January 2020
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Malignant Glioma Arising at the Site of an Excised Cerebellar Hemangioblastoma After Irradiation in a Von Hippel-Lindau Disease Patient
DOI 10.3349/ymj.2009.50.4.576 Case Report pISSN: 0513-5796, eISSN: 1976-2437 Yonsei Med J 50(4): 576-581, 2009 Malignant Glioma Arising at the Site of an Excised Cerebellar Hemangioblastoma after Irradiation in a von Hippel-Lindau Disease Patient Na-Hye Myong1 and Bong-Jin Park2 1Department of Pathology, Dankook University College of Medicine, Cheonan; 2Department of Neurosurgery, Kyunghee University Hospital, Seoul, Korea. We describe herein a malignant glioma arising at the site of the resected hemangioblastoma after irradiation in a patient with von Hippel-Lindau disease (VHL). The patient was a 25 year-old male with multiple heman- gioblastomas at the cerebellum and spinal cord, multiple pancreatic cysts and a renal cell carcinoma; he was diagnosed as having VHL disease. The largest hemangioblastoma at the right cerebellar hemisphere was completely removed, and he received high-dose irradiation postoperatively. The tumor recurred at the same site 7 years later, which was a malignant glioma with no evidence of hemangioblastoma. The malignant glioma showed molecular genetic profiles of radiation-induced tumors because of its diffuse p53 immunostaining and the loss of p16 immunoreactivity. The genetic study to find the loss of heterozygosity (LOH) of VHL gene revealed that only the cerebellar hemangioblastoma showed allelic losses for the gene. To the best of our knowledge, this report is the first to show a malignant glioma that developed in a patient with VHL disease after radiation therapy at the site of an excised hemangioblastoma. This report also suggests that radiation therapy should be performed very carefully in VHL patients with hemangioblastomas. -
Current Diagnostic and Therapeutic Strategies in Treatment of CNS Hemangioblastomas in Patients with VHL
Journal of Central Translational Medicine & Epidemiology Special Issue on von Hippel Lindau Disease Edited by: Hiroshi Kanno Professor, Department of Neurosurgery, Yokohama City University School of Medicine, Japan Review Article *Corresponding author Sven Gläsker, Department of Neurosurgery, Freiburg University Medical Center, Breisacher Str. 64, D-79106, Current Diagnostic and Freiburg, Germany, Tel: 49(0)761-270-50010; Fax: 49(0)761-270-50080; Email: Therapeutic Strategies Submitted: 11 November 2013 Accepted: 03 January 2014 in Treatment of CNS Published: 06 January 2014 Copyright Hemangioblastomas in Patients © 2014 Gläsker et al. OPEN ACCESS with VHL Keywords • Hemangioblastoma Marie T. Krüger1, Jan-Helge Klingler1, Christine Steiert1, Cordula • von Hippel-Lindau disease Jilg2, Stefan Zschiedrich3, Birke Bausch4, Vera Van Velthoven1 and • Surgical treatment • Diagnosis; Follow-up Sven Gläsker1* 1Department of Neurosurgery, Freiburg University Medical Center, Germany 2Department of Urology, Freiburg University Medical Center, Germany 3Department of Internal Medicine, Freiburg University Medical Center, Germany 42nd Department of Internal Medicine, Freiburg University Medical Center, Germany Abstract Hemangioblastomas are a rare form of benign vascular tumors of the CNS. They can occur sporadically or as component of the von Hippel-Lindau (VHL) disease - an autosomal dominant tumor syndrome. The tumors are typically located in the posterior fossa and spinal cord. Patients with associated VHL disease are usually affected at an early age and develop multiple lesions. Therefore they need a special routine for diagnosis, treatment and follow-up strategies. In modern neurosurgery, hemangioblastomas are well resectable tumors. Symptomatic lesions should be removed. Resection should furthermore be considered for asymptomatic progressive tumors for the following reason: If a tumor has already caused neurological deficits, the chance to reverse these by surgical resection is reduced and surgical resection is usually possible with low morbidity. -
Charts Chart 1: Benign and Borderline Intracranial and CNS Tumors Chart
Charts Chart 1: Benign and Borderline Intracranial and CNS Tumors Chart Glial Tumor Neuronal and Neuronal‐ Ependymomas glial Neoplasms Subependymoma Subependymal Giant (9383/1) Cell Astrocytoma(9384/1) Myyppxopapillar y Desmoplastic Infantile Ependymoma Astrocytoma (9412/1) (9394/1) Chart 1: Benign and Borderline Intracranial and CNS Tumors Chart Glial Tumor Neuronal and Neuronal‐ Ependymomas glial Neoplasms Subependymoma Subependymal Giant (9383/1) Cell Astrocytoma(9384/1) Myyppxopapillar y Desmoplastic Infantile Ependymoma Astrocytoma (9412/1) (9394/1) Use this chart to code histology. The tree is arranged Chart Instructions: Neuroepithelial in descending order. Each branch is a histology group, starting at the top (9503) with the least specific terms and descending into more specific terms. Ependymal Embryonal Pineal Choro id plexus Neuronal and mixed Neuroblastic Glial Oligodendroglial tumors tumors tumors tumors neuronal-glial tumors tumors tumors tumors Pineoblastoma Ependymoma, Choroid plexus Olfactory neuroblastoma Oligodendroglioma NOS (9391) (9362) carcinoma Ganglioglioma, anaplastic (9522) NOS (9450) Oligodendroglioma (9390) (9505 Olfactory neurocytoma Ganglioglioma, malignant (()9521) anaplastic (()9451) Anasplastic ependymoma (9505) Olfactory neuroepithlioma Oligodendroblastoma (9392) (9523) (9460) Papillary ependymoma (9393) Glioma, NOS (9380) Supratentorial primitive Atypical EdEpendymo bltblastoma MdllMedulloep ithliithelioma Medulloblastoma neuroectodermal tumor tetratoid/rhabdoid (9392) (9501) (9470) (PNET) (9473) tumor -
Central Nervous System Tumors General ~1% of Tumors in Adults, but ~25% of Malignancies in Children (Only 2Nd to Leukemia)
Last updated: 3/4/2021 Prepared by Kurt Schaberg Central Nervous System Tumors General ~1% of tumors in adults, but ~25% of malignancies in children (only 2nd to leukemia). Significant increase in incidence in primary brain tumors in elderly. Metastases to the brain far outnumber primary CNS tumors→ multiple cerebral tumors. One can develop a very good DDX by just location, age, and imaging. Differential Diagnosis by clinical information: Location Pediatric/Young Adult Older Adult Cerebral/ Ganglioglioma, DNET, PXA, Glioblastoma Multiforme (GBM) Supratentorial Ependymoma, AT/RT Infiltrating Astrocytoma (grades II-III), CNS Embryonal Neoplasms Oligodendroglioma, Metastases, Lymphoma, Infection Cerebellar/ PA, Medulloblastoma, Ependymoma, Metastases, Hemangioblastoma, Infratentorial/ Choroid plexus papilloma, AT/RT Choroid plexus papilloma, Subependymoma Fourth ventricle Brainstem PA, DMG Astrocytoma, Glioblastoma, DMG, Metastases Spinal cord Ependymoma, PA, DMG, MPE, Drop Ependymoma, Astrocytoma, DMG, MPE (filum), (intramedullary) metastases Paraganglioma (filum), Spinal cord Meningioma, Schwannoma, Schwannoma, Meningioma, (extramedullary) Metastases, Melanocytoma/melanoma Melanocytoma/melanoma, MPNST Spinal cord Bone tumor, Meningioma, Abscess, Herniated disk, Lymphoma, Abscess, (extradural) Vascular malformation, Metastases, Extra-axial/Dural/ Leukemia/lymphoma, Ewing Sarcoma, Meningioma, SFT, Metastases, Lymphoma, Leptomeningeal Rhabdomyosarcoma, Disseminated medulloblastoma, DLGNT, Sellar/infundibular Pituitary adenoma, Pituitary adenoma, -
Adrenal Neuroblastoma Mimicking Pheochromocytoma in an Adult With
Khalayleh et al. Int Arch Endocrinol Clin Res 2017, 3:008 Volume 3 | Issue 1 International Archives of Endocrinology Clinical Research Case Report : Open Access Adrenal Neuroblastoma Mimicking Pheochromocytoma in an Adult with Neurofibromatosis Type 1 Harbi Khalayleh1, Hilla Knobler2, Vitaly Medvedovsky2, Edit Feldberg3, Judith Diment3, Lena Pinkas4, Guennadi Kouniavsky1 and Taiba Zornitzki2* 1Department of Surgery, Hebrew University Medical School of Jerusalem, Israel 2Endocrinology, Diabetes and Metabolism Institute, Kaplan Medical Center, Hebrew University Medical School of Jerusalem, Israel 3Pathology Institute, Kaplan Medical Center, Israel 4Nuclear Medicine Institute, Kaplan Medical Center, Israel *Corresponding author: Taiba Zornitzki, MD, Endocrinology, Diabetes and Metabolism Institute, Kaplan Medical Center, Hebrew University Medical School of Jerusalem, Bilu 1, 76100 Rehovot, Israel, Tel: +972-894- 41315, Fax: +972-8 944-1912, E-mail: [email protected] Context 2. This is the first reported case of an adrenal neuroblastoma occurring in an adult patient with NF1 presenting as a large Neurofibromatosis type 1 (NF1) is a genetic disorder asso- adrenal mass with increased catecholamine levels mimicking ciated with an increased risk of malignant disorders. Adrenal a pheochromocytoma. neuroblastoma is considered an extremely rare tumor in adults and was not previously described in association with NF1. 3. This case demonstrates the clinical overlap between pheo- Case description: A 42-year-old normotensive woman with chromocytoma and neuroblastoma. typical signs of NF1 underwent evaluation for abdominal pain, Keywords and a large 14 × 10 × 16 cm left adrenal mass displacing the Adrenal neuroblastoma, Neurofibromatosis type 1, Pheo- spleen, pancreas and colon was found. An initial diagnosis of chromocytoma, Neural crest-derived tumors pheochromocytoma was done based on the known strong association between pheochromocytoma, NF1 and increased catecholamine levels. -
Choroid Plexus Papilloma Arising from the Temporal Horn with a Bilateral Hypersecretory Hydrocephalus: a Case Report and Review of Literature
Elmer ress Case Report World J Oncol. 2016;7(2-3):51-56 Choroid Plexus Papilloma Arising From the Temporal Horn With a Bilateral Hypersecretory Hydrocephalus: A Case Report and Review of Literature Sureswar Mohantya, Suman Saurav Routb, d, Gouri Sankar Sarangia, Kumudini Devic Abstract occur in the third ventricle. These tumors are benign histologi- cally and are neuroectodermal in origin and assigned a WHO Cerebrospinal fluid (CSF) within the cerebral ventricular system is grade I. Complete or gross total resection of these tumors often secreted by a neuroepithelial tissue which is called as the choroid results in a cure and almost recurrence free survival. The spe- plexus. Tumors arising from these tissues are rare. Choroid plexus cial challenges in the management of these tumors are mostly papillomas (CPPs) have been denoted as WHO grade I of the cho- due to its several unique features which include the young age roid plexus tumors. Among the intracranial tumors, neoplasms of the at presentation, high vascularity of these tumors and the poten- choroid plexus constitute around 0.36-0.6%. CPPs are mostly slow tial for hypersecretion of CSF. growing and cause symptoms due to mass effect and obstructive hy- drocephalus, resulting in increased intracranial pressure. We report a Case Report case of CPP arising from the temporal horn in a 7-year-old girl pre- senting with progressive head enlargement since birth due to bilateral massive hydrocephalus without any obstruction, making it purely a A 7-year-old girl presented with progressive head enlargement hypersecretory hydrocephalus. A drainage procedure followed by since birth, features of raised intracranial pressure in the form complete tumor resection was carried out in our case and the patient of headache, vomiting, excessive crying and excessive drowsi- showed marked relief from her symptoms. -
Stereotactic Radiosurgery in Hemangioblastoma
Published online: 2019-09-25 Original Article Stereotactic radiosurgery in hemangioblastoma: Experience over 14 years Nishant Goyal, Deepak Agrawal, Raghav Singla, Shashank Sharad Kale, Manmohan Singh, Bhawani Shankar Sharma Department of Neurosurgery and Gamma Knife, All India Institute of Medical Sciences, New Delhi, India ABSTRACT Background: Although gamma knife has been advocated for hemangioblastomas, it is not used widely by neurosurgeons. Objective: We review our experience over 14 years in an attempt to define the role of stereotactic radiosurgery (SRS) in the management of hemangioblastomas. Patients and Methods: A retrospective study was conducted on all patients of hemangioblastoma who underwent SRS at our institute over a period of 14 years (1998–2011). Gamma knife plans, clinical history, and radiology were reviewed for all patients. Results: A total of 2767 patients underwent gamma knife during the study period. Of these, 10 (0.36%) patients were treated for 24 hemangioblastomas. Eight patients (80%) had von Hippel‑Lindau disease while two had sporadic hemangioblastomas. The median peripheral dose (50% isodose) delivered to the tumors was 29.9 Gy. Clinical and radiological follow‑up data were available for eight patients. Of these, two were re‑operated for persisting cerebellar symptoms. The remaining six patients were recurrence‑free at a mean follow‑up of 48 months (range 19–108 months). One patient had an increase in cyst volume along with a decrease in the size of the mural nodule. Conclusions: SRS should be the first option for asymptomatic hemangioblastomas. Despite the obvious advantages, gamma knife is not widely used as an option for hemangioblastomas. Key words: Gamma knife radiosurgery, hemangioblastomas, stereotactic radiosurgery, von Hippel‑Lindau syndrome Introduction view of site, vascularity, and number. -
What Are Brain and Spinal Cord Tumors in Children? ● Types of Brain and Spinal Cord Tumors in Children
cancer.org | 1.800.227.2345 About Brain and Spinal Cord Tumors in Children Overview and Types If your child has just been diagnosed with brain or spinal cord tumors or you are worried about it, you likely have a lot of questions. Learning some basics is a good place to start. ● What Are Brain and Spinal Cord Tumors in Children? ● Types of Brain and Spinal Cord Tumors in Children Research and Statistics See the latest estimates for new cases of brain and spinal cord tumors in children in the US and what research is currently being done. ● Key Statistics for Brain and Spinal Cord Tumors in Children ● What’s New in Research for Childhood Brain and Spinal Cord Tumors? What Are Brain and Spinal Cord Tumors in Children? Brain and spinal cord tumors are masses of abnormal cells in the brain or spinal cord 1 ____________________________________________________________________________________American Cancer Society cancer.org | 1.800.227.2345 that have grown out of control. Are brain and spinal cord tumors cancer? In most other parts of the body, there's an important difference between benign (non- cancerous) tumors and malignant tumors (cancers1). Benign tumors do not invade nearby tissues or spread to distant areas, and are almost never life threatening in other parts of the body. Malignant tumors (cancers) are so dangerous mainly because they can spread throughout the body. Brain tumors rarely spread to other parts of the body, though many of them are considered malignant because they can spread through the brain and spinal cord tissue. But even so-called benign tumors can press on and destroy normal brain tissue as they grow, which can lead to serious or sometimes even life-threatening damage. -
Risk-Adapted Therapy for Young Children with Embryonal Brain Tumors, High-Grade Glioma, Choroid Plexus Carcinoma Or Ependymoma (Sjyc07)
SJCRH SJYC07 CTG# - NCT00602667 Initial version, dated: 7/25/2007, Resubmitted to CPSRMC 9/24/2007 and 10/6/2007 (IRB Approved: 11/09/2007) Activation Date: 11/27/2007 Amendment 1.0 dated January 23, 2008, submitted to CPSRMC: January 23, 2008, IRB Approval: March 10, 2008 Amendment 2.0 dated April 16, 2008, submitted to CPSRMC: April 16, 2008, (IRB Approval: May 13, 2008) Revision 2.1 dated April 29, 2009 (IRB Approved: April 30, 2009 ) Amendment 3.0 dated June 22, 2009, submitted to CPSRMC: June 22, 2009 (IRB Approved: July 14, 2009) Activated: August 11, 2009 Amendment 4.0 dated March 01, 2010 (IRB Approved: April 20, 2010) Activated: May 3, 2010 Amendment 5.0 dated July 19, 2010 (IRB Approved: Sept 17, 2010) Activated: September 24, 2010 Amendment 6.0 dated August 27, 2012 (IRB approved: September 24, 2012) Activated: October 18, 2012 Amendment 7.0 dated February 22, 2013 (IRB approved: March 13, 2013) Activated: April 4, 2013 Amendment 8.0 dated March 20, 2014. Resubmitted to IRB May 20, 2014 (IRB approved: May 22, 2014) Activated: May 30, 2014 Amendment 9.0 dated August 26, 2014. (IRB approved: October 14, 2014) Activated: November 4, 2014 Un-numbered revision dated March 22, 2018. (IRB approved: March 27, 2018) Un-numbered revision dated October 22, 2018 (IRB approved: 10-24-2018) RISK-ADAPTED THERAPY FOR YOUNG CHILDREN WITH EMBRYONAL BRAIN TUMORS, HIGH-GRADE GLIOMA, CHOROID PLEXUS CARCINOMA OR EPENDYMOMA (SJYC07) Principal Investigator Amar Gajjar, M.D. Division of Neuro-Oncology Department of Oncology Section Coordinators David Ellison, M.D., Ph.D. -
Disseminated Hemangioblastoma of the Central Nervous System Without Von Hippel-Lindau Disease
Brain Tumor Res Treat 2014;2(2):96-101 / pISSN 2288-2405 / eISSN 2288-2413 CASE REPORT http://dx.doi.org/10.14791/btrt.2014.2.2.96 Disseminated Hemangioblastoma of the Central Nervous System without Von Hippel-Lindau Disease Sun-Yoon Chung, Sin-Soo Jeun, Jae-Hyun Park Department of Neurosurgery, Seoul St. Mary’s Hospital, The Catholic University of Korea College of Medicine, Seoul, Korea Hemangioblastoma (HB) of the central nervous system may occur sporadically or in association with von Hippel-Lindau (VHL) disease. Disseminated HB means malignant spread of the original primary HB without local recurrence at surgically resected site. It has been rarely reported previously, and rarer especially without VHL gene mutation. We report a case of disseminated HB without VHL disease. A Received June 19, 2014 59-year-old man underwent a surgery for total removal of a cerebellar HB. From five years after the Revised July 8, 2014 surgery, multiple dissemination of HB was identified intracranially and he subsequently underwent cy- Accepted August 7, 2014 berknife radiosurgery. The lesions got smaller temporarily, but they soon grew larger. Nine years after Correspondence the initial surgery for cerebellar HB, he showed severe back pain. His magnetic resonance image of Jae-Hyun Park spine revealed intradural extramedullary mass at T6–7 level. Complete surgical removal of the mass Department of Neurosurgery, was performed and the pathological diagnosis was identical to the previous one. He had no evidence Seoul St. Mary’s Hospital, of VHL disease. And there was no recurrence of the tumor at the site of the original operation. -
Malignant CNS Solid Tumor Rules
Malignant CNS and Peripheral Nerves Equivalent Terms and Definitions C470-C479, C700, C701, C709, C710-C719, C720-C725, C728, C729, C751-C753 (Excludes lymphoma and leukemia M9590 – M9992 and Kaposi sarcoma M9140) Introduction Note 1: This section includes the following primary sites: Peripheral nerves C470-C479; cerebral meninges C700; spinal meninges C701; meninges NOS C709; brain C710-C719; spinal cord C720; cauda equina C721; olfactory nerve C722; optic nerve C723; acoustic nerve C724; cranial nerve NOS C725; overlapping lesion of brain and central nervous system C728; nervous system NOS C729; pituitary gland C751; craniopharyngeal duct C752; pineal gland C753. Note 2: Non-malignant intracranial and CNS tumors have a separate set of rules. Note 3: 2007 MPH Rules and 2018 Solid Tumor Rules are used based on date of diagnosis. • Tumors diagnosed 01/01/2007 through 12/31/2017: Use 2007 MPH Rules • Tumors diagnosed 01/01/2018 and later: Use 2018 Solid Tumor Rules • The original tumor diagnosed before 1/1/2018 and a subsequent tumor diagnosed 1/1/2018 or later in the same primary site: Use the 2018 Solid Tumor Rules. Note 4: There must be a histologic, cytologic, radiographic, or clinical diagnosis of a malignant neoplasm /3. Note 5: Tumors from a number of primary sites metastasize to the brain. Do not use these rules for tumors described as metastases; report metastatic tumors using the rules for that primary site. Note 6: Pilocytic astrocytoma/juvenile pilocytic astrocytoma is reportable in North America as a malignant neoplasm 9421/3. • See the Non-malignant CNS Rules when the primary site is optic nerve and the diagnosis is either optic glioma or pilocytic astrocytoma. -
Impact of Adjuvant Radiotherapy in Patients with Central Neurocytoma: a Multicentric International Analysis
cancers Article Impact of Adjuvant Radiotherapy in Patients with Central Neurocytoma: A Multicentric International Analysis Laith Samhouri 1,†, Mohamed A. M. Meheissen 2,3,† , Ahmad K. H. Ibrahimi 4, Abdelatif Al-Mousa 4, Momen Zeineddin 5, Yasser Elkerm 3,6, Zeyad M. A. Hassanein 2,3 , Abdelsalam Attia Ismail 2,3, Hazem Elmansy 3,6, Motasem M. Al-Hanaqta 7 , Omar A. AL-Azzam 8, Amr Abdelaziz Elsaid 2,3 , Christopher Kittel 1, Oliver Micke 9, Walter Stummer 10, Khaled Elsayad 1,*,‡ and Hans Theodor Eich 1,‡ 1 Department of Radiation Oncology, University Hospital Münster, Münster 48149, Germany; [email protected] (L.S.); [email protected] (C.K.); [email protected] (H.T.E.) 2 Alexandria Clinical Oncology Department, Alexandria University, Alexandria 21500, Egypt; [email protected] (M.A.M.M.); [email protected] (Z.M.A.H.); [email protected] (A.A.I.); [email protected] (A.A.E.) 3 Specialized Universal Network of Oncology (SUN), Alexandria 21500, Egypt; [email protected] (Y.E.); [email protected] (H.E.) 4 Department of Radiotherapy and Radiation Oncology, King Hussein Cancer Center, Amman 11942, Jordan; [email protected] (A.K.H.I.); [email protected] (A.A.-M.) 5 Department of Pediatrics, King Hussein Cancer Center, Amman 11942, Jordan; [email protected] 6 Cancer Management and Research Department, Medical Research Institute, Alexandria University, Alexandria 21500, Egypt 7 Military Oncology Center, Royal Medical Services, Amman 11942, Jordan; [email protected] 8 Princess Iman Research Center, King Hussein Medical Center, Royal Medical Services, Amman 11942, Jordan; Citation: Samhouri, L.; Meheissen, [email protected] 9 M.A.M.; Ibrahimi, A.K.H.; Al-Mousa, Department of Radiotherapy and Radiation Oncology, Franziskus Hospital Bielefeld, A.; Zeineddin, M.; Elkerm, Y.; 33699 Bielefeld, Germany; [email protected] 10 Department of Neurosurgery, University Hospital Münster, 48149 Münster, Germany; Hassanein, Z.M.A.; Ismail, A.A.; [email protected] Elmansy, H.; Al-Hanaqta, M.M.; et al.