Bone Disease and Calcium Abnormalities in Elderly Patients with CKD

Total Page:16

File Type:pdf, Size:1020Kb

Bone Disease and Calcium Abnormalities in Elderly Patients with CKD Chapter 14: Bone Disease and Calcium Abnormalities in Elderly Patients With CKD Harmeet Singh Division of Nephrology, Brody School of Medicine, Greenville, North Carolina An 81-yr-old African-American woman with end- issue problematic to define. Osteoporosis in CKD is stage kidney disease (ESKD) who has been on he- only a part of the constellation of metabolic bone modialysis for 10 yr seeks a consultation with you. problems. Therefore, its diagnosis and manage- Her primary physician obtained a dual-energy x- ment may differ from general population. Bones ray absorptiometry (DEXA) scan and asked her to are more severely affected in CKD than that from discuss the results with her nephrologist for further normal aging. In a patient with renal osteodystro- management. She is diagnosed with osteoporosis phy, there is the potential for low BMD to coexist based on her T-scores of Ϫ5.1 (AP spine), Ϫ4.1 (left with an enormous range of functional abnormali- femoral neck), and Ϫ5.4 (left total hip). Her last ties. These range from high turnover bone lesions in dialysis laboratory results show serum calcium is patients with uncontrolled hyperparathyroidism to 10.7 mg/dl, intact parathyroid hormone (PTH) is severely reduced bone remodeling activity in pa- 207 pg/ml, phosphorus is 5.7 mg/dl, and alkaline tients with adynamic bone disease. This is in con- phosphatase (ALP) is 122 IU/L. She receives pari- trast to the non-CKD patient with osteoporosis calcitol 5 mg intravenously on hemodialysis three where bone remodeling is not severely affected. times per week. Chronic kidney disease (CKD)-related bone dis- ease is known as renal or uremic osteodystrophy. It IMPACT ON QUALITY OF LIFE is associated with derangements in bone and min- eral metabolism that leads to abnormal regulation Patients with CKD-MBD and osteoporosis are as- of calcium, phosphorous, vitamin D, and PTH. It sociated with increased risk of fractures and are at a encompasses a spectrum of conditions that are clas- high risk of cardiovascular disease.2 The overall in- sified based on bone biopsy findings including os- cidence of hip fractures among dialysis patients is teitis fibrosa (high turnover disease), mixed uremic about four-fold higher than that expected for gen- osteodystrophy, osteomalacia (low turnover dis- eral population. The risk is increased in both men ease), and adynamic bone disease. KDIGO (kidney and women.3 Fractures may limit ambulation, lead- disease: improving global outcomes) has proposed ing to loss of independence and chronic pain, to define CKD-related bone and mineral metabolic thereby decreasing quality of life. Mortality risk in abnormalities in the context of a systemic disorder dialysis patients with hip fracture is twice that of called CKD–mineral and bone disorder (CKD- patients without hip fracture.4 Women who are 65 MBD).1 yr of age and older and have moderate renal dys- Osteoporosis is a condition characterized by low function (eGFR Ͻ 60 ml/min per 1.73 m2) are also bone mass leading to reduced bone strength and an at an increased risk of hip fractures.5 In addition to increased risk of fractures. Hip, spine, and wrist are the traditional risk factors, several risk factors for most commonly affected. The WHO definition of low BMD have been identified in the CKD popula- osteoporosis is based on bone mineral density tion such as renal osteodystrophy, ethnicity, trans- (BMD) measurements. The NIH consensus state- plant status, and duration of dialysis.6 ment refers to osteoporosis as a skeletal disorder characterized by compromised bone strength pre- disposing to increased risk of fracture. Correspondence: Harmeet Singh, Division of Nephrology, Brody School of Medicine, 2355 W. Arlington Boulevard, Greenville, NC Osteoporosis and renal osteodystrophy may co- 27834. E-mail: [email protected] exist in elderly patients with CKD, which makes the Copyright ᮊ 2009 by the American Society of Nephrology American Society of Nephrology Geriatric Nephrology Curriculum 1 EVALUATION diagnostic test for determining the type of bone disease asso- ciated with CKD is iliac crest bone biopsy with double tetracy- Assessment of bone strength in an elderly patient with CKD is cline labeling and bone histomorphometric analysis. Bone his- complex. The initial evaluation of CKD-related bone and min- tology shows information about turnover, mineralization, and eral disorders should include serum biomarkers and noninva- volume and may be helpful in guiding therapy. Bone biopsy is sive imaging. Bone histomorphometric analysis might be not performed routinely in clinical practice because it is inva- needed in some cases. Bone strength is represented by two sive, available in limited centers, and requires special expertise main features: bone density and bone quality. Bone density can and an experienced pathologist for interpretation. However, it be measured using several different radiologic techniques, but should be considered in patients with Stage 5 CKD who have bone quality is difficult to assess because it depends on archi- (1) fractures with minimal or no trauma (pathologic frac- tecture, turnover, and mineralization. Correlation of BMD tures); (2) intact plasma PTH levels between 100 and 500 with bone histology is poor. pg/ml (11.0 to 55.0 pmol/L; in CKD Stage 5) with coexisting conditions such as unexplained hypercalcemia, severe bone Serum Biomarkers pain, or unexplained increases in bone alkaline phosphatase Surrogate markers of bone metabolism such as serum intact activity; and (3) suspected aluminum bone disease, based on PTH, calcium (preferably ionized), phosphorus, alkaline clinical symptoms or history of aluminum exposure.2 Bone phosphatases, and bicarbonate levels should be obtained ini- biopsy should be strongly considered before starting bisphos- tially. High intact PTH levels may correlate with high turnover phonate therapy in patients with Stage 5 CKD. bone disease. The optimal target level for intact PTH in CKD is not known. TREATMENT Noninvasive Imaging Several imaging tools are available to assess bone health includ- Whether the standard agents used for osteoporosis in general ing DEXA scan, quantitative computed tomography (qCT), population can be applied to patients with CKD is unclear. The and heel ultrasound. The value of BMD in evaluation of CKD- management of osteoporosis includes addressing modifiable related bone disease is not well established. risk factors and using pharmacologic agents. DEXA scan is most commonly used to assess bone mass. It (1) Smoking cessation is strongly recommended. Excess al- can only detect overall density but not quality of the bone. cohol consumption should be avoided. According to WHO definition, a T-score of Ϫ2.5 is defined as (2) Exercise: Moderate weight-bearing physical activity has osteoporosis. The extension of this definition to groups other been associated with improvement in bone density and reduc- than postmenopausal Caucasian women is controversial. Be- tion in risk of hip fractures. However, in older women, the cause of vascular and extraskeletal calcifications in CKD, the benefit is modest. interpretation may be affected by artifacts. However, it is com- (3) Calcium and vitamin D requirements: Vitamin D defi- monly used because of low cost, accuracy, and wide availabil- ciency is common in older adults especially during winter. It ity. The distal radius may be the preferred site in CKD pa- may be related to reduced synthesis, inadequate intake, dietary tients.7 KDOQI recommends use of DEXA to measure BMD in restrictions, and inactive lifestyle in dialysis patients. 25(OH- patients with fractures and in those with known risk factors for )Vitamin D deficiency is associated with increased iPTH levels, osteoporosis. reduced BMD, and increased rate of hip fractures. The extra- renal effects of vitamin D are also receiving increasing atten- Quantitative CT tion. Low 25(OH)vitamin D levels may be associated with in- Information regarding use of qCT in assessing BMD in pa- creased risk of cardiovascular events in patients with peritoneal tients with CKD is limited. It has the advantage of distinguish- dialysis (PD)9 and higher risk of myocardial infarction in ing outer dense cortical bone from inner spongy trabecular men.10 The optimal serum 25(OH)vitamin D concentration bone. Hyperparathyroidism leads to sclerotic thickening of needed to maintain bone health has not been established. Cal- trabecular bone with increased BMD but stimulates resorption cium and vitamin D supplementation has been reported to in cortical bone with significant reductions in BMD. Thinning result in small improvement in hip bone density. It did not of the cortical bone results in increased risk of fractures. A significantly reduce hip fractures but increased the risk of kid- small study has reported association of radius cortical param- ney stones.11 In CKD Stages 3 and 4, KDOQI recommends eters with fractures in hemodialysis patients. qCT is more ex- maintaining 25(OH)vitamin D levels above 30 ng/ml by sup- pensive than DEXA and results in greater exposure to radia- plementation with ergocalciferol. In CKD Stages 3 to 5, total tion.8 elemental calcium intake including dietary and calcium based binders should not exceed 2000 mg/d. The National Osteopo- Bone Biopsy rosis Foundation recommends a daily calcium intake of 1200 It remains the gold standard for diagnosis of renal osteodys- mg and vitamin D intake of 800 to 1000 IU/d for adults 50 and trophy and assessment of bone architecture. The most accurate older. 2 Geriatric Nephrology Curriculum American Society of Nephrology (4) Role of bisphosphonates: Bisphosphonates are effective hypercalcemia and increased uric acid levels.16 Safety data in dial- in treating osteoporosis, but their use in CKD Stages 4 and 5 is ysis patients or severe renal insufficiency are not available. controversial. No data are available that proves that bisphos- The above case shows difficult real-life situations faced by phonates reduce risk of fractures in dialysis patients with os- clinicians where no guidelines are available to recommend de- teoporosis.
Recommended publications
  • Henry Ford Hospital Medical Journal Osteomalacia
    Henry Ford Hospital Medical Journal Volume 31 Number 4 Article 11 12-1983 Osteomalacia Boy Frame Follow this and additional works at: https://scholarlycommons.henryford.com/hfhmedjournal Part of the Life Sciences Commons, Medical Specialties Commons, and the Public Health Commons Recommended Citation Frame, Boy (1983) "Osteomalacia," Henry Ford Hospital Medical Journal : Vol. 31 : No. 4 , 213-216. Available at: https://scholarlycommons.henryford.com/hfhmedjournal/vol31/iss4/11 This Article is brought to you for free and open access by Henry Ford Health System Scholarly Commons. It has been accepted for inclusion in Henry Ford Hospital Medical Journal by an authorized editor of Henry Ford Health System Scholarly Commons. Henry Ford Hosp Med J Vol 31, No 4,1983 Osteomalacia Boy Frame, MD" fd. Note - This overview was originally presented at the Recent advances in laboratory methods and techniques International Symposium on Clinical Disorders of Bone related to bone and mineral metabolism have provided a and Mineral Metabolism, May 9-13, 1983. The following detailed study of factors important in bone formation. list indicates the presentations given in this session at the Osteomalacia results from a disturbance in mineraliza­ Symposium and the contents ofthe corresponding chap­ tion of bone matrix. Theoretically, bone matrix may fail ter in the Proceedings of the Symposium published by to mineralize because of abnormalities in collagen and Excerpta Medica. The numbers in parentheses refer to matrix proteins, or because of an alteration in mineral pages in this volume. Complete information about the metabolism at the mineralization front. The result is an contents ofthe Proceedings can be found at the back of accumulation of increased quantities of unmineralized this issue.
    [Show full text]
  • Upper Jaw Chronic Osteomyelitis. Report of Four Clinical Cases Osteomielitis Crónica Maxilar
    www.medigraphic.org.mx Revista Odontológica Mexicana Facultad de Odontología Vol. 16, No. 2 April-June 2012 pp 105-111 CASE REPORT Upper jaw chronic osteomyelitis. Report of four clinical cases Osteomielitis crónica maxilar. Informe de 4 casos clínicos Alberto Wintergerst Fish,* Carlos Javier Iturralde Espinosa,§ Vladimir de la Riva Parra,II Santiago Reinoso QuezadaII ABSTRACT RESUMEN Osteomyelitis is an infl ammatory bone disease commonly related La osteomielitis es una enfermedad ósea infl amatoria, comúnmente to an infectious origin caused by germs, mainly pyogenic staphy- relacionada a un origen infeccioso por gérmenes piógenos funda- lococcus, and occasionally, streptococci, pneumococci and en- mentalmente estafi lococos y en algunas ocasiones por estreptoco- terobacteriae. Several treatments and classifi cations for osteomy- cos, neumococos y enterobacterias. Se han establecido diversas elitis have been established. These are based on clinical course, clasifi caciones y tratamientos para la osteomielitis, basadas en el pathologic-anatomical or radiologic features, etiology and patho- comportamiento clínico, características anatomo-patológicas, ra- genesis. Chronic osteomyelitis is a complication of non-treated or diográfi cas, etiología y patogenia. La osteomielitis crónica es una inadequately treated acute osteomyleitis. It can also be caused by a complicación de la osteomielitis aguda no tratada, manejada inade- low grade prolonged infl ammatory reaction. This study presents four cuadamente o como una reacción infl amatoria prolongada de bajo cases of maxillary osteomyelitis treated between 2007 and 2009. grado. Se presentan 4 casos de osteomielitis crónica en el maxilar Cases were treated with antimicrobial therapy. Preoperatively, pa- tratadas entre 2007 y 2009 mediante terapia antimicrobiana preo- tients were prescribed Clindamycin, 300 mg every eight hours, Ce- peratoriamente con clindamicina 300 mg, IV cada 8 h y ceftriaxona friaxone, 1 g IV every 12 hours.
    [Show full text]
  • Osteomalacia and Osteoporosis D
    Postgrad. med.J. (August 1968) 44, 621-625. Postgrad Med J: first published as 10.1136/pgmj.44.514.621 on 1 August 1968. Downloaded from Osteomalacia and osteoporosis D. B. MORGAN Department of Clinical Investigation, University ofLeeds OSTEOMALACIA and osteoporosis are still some- in osteomalacia is an increase in the alkaline times confused because both diseases lead to a phosphatase activity in the blood (SAP); there deficiency of calcium which can be detected on may also be a low serum phosphorus or a low radiographs of the skeleton. serum calcium. This lack of calcium is the only feature Our experience with the biopsy of bone is that common to the two diseases which are in all a large excess of uncalcified bone tissue (osteoid), other ways easily distinguishable. which is the classic histological feature of osteo- malacia, is only found in patients with the other Osteomalacia typical features of the disease, in particular the Osteomalacia will be discussed first, because it clinical ones (Morgan et al., 1967a). Whether or is a clearly defined disease which can be cured. not more subtle histological techniques will detect Osteomalacia is the result of an imbalance be- earlier stages of the disease remains to be seen. tween the supply of and the demand for vitamin Bone pains, muscle weakness, Looser's zones, D. The the following description of disease is raised SAP and low serum phosphate are the Protected by copyright. based on our experience of twenty-two patients most reliable aids to the diagnosis of osteomalacia, with osteomalacia after gastrectomy; there is no and approximately in that order.
    [Show full text]
  • Secondary Hyperparathyroidism Mimicking Osteomyelitis
    Henry Ford Health System Henry Ford Health System Scholarly Commons Case Reports Medical Education Research Forum 2019 5-2019 Secondary Hyperparathyroidism Mimicking Osteomyelitis Mohamad Hadied Henry Ford Health System Tammy Hsia Henry Ford Health System Anne Chen Henry Ford Health System Follow this and additional works at: https://scholarlycommons.henryford.com/merf2019caserpt Recommended Citation Hadied, Mohamad; Hsia, Tammy; and Chen, Anne, "Secondary Hyperparathyroidism Mimicking Osteomyelitis" (2019). Case Reports. 84. https://scholarlycommons.henryford.com/merf2019caserpt/84 This Poster is brought to you for free and open access by the Medical Education Research Forum 2019 at Henry Ford Health System Scholarly Commons. It has been accepted for inclusion in Case Reports by an authorized administrator of Henry Ford Health System Scholarly Commons. Secondary Hyperparathyroidism Mimicking Osteomyelitis Tammy Hsia, Mohamad Hadied MD, Anne Chen MD Henry Ford Hospital, Detroit, Michigan Background Case Report Discussion • The advent of dialysis​ technology has improved outcomes for patients • This case highlights renal osteodystrophy from secondary with end stage renal disease. hyperparathyroidism, a common sequelae of chronic kidney disease. • End stage renal disease leads to endocrine disturbances such as • Secondary hyperparathyroidism can manifest with numerous clinical secondary hyperparathyroidism. signs and symptoms including widespread osseous resorptive • Literature is sparse on exact incidence and burden of secondary changes that can mimic osteomyelitis. hyperparathyroidism among populations with end stage renal disease. • In this case, severe knee pain, elevated inflammatory markers and • This case reports examines a case of secondary hyperparathyroidism radiography findings misled the outside hospital to an incorrect secondary to renal osteodystrophy that was mistaken for acute diagnosis of osteomyelitis, resulting in unnecessary and incorrect osteomyelitis.
    [Show full text]
  • CKD: Bone Mineral Metabolism Peter Birks, Nephrology Fellow
    CKD: Bone Mineral Metabolism Peter Birks, Nephrology Fellow CKD - KDIGO Definition and Classification of CKD ◦ CKD: abnormalities of kidney structure/function for > 3 months with health implications ≥1 marker of kidney damage: ACR ≥30 mg/g Urine sediment abnormalities Electrolyte and other abnormalities due to tubular disorders Abnormalities detected by histology Structural abnormalities (imaging) History of kidney transplant OR GFR < 60 Parathyroid glands 4 glands behind thyroid in front of neck Parathyroid physiology Parathyroid hormone Normal circumstances PTH: ◦ Increases calcium ◦ Lowers PO4 (the renal excretion outweighs the bone release and gut absorption) ◦ Increases Vitamin D Controlled by feedback ◦ Low Ca and high PO4 increase PTH ◦ High Ca and low PO4 decrease PTH In renal disease: Gets all messed up! Decreased phosphate clearance: High Po4 Low 1,25 OH vitamin D = Low Ca Phosphate binds calcium = Low Ca Low calcium, high phosphate, and low VitD all feedback to cause more PTH release This is referred to as secondary hyperparathyroidism Usually not seen until GFR < 45 Who cares Chronically high PTH ◦ High bone turnover = renal osteodystrophy Osteoporosis/fractures Osteomalacia Osteitis fibrosa cystica High phosphate ◦ Associated with faster progression CKD ◦ Associated with higher mortality Calcium-phosphate precipitation ◦ Soft tissue, blood vessels (eg: coronary arteries) Low 1,25 OH-VitD ◦ Immune status, cardiac health? KDIGO KDIGO: Kidney Disease Improving Global Outcomes Most recent update regarding
    [Show full text]
  • Pathogenesis and Diagnostic Criteria for Rickets and Osteomalacia
    Endocrine Journal 2015, 62 (8), 665-671 OPINION Pathogenesis and diagnostic criteria for rickets and osteomalacia —Proposal by an expert panel supported by Ministry of Health, Labour and Welfare, Japan, The Japanese Society for Bone and Mineral Research and The Japan Endocrine Society Seiji Fukumoto1), Keiichi Ozono2), Toshimi Michigami3), Masanori Minagawa4), Ryo Okazaki5), Toshitsugu Sugimoto6), Yasuhiro Takeuchi7) and Toshio Matsumoto1) 1)Fujii Memorial Institute of Medical Sciences, Tokushima University, Tokushima 770-8503, Japan 2)Department of Pediatrics, Osaka University Graduate School of Medicine, Suita 565-0871, Japan 3)Department of Bone and Mineral Research, Research Institute, Osaka Medical Center for Maternal and Child Health, Izumi 594-1101, Japan 4)Department of Endocrinology, Chiba Children’s Hospital, Chiba 266-0007, Japan 5)Third Department of Medicine, Teikyo University Chiba Medical Center, Ichihara 299-0111, Japan 6)Internal Medicine 1, Shimane University Faculty of Medicine, Izumo 693-8501, Japan 7)Division of Endocrinology, Toranomon Hospital Endocrine Center, Tokyo 105-8470, Japan Abstract. Rickets and osteomalacia are diseases characterized by impaired mineralization of bone matrix. Recent investigations revealed that the causes for rickets and osteomalacia are quite variable. While these diseases can severely impair the quality of life of the affected patients, rickets and osteomalacia can be completely cured or at least respond to treatment when properly diagnosed and treated according to the specific causes. On the other hand, there are no standard criteria to diagnose rickets or osteomalacia nationally and internationally. Therefore, we summarize the definition and pathogenesis of rickets and osteomalacia, and propose the diagnostic criteria and a flowchart for the differential diagnosis of various causes for these diseases.
    [Show full text]
  • Osteopetrosis J
    Arch Dis Child: first published as 10.1136/adc.46.247.257 on 1 June 1971. Downloaded from Archives of Disease in Childhood, 1971, 46, 257. Osteopetrosis J. S. YU,* R. K. OATES, K. HELEN WALSH, and SUSAN J. STUCKEY From the Department of Child Health, University of Sydney, and Department of Dietetics, Royal Alexandra Hospital for Children, Camperdown, N.S.W., Australia Yu, J. S., Oates, R. K., Walsh, K. H., and Stuckey, S. J. (1971). Archives of Disease in Childhood, 46, 257. Osteopetrosis. The clinical histories of nine children with osteopetrosis are reported. Two of them had the malignant infantile variety of the disease: one died within 3 months of birth and the other has survived 20 months on a regimen of a low calcium intake, cellulose phosphate, and steroids. The beneficial effect of a low calcium intake, in early infancy, is supported by the clinical course in the infant with the malignant variety and in another child with the more benign form of the disease. No calcium balance studies were performed. This study suggests that the active measures outlined may favourably influence the haematological and osteosclerotic course of the disease, pending further know- ledge of its aetiological basis, and more specific therapy. Osteopetrosis or marble bone disease is a rare positive calcium balance with a diet low in calcium metabolic bone disease characterized by dense and with steroids (Morrow et al., 1967). This bones (Albers-Schonberg, 1904; Karshner, 1926). approach to management has been recently criti- copyright. Two varieties have been clearly defined-an cized by Cohen (Children's Hospital Medical infantile progressive disease and a milder benign Center, Boston, 1965).
    [Show full text]
  • Hematological Diseases and Osteoporosis
    International Journal of Molecular Sciences Review Hematological Diseases and Osteoporosis , Agostino Gaudio * y , Anastasia Xourafa, Rosario Rapisarda, Luca Zanoli , Salvatore Santo Signorelli and Pietro Castellino Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; [email protected] (A.X.); [email protected] (R.R.); [email protected] (L.Z.); [email protected] (S.S.S.); [email protected] (P.C.) * Correspondence: [email protected]; Tel.: +39-095-3781842; Fax: +39-095-378-2376 Current address: UO di Medicina Interna, Policlinico “G. Rodolico”, Via S. Sofia 78, 95123 Catania, Italy. y Received: 29 April 2020; Accepted: 14 May 2020; Published: 16 May 2020 Abstract: Secondary osteoporosis is a common clinical problem faced by bone specialists, with a higher frequency in men than in women. One of several causes of secondary osteoporosis is hematological disease. There are numerous hematological diseases that can have a deleterious impact on bone health. In the literature, there is an abundance of evidence of bone involvement in patients affected by multiple myeloma, systemic mastocytosis, thalassemia, and hemophilia; some skeletal disorders are also reported in sickle cell disease. Recently, monoclonal gammopathy of undetermined significance appears to increase fracture risk, predominantly in male subjects. The pathogenetic mechanisms responsible for these bone loss effects have not yet been completely clarified. Many soluble factors, in particular cytokines that regulate bone metabolism, appear to play an important role. An integrated approach to these hematological diseases, with the help of a bone specialist, could reduce the bone fracture rate and improve the quality of life of these patients.
    [Show full text]
  • Spontaneous Healing of Osteitis Fibrosa Cystica in Primary Hyperparathyroidism
    754 Gibbs, Millar, Smith Postgrad Med J: first published as 10.1136/pgmj.72.854.754 on 1 December 1996. Downloaded from Spontaneous healing of osteitis fibrosa cystica in primary hyperparathyroidism CJ Gibbs, JGB Millar, J Smith Summar biochemistry showed hypercalcaemia, hypo- A 24-year-old man with primary hyper- phosphataemia, elevated parathyroid hormone, parathyroidism and osteitis fibrosa cystica but normal alkaline phosphatase (table). developed acute hypocalcaemia. Sponta- Radiographs showed improvement in the neous healing of his bone disease was mandibular translucency and resolution of the confirmed radiographically and by correc- phalangeal tuft resorption and subperiosteal tion of the serum alkaline phosphatase. erosion (figures 1B, 2B). Thallium scan of the Hypercalcaemia associated with a raised neck showed no evidence of parathyroid serum parathyroid hormone recurred 90 activity and neck exploration failed to reveal weeks after the initial presentation. Dur- any parathyroid tissue. Venous sampling ing the fourth neck exploration a para- showed no step-up in parathyroid hormone thyroid adenoma was removed, resulting concentration in the neck or chest. Selective in resolution of his condition. Haemor- angiography suggested a parathyroid adenoma rhagic infarction of an adenoma was the behind the right clavicle but two further most likely cause of the acute hypocalcae- explorations revealed only one normal para- mic episode. thyroid gland. Computed tomography (CT) of the neck showed a low attenuation, non- Keywords: primary hyperparathyroidism, osteitis enhancing mass in the right lower pole of the fibrosa cystica, hypercalcaemia thyroid gland. Ultrasonography confirmed a hypo-echoic mass 1.5 x 0.5 cm in the right lobe of the thyroid.
    [Show full text]
  • Michael P. Whyte, M.D
    Melorheostosis Michael P. Whyte, M.D. Center for Metabolic Bone Disease and Molecular Research, Shriners Hospital for Children; and Division of Bone and Mineral Diseases, Washington University School of Medicine at Barnes-Jewish Hospital; St. Louis, Missouri, U.S.A. 1 History • 1922 – Léri and Joanny (define the disorder) • “Léri’s disease” • 5000 BC (Chilean burial site 2-year-old girl) • 1500-year-old skeleton in Alaska 2 Definitions (Greek) melo=“limb” rhein=“to flow” osteon=“bone” • Melorheostosis means "limb and I(me)-Flow“ • Flowing Periosteal Hyperostosis • Candle guttering (dripping wax) on x-ray in adults • OMIM (Online Mendelian Inheritance of Man) % 155950 DISORDERS THAT CAUSE OSTEOSCLEROSIS Dysplasias Craniodiaphyseal dysplasia Osteoectasia with hyperphosphatasia Craniometaphyseal dysplasia Mixed sclerosing bone dystrophy Dysosteosclerosis Oculodento-osseous dysplasia Endosteal hyperostosis Osteodysplasia of Melnick and Needles Van Buchem Disease Osteoectasia with hyperphosphatasia Sclerosteosis (hyperostosis corticalis) Frontometaphyseal dysplasia Osteopathia striata Infantile cortical hyperostosis Osteopetrosis (Caffey disease) Osteopoikilosis Melorheostosis Progressive diaphyseal dysplasia Metaphyseal dysplasia (Pyle disease) (Engelmann disease) Pyknodysostosis Metabolic Carbonic anhydrase II deficiency Hyper-, hypo- and pseudohypoparathyroidism Fluorosis Hypophosphatemic osteomalacia Heavy metal poisoning Milk-alkali syndrome Hypervitaminosis A,D Renal osteodystrophy Other Axial osteomalacia Multiple myeloma Paget’s disease
    [Show full text]
  • Introduction to the Orthopedics
    [ Color index : Important | Notes | Extra ] Editing file link ​ ​ ​ ​ ​ ​ ​ ​ Introduction to the Orthopedics Objectives: ★ To explain what Orthopedic is and what conditions will be discussed during this course ★ Explain what we mean by Red Flags ★ List the different causes of orthopedic disease. ★ Describe some of clinical examination tests ★ Introduce titles of Clinical Skills which will be taught during this course. Done by: Rana Albarrak & Lamya Alsaghan ​ Edited By: Bedoor Julaidan ​ Revised by: Dalal Alhuzaimi ​ References: slides + Toronto notes + 433 team + 435 team group A ​ Introduction Orthopedic specialty: ★ Branch of surgery concerned with conditions involving the musculoskeletal system. ​ ​ Orthopedic surgeons use both surgical and nonsurgical means to treat musculoskeletal trauma, spine diseases, sports injuries, degenerative diseases, infections, tumors, and congenital disorders. ★ It includes: bones, muscles, tendons, ligaments, joints, peripheral nerves (peripheral neuropathy ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ of hand and foot), , vertebral column, spinal cord and its nerves. NOT only bones. ​ ​ ​ ​ ​ ​ ​ ★ Subspecialties: General, pediatric, sport and reconstructive (commonly ACL “anterior cruciate ​ ​ ligament” injury), trauma, arthroplasty, spinal surgery, foot and ankle surgery, oncology, hand ​ surgery (usually it is a mixed speciality depending on the center. Orthopedics = up to the wrist joint. ​ Orthopedics OR plastic surgery = from carpal bones and beyond, upper limb (new) elbow & shoulder. ​ ​ ​ ​ ​ will be discussed in details in a separate lectures ​Red Flags: ★ Red Flags =​ warning symptoms or signs = necessity for urgent or different action/intervention. ​ ​ ​ ​ ​ ​ ​ ​ ★ Should always be looked for and remembered. you have to rule out red flags with all emergency ​ ​ ​ cases! Fever is NOT a red flag! Do not confuse medicine with ortho. Post-op day 1 fever is considered normal! ​ ★ There are 5 main red flags: ​ ​ ​ ​ 1.
    [Show full text]
  • Bone Homeostasis and Pathology
    Bone Homeostasis and Pathology Instructor: Roman Eliseev Outline: § Bone anatomy and composi<on § Bone remodeling § Factors regulang bone homeostasis § Disorders of bone homeostasis: -Bone loss -Abnormal bone acquisi<on § Methods and Mouse Models Adult Skeleton Axial Skeleton Appendicular Skeleton 206 bones Image from www.pngall.com Adult Bone Architecture Cor<cal bone Marrow cavity Diaphysis Metaphysis Epiphysis Trabecular bone Bone Histology Subchondral bone Trabecular bone Marrow fat Bone marrow Cor<cal bone Bone Composion Bone is a mineralized organic matrix composed of: • Type I collagen and non-collagenous proteins (osteoid) • Hydroxyapate crystals (Ca5(PO4)3(OH)) Osteoblasts Bone Bone-forming cells are osteoblasts (OB) that produce collagen I and deposit HA Bone is Formed by Osteoblasts OBs originate from Bone Marrow Stromal (a.k.a. Mesenchymal Stem) Cells (BMSC) and terminally differen<ate into osteocytes (OT). Wagner et al., PPAR Res., 2010 Bone is Resorbed by Osteoclasts Image from SciencePhotoLibrary Osteoclasts (OC) are bone resorbing mul<nucleated cells that originate from hematopoie<c cells (monocyte/macrophage) Homeostasis = equilibrium (Greek: ὁμοίως + στάσις) Bone Formaon vs Resorp<on = Dynamic Equilibrium (~10% of adult human skeleton is replaced annually) Bone Bone rosorp<on formaon Intact Bone BMSC – bone marrow stromal Blood vessel (a.k.a. mesenchymal stem) cell BMSC OB – osteoblast OT – osteocyte Apoptosis OB (~70%) Lining cells BONE OT TGFb, IGF1, OCN Collagen I Remodeling: Ini<al Phase BMSC – bone marrow stromal (a.k.a. mesenchymal stem) cell Blood vessel HSC OB – osteoblast BMSC OT – osteocyte HSC – hematopoie<c stem cell RANKL, OCP – osteoclast precursor ? m-CSF OCP OB Lining cells BONE OT Remodeling: Resorp<on Pit BMSC – bone marrow stromal (a.k.a.
    [Show full text]