawlinsonb, Justin Bellc, Warrick S. Lyond, Clare V. H. Bakera, and Neil H. Shubine,1 aDepartment of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom; bDepartment of Genetics, Evolution and Environment, University College London, London, WC1E 6BT United Kingdom; cDepartment of Primary Industries, Marine and Freshwater Fisheries Resource Institute, Queenscliff, Victoria 3225, Australia; dNational Institute of Water and Atmospheric Research, Hataitai, Wellington 6021, New Zealand; and eDepartment of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637 Edited by Sean B. Carroll, University of Wisconsin, Madison, WI, and approved December 15, 2010 (received for review August 31, 2010) Chondrichthyans possess endoskeletal appendages called branchial extensive analyses, including exceptionally complete material of the rays that extend laterally from their hyoid and gill-bearing (bran- stethacanthid Akmonistion zangerli (11), however, suggest an al- chial) arches. Branchial ray outgrowth, like tetrapod limb out- ternative placement of key ray-bearing taxa. These analyses resolve growth, is maintained by Sonic hedgehog (Shh) signaling. In limbs, Cladoselache and the symmoriids (including the hyoid plus gill arch distal endoskeletal elements fail to form in the absence of normal ray-bearing Akmonistion) as paraphyletic stem-group
    [Show full text]
  • Muscle Development in the Shark Scyliorhinus Canicula: Implications for the Evolution of the Gnathostome Head and Paired Appendage Musculature Janine M
    Ziermann et al. Frontiers in Zoology (2017) 14:31 DOI 10.1186/s12983-017-0216-y RESEARCH Open Access Muscle development in the shark Scyliorhinus canicula: implications for the evolution of the gnathostome head and paired appendage musculature Janine M. Ziermann1*, Renata Freitas2,3 and Rui Diogo4 Abstract Background: The origin of jawed vertebrates was marked by profound reconfigurations of the skeleton and muscles of the head and by the acquisition of two sets of paired appendages. Extant cartilaginous fish retained numerous plesiomorphic characters of jawed vertebrates, which include several aspects of their musculature. Therefore, myogenic studies on sharks are essential in yielding clues on the developmental processes involved in the origin of the muscular anatomy. Results: Here we provide a detailed description of the development of specific muscular units integrating the cephalic and appendicular musculature of the shark model, Scyliorhinus canicula. In addition, we analyze the muscle development across gnathostomes by comparing the developmental onset of muscle groups in distinct taxa. Our data reveal that appendicular myogenesis occurs earlier in the pectoral than in the pelvic appendages. Additionally, the pectoral musculature includes muscles that have their primordial developmental origin in the head. This culminates in a tight muscular connection between the pectoral girdle and the cranium, which founds no parallel in the pelvic fins. Moreover, we identified a lateral to ventral pattern of formation of the cephalic muscles, that has been equally documented in osteichthyans but, in contrast with these gnathostomes, the hyoid muscles develop earlier than mandibular muscle in S. canicula. Conclusion: Our analyses reveal considerable differences in the formation of the pectoral and pelvic musculatures in S.
    [Show full text]
  • Anewlatepermianray-Finned(Actinopterygian)Fishfrom the Beaufort Group, South Africa
    Palaeont. afr., 38, 33-47 (2002) ANEWLATEPERMIANRAY-FINNED(ACTINOPTERYGIAN)FISHFROM THE BEAUFORT GROUP, SOUTH AFRICA by Patrick Bender Council for Geoscience, Private Bag X112, Pretoria, South Africa. e-mail: [email protected] ABSTRACT A new genus and species of actinopterygian (ray-finned) fish, Kompasia delaharpei, is described from Late Permian (Tatarian) fluvio-lacustrine, siltstone dominated deposits within the lower Beaufort Group of South Africa. It is currently known from two localities on adjoining farms, Wilgerbosch and Ganora, both in the New Bethesda district of the Eastern Cape Karoo region. The fossils were recovered from an uncertain formation, possibly closely equivalent to the Balfour Formation, within the Dicynodon Assemblage Zone. Kompasia delaharpei differs from previously described early actinopterygians, including the recently described new lower Beaufort Group taxon Bethesdaichthys kitchingi, on the basis of a combination of skull and post cranial characters. The genus is characterised by: a uniquely shaped subrectangular posterior blade of the maxilla, a shortened dorsal limb of the preopercular, and a dermopterotic and dermosphenotic contacting the nasal; furthermore, the subopercular is equal to or longer than the opercular, the dorsal fin is situated in the posterior third of the body, slightly behind the position of the anal fin, and the anterior rnidflank scales exhibit a smooth dermal pattern or surface, with a number of faint ganoine ridges present parallel to the posterior and ventral scale margins. Kompasia appears to exhibit a relatively conservative morphology similar to that in the lower Beaufort Group taxon Bethesdaichthys kitchingi. As such, Kompasia is derived relative to stem-actinopterans such as Howqualepis, Mimia and Moythomasia, and also derived relative to earlier southern African Palaeozoic actinopterygians such as Mentzichthys jubbi and Namaichthys schroederi, but basal to stem-neopterygians such as Australosomus and Saurichthys.
    [Show full text]
  • 1 Evolutionary Time Best Explains the Global Distribution of Living
    Evolutionary time best explains the global distribution of living freshwater fish diversity SUPPLEMENTARY INFORMATION Included in this document: Supplementary text: 1. Extended Methods 2. Extended Results 1: Comparing colonization time estimates between two phylogenies, one with fossil taxa 3. Extended Results 2: Effect of excluding early diverging lineages on diversification rate and colonization time estimates of basins Supplementary tables: 1. Table S1: Constraints on dispersal used in stratified DEC model 2. Table S2: Change in richness, diversification rates, time-for-speciation and surface area with latitude and longitude 3. Table S3: Effect of time-for-speciation and diversification rates on species richness 4. Table S4: Effect of time-for-speciation and diversification rates on species richness while controlling for the species-area scaling 5. Table S5: Relationship between diversification rates and colonization times 6. Table S6: Influence of area on trends in diversification rates and time-for-speciation 7. Table S7: Regions assigned to fossil taxa with references Supplementary figures: 8. Figure S1: The relationship between basin surface area and richness 9. Figure S2: Method to illustrate complex colonization-richness temporal dynamics 10. Figure S3: Comparing colonization time estimates between alternative phylogenies References Included in FigShare repository (doi: 10.6084/m9.figshare.8251394): 1. Table A1: Presence Absence Matrix (PAM) summarizing the distribution of 14,947 species across 3,119 basins 2. Table A2: Basin-specific mean rates of diversification based on BAMM and DR 3. Table A3: Species-specific mean colonization times derived from ancestral area reconstruction analyses. 4. Table A4: Basin-specific mean and median colonization times 5.
    [Show full text]
  • Lineage Imply Later Origin of Modern Ray-Finned Fishes Giles, Sam; Near, Tom; Xu, Guang-Hui; Friedman, Matt
    University of Birmingham Early members of ‘living fossil’ lineage imply later origin of modern ray-finned fishes Giles, Sam; Near, Tom; Xu, Guang-Hui; Friedman, Matt DOI: 10.1038/nature23654 License: Other (please specify with Rights Statement) Document Version Peer reviewed version Citation for published version (Harvard): Giles, S, Near, T, Xu, G-H & Friedman, M 2017, 'Early members of ‘living fossil’ lineage imply later origin of modern ray-finned fishes', Nature, vol. 549, no. 7671, pp. 265–268. https://doi.org/10.1038/nature23654 Link to publication on Research at Birmingham portal Publisher Rights Statement: Checked for eligibility: 23/10/2018 This is the accepted manuscript of a paper published in its final form in Nature which can be found at: https://doi.org/10.1038/nature23654 General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. •User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain. Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.
    [Show full text]
  • Atavisms and the Homology of Hyobranchial Elements in Lower Vertebrates
    JOURNAL OF MORPHOLOGY 195237-245 (1988) Atavisms and the Homology of Hyobranchial Elements in Lower Vertebrates STEPHEN M. REILLY AND GEORGE V.LAUDER Department of Developmental and Cell Biology, University of California, Iruine, CA 92717 ABSTRACT The homology of branchial arch segments in salamanders has been a matter of controversy since the last century. Many investigators term the most medial paired elements of salamander branchial arches "ceratobran- chials" and the next distal paired elements "epibranchials." This suggests that the first two segmental elements of the salamander branchial arch are not homologous with elements occupying the same position in ray-finned fishes, Latimeria, "rhipidistians," and lungfishes, in which these bones are called hypobranchials and ceratobranchials, respectively. Three lines of evi- dence suggest that it is more parsimonious to interpret urodele branchial arch segments as being homologous with those of other vertebrate clades-1) com- parative osteology, 2) comparative myology, and 3) the discovery of cartilagi- nous structures forming a third segmental unit that we interpret as atavistic epibranchials of the branchial arch in one population of the salamander Note phthalmus uiridescens. These structures possess all the defining attributes of atavisms, and illustrate the special role that atavistic features play in resolv- ing questions of homology recognition. For more than a century, detailed descrip- structures of the hyobranchial apparatus are tions of hyobranchial morphology in lower called basibranchials because they lie at the vertebrates have appeared in the scientific base of the branchial basket. The segmental literature (Gegenbaur, 1865; Parker, 1877; component of each left and right branchial Wiedersheim, 1877). As traditionally de- arch that articulates with the basibranchial scribed, the hyobranchial apparatus of ver- is called the hypobranchial (Fig.
    [Show full text]