University of Missouri, St. Louis IRL @ UMSL

Dissertations UMSL Graduate Works

7-27-2007

Genetic and Demographic Consequences of Human-Driven Landscape Changes on Bird Populations: the Case of Aphrastura spinicauda (Furnariidae) in the Temperate Rainforest of South America

Cintia Cornelius University of Missouri-St. Louis, [email protected]

Follow this and additional works at: https://irl.umsl.edu/dissertation

Part of the Biology Commons

Recommended Citation Cornelius, Cintia, "Genetic and Demographic Consequences of Human-Driven Landscape Changes on Bird Populations: the Case of Aphrastura spinicauda (Furnariidae) in the Temperate Rainforest of South America" (2007). Dissertations. 579. https://irl.umsl.edu/dissertation/579

This Dissertation is brought to you for free and open access by the UMSL Graduate Works at IRL @ UMSL. It has been accepted for inclusion in Dissertations by an authorized administrator of IRL @ UMSL. For more information, please contact [email protected].

UniversityofMissouriSt.Louis

DepartmentofBiology

PrograminEcology,EvolutionandSystematics

GeneticandDemographicConsequencesofHumanDrivenLandscape

ChangesonBirdPopulations:theCaseof Aphrastura spinicauda

(Furnariidae)intheTemperateRainforestofSouthAmerica

By

CintiaCornelius B.S.,BiologicalSciences,P.UniversidadCatólicadeChile1996

AdvisoryCommittee

JohnG.BlakePh.D.(Advisor) BetteA.LoisellePh.D. PatriciaG.ParkerPh.D.(Chair) KathrynE.SievingPh.D. AdissertationpresentedtotheGraduateSchoolofArtsandSciencesofthe UniversityofMissouriSt.Louisinpartialfulfillmentoftherequirementsforthe degreeofDoctorofPhilosophy

December2006 SaintLouis,Missouri CintiaCornelius,2006,Ph.D.Dissertation,p. ii

GeneralAbstract

Humanactivities,suchasexpansionofagriculturallandandforestexploitation,havemodified landscapesworldwide.Despitealargeaccumulationofempiricalandtheoreticalknowledgeon habitatlossandfragmentation,someaspectsremainpoorlyunderstood,especiallythoserelated totheinteractionbetweendifferentformsofhabitatdegradation.Theoverallgoalofthis researchwastostudytheeffectsofhabitatfragmentationandchangesinforeststructureonbird populationsinahumanmodifiedlandscapeinthetemperaterainforestofSouthAmericausing

Aphrasturaspinicauda (Furnariidae)asamodelspecies.Specifically,Ievaluatedi)if replacementofforestbyopenhabitatleadstoreduceddispersalinfluencingthegeneticstructure ofpopulations;ii)ifdensityandreproductivesuccessvaryacrossafragmentedlandscapeandif populationsarelimitedbecauseofnestsiteavailabilityinforeststhatdifferedinstructure

(modifiedbyselectivelogging)anddegreeofisolation;andiii)ifnestsiteselectionpatternsand associatedconsequencesonfitnessarespatiallyvariableinresponsetochangesinforest structureandconnectivity.FirstIshowthatforestreplacementbyopenhabitatreduced landscapeconnectivityandinfluencedthegeneticstructureofpopulationsevenwithinthetime spacescaleofhabitatfragmentationcausedbyhumanactivities.Secondly,Ishowthatbird densityvariedacrossthefragmentedlandscapewhilenestingsuccessremainedconstant.

Aphrasturaspinicaudaisanonexcavatorcavitynesterandthusreliesonoldorsnags wheremostcavitiesform.Anestsitesupplementationexperimentrevealedthatnestsite limitationistheprimarycauseofdensityreductioninselectivelyloggedforests,butthatother processesdirectlyrelatedtoforestfragmentation(e.g.lossofconnectivity)alsoinfluence populationresponsestohabitatchanges.Finally,Ishowedevidenceforadaptivenestsite

CintiaCornelius,2006,Ph.D.Dissertation,p. iii preferences,butalsothatnestsitechoiceisspatiallyvariableinresponsetoecologicalgradients producedbyhumanactivities.Bycombininggeneticanddemographicresponsesofpopulations

Iprovidedevidenceforunforeseenandpotentiallysynergisticinteractionsamongdifferentforms ofhabitatdegradation.Theseresultsemphasizetheneedofexplicitandindependent considerationofhabitatfragmentationandotherformsofhabitatdegradation,suchasselective logging,whenstudyingpopulationsinhumanmodifiedlandscapes.Inthatway,wecanbetter understandandpredictpopulationpersistenceandtheiradaptiveresponsesintheselandscapes.

CintiaCornelius,2006,Ph.D.Dissertation,p. iv

TABLEOFCONTENTS

Acknowledgments……………………………………………………………………………….1

Chapter1

Geneticstructureofforestbirdpopulationsinnaturallyandhumanfragmentedforests:a

contrastbetweentwotimespacescales………………………………………………………3

Chapter2

Separatingtheecologicaleffectsofforeststructureandhabitatfragmentationonbreeding

birds:anexperimentalstudywithasecondarycavitynestingbird……...... 49

Chapter3

Nestsiteandterritoryselectionbyasecondarycavitynestingbirdbreedingin

forestswithdifferentnestsiteavailabilities………………………………………………..89

CintiaCornelius,2006,Ph.D.Dissertation,p. 1

Acknowledgments

Iwanttothankmyadvisor,JohnBlake,forhisconstantsupportandencouragementthroughall thestagesofmydissertation.Iwouldliketospeciallythankhimforguidingmethroughthe wonderfulworldofavianstudies,forhiscriticalandcarefulreviewsofseveralversionsofthis dissertation,andforbeingalwaysavailablefordiscussion.Ialsowouldliketothankmy committeemembersBetteLoiselle,KatieSievingandPattyParkerfortheirtimeand involvementinmyproject;theircomments,ideasandinsightsenrichedthisdissertation significantly.

ThankstocurrentandpresentmembersoftheBlakeLoisellelabforsharingmanyhours ofdiscussionsonearlyversionsofthisdissertationandgrantproposals:RenataDuraes, KimberlyHolbrook,DanielCadena,LucioMalizia,IvanJiménez,MarcosMaldonado,Andrea Loayza,AdrianaRodriguez,AdrianAspiroz,BrandtRyder,WendyTory,PatyFeria,Jose Hidalgo,TibyEscalona,JoseFabaraandJeffNorris.IalsowanttothanktheParkerlabfor valuablecommentsonsomechaptersofthisdissertation.SpecialthankstoTraciCastellónfor hercommentsandsuggestionsthatconsiderablyimprovedoneofthechaptersofthis dissertation.ThankstoPattyParkerforgrantingaccesstotheMolecularEcologylabatUMSL andtoKellyHalbertforherconstantwillingnesstohelpandsolveproblemsinthelab.

IwanttothankMaryannHempen,PatHintonandKathyBurneyMilleroftheBiology DepartmentfortheirhelpandlogisticsupportduringtheyearsIspentatUniversityofMissouri St.Louis.

Thisworkwouldnothavebeenpossiblewithoutthehelpofseveralfieldassistantsthat providedmanyhoursofvoluntaryworkundersometimesextremeconditions:ColleenMurray, MauricioCornejo,GavinEmmons,ChrisEgan,SantiagoGuallar,AnneJackle,RobbKaler, VeronicaLópez,JuanManuelPerez,CarmenPazSilva,AndreaSuardo,JuliaThiel,Jorge Tomasevic,AlejandraPonce,andHectorYañez.Theydidnotonlyprovidehelpinthefieldbut alsofriendshipandcompanionship.IwouldliketoespeciallythankHectorYañezforsharinghis knowledgeaboutChiloé,forhisunconditionalhelpinthefieldandfornotlettingmegetlostin theforest.IalsowanttothankmyfriendsatFundaciónSendaDarwinfortheirhelpand companionship:EmerMancilla,AndreaTroncoso,JuanLuisCelis,FernandaSalinas,IvanDíaz, CeciliaSmith,RocíoJañaandJuanArmesto.

CintiaCornelius,2006,Ph.D.Dissertation,p. 2

ThankstomanylandownersofChiloéforlettingmeworkontheirpropertiesandSenda DarwinBiologicalStationforprovidinghousingandlogisticsupport.ThankstoCONAFfor providingaccessandvaluablelogisticsupportwhileworkinginChiloéandFrayJorgeNational Parks.SpecialthankstoPabloMarquetandJuanArmestoatCASEBP.UniversidadCatólica deChileforlogisticsupportwhileworkingabroad.

Iwanttothankmyfamily:Egon,Sylvia,Vivi,TitaandHelenfortheirsupport throughoutmylife.Iwanttospeciallythankmyfatherandmotherforshowingmethebeautyof thenaturalworldandencouragingmetostudyit.IalsowanttospeciallythankBetoVicentini, forbeingawonderfulpartnerandforsupportingmeduringalltimes.Iwanttothankhimfor sharinghiscriticalviewoflifewhichalwayshelpedmetolookintoaspectsofthisdissertation fromadifferentperspective,butmostimportantlyforremindingmethatlifeisfullofgreat thingstodiscover.

Ialsowanttothankmanyfriendsthatmadeofthisperiodagreattime:KarinaBoege, RenataDuraes,MarkBeilstein,NoahWhiteman,SeemaSheth,FranciscoLeal,FelipeZapata, JillPreston,IvanJiménez,TrishaConsiglio,andmanymore.Ialsowouldliketothankmany friendsthathavebeenfarawaybuthavebeenalwayspresent:CelesteSilva,PilarElgueta,Olga Barbosa,HoracioSamaniego,YanireAndradeandBernardoBroitman.

Thisdissertationresearchwouldnothavebeenpossiblewithoutthefinancialhelpofa numberoforganizationsthatprovidedsupportatdifferentstagesofthisproject:International CenterofTropicalEcologyatUniversityofMissouriSt.Louis,SigmaXi,AudubonSocietySt. Louis,WebsterGroveNatureSociety,IdeaWild,WildlifeConservationSociety,andNational ScienceFoundation.DuringthetimeatUMSLIwassupportedbyaFulbrightFellowshipanda DissertationYearFellowshipawardedbytheGraduateSchool.

CintiaCornelius,2006,Ph.D.Dissertation,p. 3

CHAPTERI

Geneticstructureofforestbirdpopulationsinnaturallyandhumanfragmentedforests:a

contrastbetweentwotimespacescales

Abstract.Habitatfragmentationcandisruptdispersaloforganismsandthereforeitcanalso influencegeneticprocessesatthepopulationlevel.Timesinceisolation,however,canbea limitingfactortodetectthefullextentofgeneticconsequencesonpopulations,especiallywhen fragmentationoccursatsmallspatiotemporalscalesasinmanyhumanmodifiedlandscapes.

Naturallyfragmentedsystemsthathavebeenisolatedforlongperiodsoftime(i.e.thousandsof years),suchasrelictcloudforestsinnorthcentralChileprovideagoodopportunitytostudy largescaleandlongtermeffectsofforestfragmentation.Thegoalsofthisstudywere(1)to contrastthegeneticstructureof Aphrasturaspinicauda (Furnariidae)populationsinhabiting naturallyfragmentedrelictforestswiththosefoundinhumancausedfragmentsand(2)to determineifforestreplacementbyopenhabitatreduceslandscapeconnectivityandtherefore influencesthegeneticstructureofpopulationsbycomparingpopulationsinfragmentedand continuousforests.Sixpopulationsweresampledataregionalscale(distancerange:1001000 km)withtwoofthose(onecontinuousforestandoneanthropogenicfragmentedlandscape) furtherdividedintoseveralsubpopulationstoinvestigategeneticspatialpatternsatashortand smalltimespacescale(distancerange:230km).Individualsweregenotypedatfive microsatelliteloci.Geneticconsequencesofisolationwereobservedatbothsmallandlarge timespacescalesalthoughpatternsinhumancausedfragmentswerelesspronounced.Relict forestswereinhabitedbytwogeneticallydistinctpopulations,buttwocontinuousforest

CintiaCornelius,2006,Ph.D.Dissertation,p. 4 populationsseparatedbythesamedistancewerenotdifferentiated,indicatingthatlarge distancesareabarrierfor A.spinicauda dispersalonlyifhabitatseparatingpopulationsisnot forest.Asimilarpatternwasobservedatthesmallscale.Thecomparisonofgenetic differentiationamongfoursitesinthecontinuousforestrevealedthatthesesubpopulationswere notgeneticallydifferentiated.Incontrast,subpopulationsinforestfragmentsthatweresimilarly distributedacrossspace(butnotconnectedbyforest)weresignificantlydifferentiatedsuggesting reduceddispersalamongfragments.Therewasasignificantisolationbydistancepatternatthe largespatialscale.Atthesmallscale,however,itwassignificantonlyaftercontrollingforthe landscapecontextofindividualfragments(i.e.numberandsizeoffragmentswithinthe neighborhoodofafocalpatch).Inthisstudy,Ishowedthattimespacescalesareimportantin revealingthegeneticconsequencesofhabitatfragmentationandthatforestreplacementbyopen habitat,geographicdistanceamongpopulations,andsizeofforestfragmentsareimportantin determininggeneticdifferentiationofpopulations.

Keywords :Aphrasturaspinicauda, Chile,Furnariidae,habitatfragmentation, microsatellite,populationgeneticstructure,southtemperaterainforest.

Introduction

Anabruptchangeinlandscapeconnectivity,suchasthatresultingfromforestfragmentation, mayinterferewithdispersalsuccessoforganisms.Reductioninsizeandincreasedisolationof habitatfragmentsareimportantcausesofpopulationdecline(Davies etal.2001)because dispersalrestrictionandpopulationsizereductionincreasetheprobabilityoflocalextinction

(Bender etal.1998;Andren1994;Brown&KodrikBrown1977),disruptimportantecological processes(Kareiva&Wennergren1995),andleadtothegeneticdeteriorationofpopulations

CintiaCornelius,2006,Ph.D.Dissertation,p. 5

(Avise&Hamrick1996).Previousstudieshaveshownthatinthelongterm(i.e.,tensof generations),habitatfragmentationcanaffectgeneticpopulationstructureeveninbirds,agroup consideredtohavehighdispersalcapability(Bates2002).Furthermore,theseeffectsmayeven beobservedwithinthetimeframeofhumancausedfragmentationinboth,smallmammal

(Gerlach&Musolf2000)andbirdpopulations(Galbusera etal.2000).However,timesince isolationcanlimitexpressionofthefullextentofgeneticconsequencesofhumancaused fragmentationbecauseobservableeffectsonpopulationsusuallylagbehindthedisturbancesthat causedthem(Tilman etal.1994).Moreover,thesehabitatchangesareusuallyanongoing processandinmanycasesequilibriumsituationsmaynothavebeenattained(Hutchison&

Temple1999).Therefore,systemsthathavebeennaturallyfragmentedandareisolatedinthe longtermandatlargespatialscalesmayprovideagoodcontrasttomorerecentandhuman causedfragmentation.

RelictcloudforestsinnorthcentralChileprovidegoodcomparativesitesfordetecting largescaleandlongtermeffectsoffragmentationonpopulations(Cornelius etal.2000).These forestsoccurinpatchesalongthecoastalmountainrangewherefoginducedmicroclimatic conditionsallowtheforesttoexistinasemiaridregion(DelValetal.2006).Bird(Cornelius et al.2000;Ried etal.2002)and(Perez&Villagran1985)compositionofrelictforests closelyresemblethatofValdivianrainforests,locatedmorethan1000kmtothesouth.These relictforestsareremnantsofanancientforestcommunitythatbecamefragmentedandisolated duringthePlioceneandPleistoceneperiods(Villagran etal.2004).Duringperiodsinthe

Quaternary,theseforestsexpandedtheirrangesbecauseofwetterconditionscausedby glaciationeventswhichresultedinperiodsofhigherconnectivityamongtheserelictforestsand thesouthernValdivianforests(Villagran etal.2004;Troncoso etal.1980).

CintiaCornelius,2006,Ph.D.Dissertation,p. 6

Aphrastura spinicauda (Furnariidae) , anendemicbirdfromtheSouthAmerican temperaterainforest,isagoodmodelspeciestoinvestigatepopulationgeneticconsequencesof habitatfragmentationbecauseitisrestrictedtoforesthabitatsanddoesnotoccurinanytypeof openhabitatthattypicallysurroundsforestswithinthestudyarea(Cornelius etal.2000;Diaz et al.2005).Itisaninsectivorous,yearroundresidentbirdthatnestsincavitiestypicallyfound atmidandhighcanopylevelsintheforest(Diaz etal.2005;Estades&Temple1999;Chapter

2).Todate,nostudieshaveinvestigatedthepopulationgeneticstructureofanybirdspeciesin thesouthtemperateforest,andonlyafewstudieshaveinvestigatedthegeneticeffectsof humandrivenforestfragmentationonbirdpopulationsinothersystems(Ellegren etal.1999;

Galbusera etal.2000;Galbusera etal.2004;Brown etal.2004).Inthesouthtemperate rainforest,however,evidencefrombirdmovements(Sieving etal.1996;Castellón&Sieving

2006a)andmatingsuccess(Willson2004;Diaz etal.2006a)haverevealeddispersalrestriction acrossopenhabitatsformostunderstorybirdspecies.Dispersalcapabilityof A.spinicauda acrossopenhabitatshasnotbeenevaluateddirectly;however,itislikelytobehigherthanmost understorybirdspeciesbecauseofitsnonterrestrialhabits(Castellón&Sieving2006b).

Aphrasturaspinicauda isamongthefewforestbirdspeciesthathavebeenabletocolonizeand persistinrelictforestsystemslocatedoutsidethetemperateforestregion(Cornelius etal.2000;

Ried etal.2002).

Thegoalofthisstudyistodetermineiflossofconnectivity,throughthereplacementof foresthabitatbyopenhabitat,resultsinchangestothegeneticstructureofpopulations,using

Aphrasturaspinicauda asamodelspecies.Toaddressthisquestion,Istudiedthegenetic structureofpopulationsattwodifferenttimespacescales:(1)longtermandlargescaleisolation bycomparingpopulationsintworelictforestswiththatofpopulationssampledinacontinuous

CintiaCornelius,2006,Ph.D.Dissertation,p. 7 forest,and(2)shorttermandsmallscaleisolationdrivenbyhumancausedforestfragmentation bycomparingpopulationsamongfragmentswithinanagriculturallandscapewithpopulations withinacontinuousforest.

Methods

Large-scale sampling

Populationsof A.spinicauda weresampledwithintwomainregionsacrossitsdistributional rangeincoastalcentralsouthernChile:thenorthernsemiaridregion(30°Sto32°S)andthe southernregion(40°Sto43°S)wherethebroadleavedandevergreenValdivianrainforesttype isdominant.Withintheseregions,populationsweresampledinsixsites(Fig.1a).Twosites wereinrelictforestslocatedalonganorthsouthgradientofaridity;thenorthernmostforest,

FrayJorge,isseparatedby165kmofsemiaridscrubfromthenextrelictforesttothesouth,

SantaInés.Bothrelictforestsaresmall(<300ha)forestremnantsthataresurroundedby semiaridscrubhabitat.Towardsthesouth,ariditydecreasesanddensescrubandsclerophyllous forestsbecomeabundant.Thus,fromSantaInéstothesouth,forestsareimmersedinaregion withincreasinglandscapeconnectivity.Tocontrolforisolationbydistance,incontrastto isolationcausedbytheinabilityof A.spinicauda tocrosslargeexpansesofnonforestedhabitat, twosamplingsites(ChaihuínandParga)wereestablishedinthesouthernValdivianregion,that wereseparatedbyasimilardistance(165km)asthetworelictforests.Thesetwositeswere locatedwithinthelastcontinuousforestremnant(439000ha)ofthecoastalrangeofthe

Valdivianregion(40°S–43°S;SmithRamirez2004)andwherethelargeroverallforestcover resultsinincreasedlandscapeconnectivity(Castellón&Sieving2006b).Thefinaltwositeswere establishedonChiloé,alargelandbridgeislandseparatedfromthemainlandbyanarrow2to5 kmwidemarinechannel.OnesitewasestablishedinChiloéNationalPark(ChiloéNP)ina

CintiaCornelius,2006,Ph.D.Dissertation,p. 8 largecontinuousforestremnant(35,200ha)alongthewesterncoastalrange.Thesecondsitewas located80kmfromtheNationalParkinanareawherethelandscapeiscomposedofseveral forestfragmentsdistributedacrossanagriculturallandscape(ChiloéAL)innortheastChiloé

(Fig.1a).

Small-scale sampling

Tostudythestructureof A.spinicauda populationsatafinerscale,thetwosamplingsitesin

Chiloéwerefurthersubdividedintoseveralsubpopulations(Fig.1b).Intheagricultural landscape(ChiloéAL),birdsweresampledinnineanthropogenicforestfragmentswithinan areaof550km 2;pairwisedistancesamongfragmentsrangedfrom1to22.8km.Forest fragmentsinthisareaweresurroundedbyamatrixofagriculturalfields,pasturesandabandoned fields,habitattypesnotusedby A.spinicauda .Tocontrolforisolationbydistanceincontrastto lossofconnectivitycausedbyreplacementofforestbyagriculturalland,foursamplingsites wereestablishedinthecontinuousforestinParqueNacionalChiloé(ChiloéNP);pairwise distancesamongthesesitesrangedfrom1.9kmto14km.Neithersite(ChiloéNPandChiloé

AL)containedmajorbarrierssuchasmountainsorlargerivers.Landscapemetricswere calculatedfroma2001LandsatThematicMapperimagewithapixelresolutionof30m;habitat wascategorizedasforestornonforestusingArcGIS9.1.Individualfragmentswereidentified usingprogramFRAGSTAT(McGarigal&Marks1995).Intheagriculturallandscape,birds weresampledinthreelarge(>1,000ha),threemedium(100–400ha)andthreesmallfragments

(1015ha).Toquantifytheisolationofforestfragments,Iusedanindexofhabitatpatch proximity(PX)calculatedwithFRAGSTAT.Thisindexisameasureofpatchisolationthat quantifiesthespatialcontextofafocalpatchinrelationtootherpatcheswithinaspecifiedbuffer distance(Gustafson&Parker1992).Thisindexdistinguishesisolatedpatches(i.e.smallPX

CintiaCornelius,2006,Ph.D.Dissertation,p. 9 values)fromthosethatarepartofaclusterofpatches(i.e.largePXvalues)byconsideringsize anddistanceamongpatches,whicharebothimportantvariablesindeterminingthegenetic structureofpopulations.Ideally,thebufferdistancetoevaluatePXshouldreflectthescaleof movementoftheorganisminvestigated.Becauseno apriori informationexistsaboutthe dispersalcapabilityof A.spinicauda ,Iusedanarbitrarybufferdistanceof1km.Proximityindex values,however,remainedquantitativelyandqualitativelysimilarwithbufferdistancesof0.5 kmto5km.ThissmallvariationinPXwithbufferdistanceisexpectedwhenoverallforest coverexceeds40%(Gustafson&Parker1994).

Sample collecting procedure

Bloodsampleswerecollectedfrom235individualsin17sites(includingrelictforests,sitesin continuousforestsandforestfragments,asdescribedabove),duringAugustthroughOctoberof

2003,2004and2005.Sampleswerecollectedbeforeorduringtheearlystagesofthebreeding seasonsothatonlyadultbreedingbirdswereincludedandsothat,mostprobably,dispersalof birdshatchedinthepreviousyearalreadyhadoccurred.Intensivemistnettingwithplaybacks wasusedtocaptureatleast10individualsineachsite(mean:13.8;range:10–18).Atthefine samplingscale(i.e.inChiloéALandChiloéNP),thesizeofthecollectionareawithinthe continuousforestsitesandwithinlargefragmentswasequivalent(10–15ha)tothecollection areawithinsmallerfragments,tocomparetheexistingdiversityoflargeandsmallforestswithin equivalentsamplingareas.Relictforestsweresampledovertheirentirerangeandsitesinthe

Valdivianregionweresampledoveracomparablegeographicalspan.Eachbirdcapturedwas uniquelymarkedwithnumberedaluminumbandsandreleasedinthesamecapturearea.Asmall

(0.05l)bloodsamplewastakenusingmicrocapillarytubesfollowingasmallpunctureofthe

CintiaCornelius,2006,Ph.D.Dissertation,p. 10 brachialvein(McGuill&Rowan1989);bloodwasstoredinlysisbuffer(1%SDS,100mMTris,

10mMEDTApH8.0)forlateranalysisatUniversityofMissouriSt.Louis.

Microsatellite analysis

DNAwasextractedwithastandardphenolchloroformprotocolafterincubationfor12hoursat

65°Cinthepresenceof30gofproteinaseK.Genotypingofindividualswasbasedonfive microsatellitelocipreviouslydevelopedforotherbirdspecies.LociMan1,Man3,andMan13 weredevelopedfor Manacusmanacus ,familyPipridae(Piertney etal.2002)andlociwbwc28 andwbwc58for Glyphorynchusspirurus ,familyDendrocolaptidae(Milá&Bardeleben2005).

StartingfromtheoriginalPCRconditions,differentconcentrationsofMgCl 2,DNAtemplate, andannealingtemperaturesweretestedusingnormalthermalcyclers.Optimalreaction conditionsforeachlocusfor A.spinicauda aredescribedinTable1.Fluorescentlylabeled forwardprimerswereusedinPCRreactionsandproductswereanalyzedonanABI3100 sequencer(AppliedBiosystems).Fragmentlengthwasdeterminedbycomparisontoaninternal sizestandardtodeterminegenotypesusingGeneMapper3.0software(ABIPrism,Applied

Biosystems).Genotypingaccuracywasexaminedbyvisuallycheckingeachgenotype;foreach locusanaverageof80%(range:65%95%)ofsampleswereamplifiedmultipletimesto minimizegenotypingerror.Sampleswithambiguousoruniquegenotypesoflowqualitywere reamplifieduntilgenotypecouldbeverified.Samplesthatwereamplifiedrepeatedlywith conflictingresultswerenotassignedagenotype(<1%ofsamplesatanylocus).

Data analyses

Indicesofgeneticdiversityandstatisticssuchasnumberofallelesperlocus( AN),allelicrichness perlocus( AR),ameasureofallelenumberindependentofsamplesize(ElMousadik&Petit

1996),Nei’sgenediversity( HS)averagedoverloci(Nei1987),observedheterozygosity( HO),

CintiaCornelius,2006,Ph.D.Dissertation,p. 11

andtheindex FIS ,wereestimatedusingprogram FSTATversion2.9.3.2(Goudet2000).Hardy

Weinberg(HW)equilibriumdeparturesoveralllociwithineachpopulationweredeterminedby examiningdeficiencyofheterozygotes( FIS )andgenerating Pvalueswith600permutations.

Allelicrichnessandgenediversityinthenorthernandsouthernregionswerecomparedwithtwo sided ttestswith Pvaluesbasedon15,000permutationsusingFSTAT . Observed( HO)and expected( HE)heterozygositiesanddeparturesfromHWforeachlocusperpopulationwere estimatedinARLEQUINversion3.0(Excoffier etal.2005).Allpairsoflociweretestedfor linkagedisequilibriumwithineachpopulationusingaloglikelihoodratiotestwith Pvalues basedon1,200permutationsinFSTAT.

PopulationdifferentiationwasfirstexaminedatthreedifferentspatialscaleswithWeir&

Cockerham(1984)measureofglobalpopulationdifferentiation FST (Φ);95%confidence intervalswereobtainedbybootstrappingandsignificancewasevaluatedbasedonrandomizing genotypesamongpopulations1,000timesusingaloglikelihoodtest(Goudet etal.1996) implementedinFSTAT.Thestatistic RST thatassumesastepwisemutationmodel(Slatkin

1995),wasalsoestimatedfortheglobalpopulationdifferentiationanalyses.Global FST (Φ)was comparedatlarge,meso,andsmallspatialscales.Thelargespatialscaleincludedallsix populations(seeFig.1);themesoscalewasasubsetofallpopulationsandconsistedofthethree populationsfromthesouthernregionwithincontinuousforests(Chaihuín,PargaandChiloé

NP);andthesmallspatialscaleincludedpopulationssampledinfragmentswithinthe agriculturallandscape(ChiloéAL).Populationdifferentiationwasalsoevaluatedbycalculating populationpairwisemeasuresof FST (Wright1968)amongpopulationsatthelargespatialscale

(i.e.amongthesixpopulations)andatthesmallspatialscale(i.e.amongthenineforest fragmentsandamongthefoursiteswithinthecontinuousforestinChiloé)withsignificancefor

CintiaCornelius,2006,Ph.D.Dissertation,p. 12

pairwisevaluesof FST determinedby120720permutationsusingFSTAT.Manteltests(Mantel

1967)with10,000permutationswereusedtodeterminetherelationshipbetweenpairwise geographicdistance(log 10 transformed)andgeneticdistanceswith FST /(1F ST )asameasureof geneticdistance(Rousset1997).Foralltestsinvolvingmultiplecomparisons,aBonferroni correctionwasused.

Dispersalpatternsamongpopulationsatthelargespatialscalewereinvestigatedwith assignmenttests(Waser&Strobeck1998),implementedinARLEQUIN3.0,todeterminethe loglikelihoodthateachindividualmultilocusgenotypebelongstothepopulationinwhichit wassampled.Thistestallowsidentificationofindividualssampledinonepopulationthatappear geneticallyclosertoadifferentpopulation(i.e.potentialmigrants).Levelsofmisassignment weredeterminedbetweenthetworelictpopulations(FrayJorgeandSantaInés)inthenorthern region,andthencontrastedtothelevelsofmisassignmentbetweenthetwopopulationsinthe continuousforestlocatedinthesouthernregion(ChaihuínandParga)thatareseparatedbythe samedistanceasthetworelictforests.

Todeterminewhethertherewassignificantpopulationdifferentiation,andtoestimatethe distributionofgeneticvariationwithinversusamongpopulations,analysesofmolecularvariance

(AMOVA;Excoffier etal.1992)wereconducted,withWeirandCockerham’s(1984) FST asthe measureofgeneticdistance,usingARLEQUIN3.0.Differentmodelswerecomparedto determinewhetherdifferencesbetweenpopulationsarebetterexplainedbygeographicdistance orbydifferencesinlandscapeconnectivity(i.e.whetherhabitatbetweenpopulationsisforestor nonforest).Significancewasobtainedafter10,000permutationstodeterminetheprobabilityof arandomFST valuebeinggreaterthanorequaltotheobservedvalue(Excoffier etal.2005).

CintiaCornelius,2006,Ph.D.Dissertation,p. 13

Atthesmallscale(i.e.amongfragmentsintheagriculturallandscape),therelationship betweengeographicdistanceandgeneticdistancewasinvestigatedintwoways.First,thespatial geneticautocorrelationofindividualswasinvestigatedbycalculatingacorrelogram,using

Moran’sindex(Iq)asameasureofpairwisedistance,at2kmintervalclassesusingSpatial

GeneticSoftware(SGS)version1.0c(Degen&Kremer2001).Byexaminationofthe correlogram,itispossibletodeterminethespatialextentatwhichindividualsaremoreorless relatedthanexpectedbychance.Second,therelationshipbetweengeographicdistanceand geneticdistancewasinvestigatedbyincorporatingisolationofpatchesasapredictorvariablefor geneticdistanceamongforestfragments.Toobtainapairwisevalueofisolationamong fragments,Iusedthesmallervalueoftheproximityindex(PX)betweentwofragmentsbeing compared.Thesmallervaluewaschosenbecausepairwisegeneticdifferentiation(i.e.ahigh FST valuebetweentwofragments)isnotnecessarilyaresultoftheisolationofbothpatches;itcan alsoresultfromtheisolationofonlyoneofthetwopatchesbeingcomparedwhencontrollingfor thedistanceseparatingthem.Tocomparetwovariableswhilecontrollingforathirdvariable, partialManteltests(Smouse etal.1985)with10,000permutationswereconductedinFSTAT.

Results

Overall genetic diversity patterns

Numberofallelesrangedfrom6to21atthefivemicrosatellitelociscreenedfor A.spinicauda acrosssouthcentralChile(Table2).HardyWeinberg(HW)equilibriumtestsconductedforeach locusineachpopulationrevealedasignificantdeviationfromHWinonlyfivecases(Appendix

A).However,nolocusorpopulationhadsignificantHWdeparturemorethanonce,exceptfor thelocuswbwc28thathadasignificantdeparturefromHWintwopopulations.Overallloci, therewasnodeparturefromHWequilibriumwithinpopulationsexceptforthefragmented

CintiaCornelius,2006,Ph.D.Dissertation,p. 14 populationinthesouthernregion(ChiloéAL)whereasignificantdeficiencyinheterozygotes wasdetected(Table2).Testsforgenotypiclinkagedisequilibriumrevealednosignificant associationsbetweenpairsoflociinanypopulationoroverallpopulations(AppendixB).

Observedheterozygosity( HO),averagedoverallloci,rangedfrom0.7to0.8amongthe sixpopulations.Bothrelictforestpopulationshadthelowestvaluesofallelicrichness( AR)and genediversity( HS),withFrayJorgehavingthelowestlevelofgenediversityofallpopulations sampled(Table2).Allelicrichnessandgenediversity,however,didnotdiffersignificantly betweentherelictpopulationsinthenorthernregionandthepopulationsinthesouthern temperateforestregion( AR=6.58and AR=8.13, P=0.060,respectively; HS=0.787and HS=

0.828, P =0.064,respectively).

Long-term and large-scale population structure

Theregionalcomparisonamongallsixpopulationsrevealedaglobalestimateof FST (Φ)that waslowbutsignificantlydifferentfromzero(Φ=0.028,95%CI0.016–0.041,P<0.001).The mesoscalecomparisonofthethreepopulationsfoundincontinuousforestswithinthesouth temperateforestregion(Chaihuín,PargaandChiloéNP)revealedalowΦestimatethatwasnot significantlydifferentfromzero(Φ=0.009,95%CI0.002–0.019,P>0.05).However,atthe smallscaleamongfragmentswithintheagriculturallandscape(ChiloéAL),Φwassignificantly differentfromzero(Φ=0.02,95%CI0.01–0.033, P <0.001).Therelationshipbetweenglobal

FST (Φ)estimatesacrossthethreespatialscalesisshowninFig.2.Estimatesofpopulation differentiationbasedonastepwisemutationmodelshowedsimilarpatternswithlowestvalues observedatthemesoscale( RST =0.0038)andhighestvaluesatthelarge( RST =0.1159)and smallscales( RST =0.1163).AhierarchicalAMOVAatthelargespatialscale,inwhich populationswereassignedtothreegroupsaccordingtotheirtimespaceisolationhistory(G1:

CintiaCornelius,2006,Ph.D.Dissertation,p. 15

FrayJorgeandSantaInés,G2:Chaihuín,Parga,ChiloéNP,G3:ChiloéAL),revealedalowbut significantdifferentiationamongthethreegroups,withmostofthevariationbeingexplainedat thelowesthierarchicallevel(Table3,modela).

Pairwisecomparisonsofgeneticdistance( FST )amongthesixpopulationsof A. spinicauda (Table4)showedthatFrayJorge,themostnorthernrelictforest,hadasignificant reductioninheterozygosityrelativetoallotherpopulations( FST rangedfrom0.111to0.073, P<

0.003).ThepopulationintherelictforestSantaInés,alsohadsignificant FST valueswithall southernpopulations( FST rangedfrom0.068to0.025, P<0.003). FST betweenthetwo continuousforestpopulationsintheValdivianregion(ChaihuínandParga),separatedbythe samedistanceasthetworelictforests,wasnotsignificant(Table4),suggestingthatdispersalof

A.spinicauda isrestrictedacrosslargedistancesonlyifthehabitatseparatingpopulationsisnon forested(i.e.semiaridscrub).Thecorrelationbetweenallpairwisegeneticandgeographic distancesamongthesixpopulationsindicatedisolationbydistanceattheregionalscale(Mantel test R2=0.34, P =0.023).Thegeneticdistancebetweenthetworelictforests,however,wasa markedoutlierinthiscorrelationgiventhatpopulationsseparatedatequivalentdistancesinthe southernregionweremuchlessdifferentiated(Fig.3).Resultsfromtheassignmenttestsfurther confirmedthattherelictpopulationsaregeneticallydistinctwithnoindividualsmisassigned betweenthem(Fig.4a).ThisisincontrasttothetwosouthernpopulationsintheValdivian regionwheresomeoverlapofthetwolikelihooddistributionssuggestsahigherconnectivity

(Fig.4b).

Thatpopulationsinthesouthernregionwerenotdifferentiated(i.e.hadnosignificant pairwise FST values,Table4)wassupportedbytwohierarchicalAMOVAmodelsconducted withinthesouthernregion(Table3modelsbandc).Thefirstmodelconductedbetweentwo

CintiaCornelius,2006,Ph.D.Dissertation,p. 16 groupsofcontinuousforestpopulations(G1:ChaihuínandParga,G2:foursitesinChiloéNP), revealednogeneticdifferentiationbetweenmainlandpopulations(G1)andChiloéisland populations(G2),withnodifferentiationamongpopulationswithingroups(Table3modelb).

Thesecondmodel,inwhichthesamemainlandcontinuousforestpopulations(G1:Chaihuínand

Parga)werecomparedwiththefragmentedforestpopulationsintheagriculturallandscapein

Chiloé(G2:nineforestfragmentsinChiloéAL),againshowedthattherewasnosignificant differentiationbetweenthemainlandandislandpopulations;howevercontrarytotheprevious model,therewasasmallbutsignificantdifferentiationofpopulationswithingroups,with2.13

%ofthetotalvariationexplainedbydifferencesamongsubpopulationsintheanthropogenic forestfragments(Table3modelc).

Short-term and small-scale population structure

Thelocalcomparisonofgeneticdifferentiationamongthefoursitesinthecontinuousforest

(ChiloéNP)revealedthatsubpopulationsinthecontinuousforestwerenotgenetically differentiated(AMOVA, FST =0.011,P=0.178),withnosignificantpairwiseFST valuesamong sites(Table5).Incontrast,subpopulationsinforestfragmentsthatweresimilarlydistributed acrossspace(butnotconnectedbyforest)weresignificantlydifferentiated(AMOVA, FST =

0.022,P<0.001).Only2.18%ofthetotalvariationwasexplained,however,bydifferences amongforestfragments;97.82%ofthevariationwasexplainedattheindividuallevelwithin populations.Theninefragmentssampledandtheirspatialrelationshipsacrosstheagricultural landscapeinChiloéareshowninFigure5,inwhichisolationoffragmentsisclassifiedaccording tothehabitatpatchproximityindex(PX).PatchareawassignificantlyrelatedtoPXvalue

(Pearsonr=0.940, P<0.001);so,smallpatcheswereinamoreisolatedlandscapecontextthan largerpatches(Fig.5).Theanalysisofpairwisegeneticdistancesamongfragmentsrevealedthat

CintiaCornelius,2006,Ph.D.Dissertation,p. 17 severalsubpopulationsinfragmentsweredifferentiatedinrelationtootherfragmentsinthe landscape.Significantpairwise FST values(aftercorrectionformultiplecomparisons)ranged from0.045to0.080(P<0.0014);marginallysignificantvaluesof FST rangedfrom0.028to

0.050(P<0.05).Resultssuggestthatgeneflowisrestrictedtoacertaindegreeinthis fragmentedlandscape(Table6).

ExaminationofMoran’scorrelogramofspatialgeneticautocorrelationofindividuals acrossthefragmentedlandscapeindicatedthatindividualsaremorerelatedthanexpectedby chance,at2kmorless.Atgreaterdistances,individualrelatednessismostlywithinrandom expectationswithonlyafewdistanceclassesinwhichindividualswerelessormorerelatedthan expectedbychance;therewasnoclearpatternbetweendistanceandrelatedness(Fig.6).The relationshipbetweengeographicdistanceandgeneticdistanceamongforestfragmentsshoweda similarpattern.Geographicdistancedidnotpredictthegeneticdistanceamongfragments

(MantelR 2=0.044, P=0.222).Althoughlowpairwisegeneticdistanceswereobservedatshort geographicdistances,therewashighvariationingeneticdistancesatgreatergeographic distances(Fig.7a),suggestingthatotherlandscapecharacteristicsareprobablyalsoimportantin determininggeneticdifferentiation.Whentheeffectofgeographicdistanceongeneticdistance wasexaminedaftercontrollingfortheeffectofisolationofforestfragments(i.e.usingthe pairwisepatchproximityindex)therewasasignificantcorrelationbetweengeographicand geneticdistance,with11.4%(partialManteltest P<0.042)ofthevarianceexplainedby geographicdistancealone(Fig.7b).Ontheotherhand,patchproximitywassignificantlyrelated togeneticdistanceamongforestfragments(MantelR 2=0.198, P=0.0052,Fig.7c)but,after controllingfortheeffectofgeographicdistanceamongforestfragments,ahigherpercentageof thevariation(25.7%,ManteltestP<0.0018)wasexplained(Fig7d).Therefore,patchisolation

CintiaCornelius,2006,Ph.D.Dissertation,p. 18 orcharacteristicsoftheimmediateneighborhoodofforestfragments,givenbythedistanceand sizeofneighborfragments,ismoreimportantindetermininggeneticdifferentiationamong forestfragmentsthangeographicdistancealone.

Discussion

Ecologicalconsequencesofhumandrivenhabitatfragmentationhavebeenwidelydemonstrated

(Saunders etal.1991;Harrison&Bruna1999,Daviesetal.2001),whereastheextenttowhich geneticdiversityandstructureofpopulationsmaybemodifiedislessunderstood(Galbusera et al.2000;Gerlach&Musolf2000;Garner etal.2005).Athoroughunderstandingofgenetic consequencesofhabitatfragmentationrequiresthestudyofsystemswhosefragmentationhistory issufficientlylongtoallowsuchconsequencestohavebecomedetectable.Mosthabitat fragmentationcausedbyhumansistoorecentand,inmostcases,occursovertoolimitedspatial scaletorevealthefullextentofgeneticconsequencesonpopulations.Here,Iusednaturalforest fragmentsisolatedforthousandsofyears,andmorerecenthumancausedfragmentstocontrast anddemonstratetheinfluenceoftemporalandspatialscalesongeneticdifferentiationof populationsofaforestbird.Geneticconsequencesofhabitatfragmentationwereobservedin bothsystemsalthoughpatternswerelesspronouncedinhumancausedfragments.Threemain processeswereassociatedwithgeneticdifferentiationamongpopulationsinfragmented landscapes:forestreplacementbyopenhabitat(i.eisolation),fragmentsize,anddistanceamong populations.

Long-term and large-scale isolation

Populationsof A.spinicauda intherelictforestsFrayJorgeandSantaInésweregenetically distinct,withahigherpairwise FST value(0.111)thanbetweenanyotherpairofpopulations comparedinthisstudy.Lackofmisassignedindividualsineitherpopulationalsosuggests

CintiaCornelius,2006,Ph.D.Dissertation,p. 19

reducedmigrationbetweentheseforests(Waser&Strobeck1998). FST valuesintherangeof

0.05to0.15,however,areconsideredtoindicatemoderatedivergence(Hartl&Clark1997), suggestingthatalthoughgeneticdifferentiationhasoccurred,somebirdsmaystilldisperse betweentheseforests.Basedon FST statistics,thenumberofmigrantspergeneration( Nm ) betweentheseisolatedforestsistwobirds,whichislowbutexceedingthethresholdconsidered sufficienttocounteracttheeffectsofgeneticdrift(Slatkin1987).Thisestimateneedstobetaken withcaution,however,becausethenumberofmigrantsestimatedindirectlyfrom FST assumes thatequilibriumconditionshavebeenattained,inadditiontootherassumptionsthatarerarely metinnaturalpopulations(Whitlock&McCauley1999).Forexample,ifequilibriumhasnot beenreached,dispersalrateestimatesmayreflectpreviousconditionsandnotcurrentlevelsof dispersal.

Thetworelictforestpopulationsweremoredifferentiatedfromeachotherthaneither wasfrompopulationslocatedmorethan1,000kmtothesouthdespitethefactthatthedistance betweenthetworelictforestswasmuchsmaller(165km).FrayJorgeandSantaInéspopulations areconfinedtosmallforestremnantsoflessthan300haeach,andasaconsequence,fewerin numberthanthesouthernpopulationsfoundinmuchlargerforests.Therefore,thehigh differentiationbetweenthetworelictforestsislikelybecausebotharesmallpopulationsand thussubjecttogeneticdrift.Thisisaprocessthatbecomesespeciallyimportantinsmall populations(Hartl&Clark1997)becausetherelativestrengthofgeneflow(andmutations) decreasesinrelationtogeneticdrift(Wright1968).Furthermore,therewasasignificant correlationbetweengeneticandgeographicdistanceamongthesixpopulationsstudied,butit wasentirelydrivenbygeneticdistancesamongtherelictforestsandthesouthernpopulations.

Theisolationbydistancemodelconsidersdistanceastheonlyfactordetermininggenetic

CintiaCornelius,2006,Ph.D.Dissertation,p. 20 differentiationanddoesnotaccountforthepresenceofbarrierstodispersal.Forexample,the largegeneticdistancebetweenthetworelictforestsindicatesthepresenceofastrongbarrierto dispersal(i.e.semiaridhabitat)becausepopulationsseparatedbysimilardistancesinthe southernforestregionwerenotgeneticallydifferentiated.Bothrelictforestsalsohadlower valuesofallelicrichnessandgenediversitythandidsouthernpopulationslocatedwithinthe temperateforestregion,althoughthesedifferenceswereonlymarginallysignificant.This suggeststhat,inthelongterm,habitatfragmentationcanresultinreducedgeneticdiversityeven inabirdwithmoderatedispersalcapability.

ThetwopopulationsinthecontinuousforestoftheValdiviancoastalregionwere separatedbythesamedistanceasthetworelictforests.Thus,theyprovidedagoodcontrolfor theeffectofisolationbydistanceincontrasttodispersallimitationbecauseoftheabsenceof foresthabitat.Mostpartsofthiscoastalrangeremainedfreefromglacialinfluenceatthetime glaciersreachedtheirmaximumextensioninthesouthernhemisphere[20,000yearBP,

Villagran(1990)].Therefore,populationsof A.spinicauda intheValdivianregionlikelyhave beenpresentoverthesametemporalscaleashaverelictforestpopulationsinthenorthern region.ThetwopopulationsintheValdivianregionwerenotgeneticallydifferentiateddespite havingbeenseparatedbythesamedistanceasthetworelictforestsinthesemiaridregion.Lack ofdifferentiationmayindicatethatgeneflowcanbesubstantialevenoverlargedistancesin continuousforestsandthatdispersalof A.spinicauda isonlyrestrictedatthisspatialscaleif habitatseparatingpopulationsisnotforested.

Thecrossscalecomparisonofglobalestimatesof FST (Φ)showedthat,asexpected,the highestlevelofdifferentiationoccurredatthelargespatialscale(1,000–1,400km).Incontrast toexpectations,however,thelowestlevelofdifferentiationdidnotoccuratthesmallestspatial

CintiaCornelius,2006,Ph.D.Dissertation,p. 21 scale(130km)thathadintermediatebutsignificantlevelsofdifferentiation,butatthemeso scale(100300km).Populationsatthemesoscalewerepartoflargeandcontinuousforest populations,whereaspopulationscomparedatthesmallscalewereasetofanthropogenic fragmentsinanagriculturallandscape.Therefore,theseΦvaluescanbereinterpretedaslevels ofdifferentiationacrossatemporalscaleoftimesinceisolation(Fig.8),inwhichpopulationsin continuousforestsandrelictforestsrepresenttwoextremesofatimesinceisolationscalewith humancausedfragmentsatanintermediateposition.

Sufficienttimeandanexpanseofhostilehabitat,suchasthatobservedbetweenthetwo relictforests,areenoughtoproducesignificantgeneticdifferentiationamongpopulations.The roleofsmallscalebarriers,however,isnotthatclear.PopulationsintheValdivianregionwere notdifferentiatedfrompopulationsinChiloéIsland,despiteseparationbyanarrowmarine channel.Therefore,smalldistances(25km)ofnonforesthabitatarenotenoughtogenetically differentiateverylargepopulations,asrevealedwiththissetofmicrosatelliteloci.Thisresult, however,needstobeinterpretedwithcaution,becauseA.spinicauda fromChiloéisrecognized asasubspeciesbasedonslightdifferencesinplumagecolorationrelativetothemainland populations.Thehistoricalrelationshipsamong A.spinicauda populationsarebeyondthescope ofthisstudy,butfurtherinvestigationsusingappropriatemarkersarewarranted.Inferences basedonmicrosatellitemarkersinvolvingverylargepopulationsneedtobetakenwithcaution becausehighmutationratescanresultinhomogenizationofpopulations,mimickingrecurrent geneflow(Nauta&Weissing1996).

Short-term and small-scale isolation

Therewasanoverallgeneticdifferentiationofsubpopulationsof A.spinicauda amongforest fragmentsintheagriculturallandscapeinChiloé.Atacomparablespatialscale,however,

CintiaCornelius,2006,Ph.D.Dissertation,p. 22 subpopulationsfromthecontinuousforestinChiloéNationalParkwerenotgenetically differentiated.Thisresultstronglysuggeststhatthereplacementofforesthabitatbyagricultural landishavinganeffectonthegeneticstructureofpopulationsinfragments,likelydueto reduceddispersalacrossopenhabitats.Itisimportanttorememberthatpatternsofallele distributionacrossthelandscapedonotdirectlyrevealhowmuchgeneflowisoccurring, becausesuchpatternsarearesultofacombinationofprocesses,besidesdispersal(Slatkin1987).

Forexample,geneflowdoesnotonlydependonmovementofbirdsamongfragmentsbutalso onsuccessfulbreeding.

Geneticdifferentiationamongforestfragmentsintheagriculturallandscapeissimilarto thepatternobtainedatthelargetimespacescale.Pairwise FST estimatesamongfragmentswere lowerthanthoseobservedbetweenthetworelictforestsandthesouthernpopulationsbutwere, nevertheless,significantlydifferentfromzero(i.e.0.08to0.027).FST valueswithinthisrange aregenerallyassociatedwithmoderateorlittlegeneticdifferentiation(Hartl&Clark1997). FST statistics,however,assumeequilibriumconditions,whichmightnothavebeenachievedinthese fragmentedforeststhathavebeenisolatedfornomorethan50to80years.Therefore,itis possiblethatdifferentiationmayincreaseinthelongterm,ascurrentlyobservedamongrelict forests.Fragmentsdidnotshowadecreaseinallelicrichnessorgenediversity,relativeto populationsincontinuousforests.Asawhole,thepopulationinthefragmentedlandscapedid exhibitanoverallreductionofheterozygosity,probablybecausethispopulationiscomposedof severalsubpopulationsand,thus,theexcessofhomozygotesisaconsequenceofpooling individualsacrossthesesubpopulations(i.e.Wahlundeffect).

Onlyafewstudieshavereportedgeneticconsequencesoffragmentationofbird populationsinanthropogenicfragments.Forinstance,Galbuseraandcollaborators(2000)found

CintiaCornelius,2006,Ph.D.Dissertation,p. 23 highlevelsofdifferentiationamongpopulationsofanendangeredbirdinforestfragmentsin

Africa.Pairwise FST valuesamongthesesubpopulationsrangedbetween0.103and0.238, considerablyhigherthanthosefoundfor A.spinicauda inthefragmentedlandscapeinChiloé.

HighlevelsofdifferentiationintheAfricanstudywereattributedtoisolationofsmallfragments

(2–40ha)producedbysubstantialhabitatlosssincethe1960sandsmallsizeofremaining populations.AnotherstudywithpopulationsofunderstorybirdsinCostaRicaalsoshowedvery highpairwisepopulationdifferentiationwith FST valuesashighas0.256(Brown etal.2004).

Theseextremeandrelativelyrecentfragmentationsituationsareproducingpatternssimilarto thoseobservedamongrelictforestsinthisstudyandsuggestthathighlevelsofgenetic differentiationcanbeobservedevenwithinthetimescaleofhumandrivenhabitat fragmentation,especiallyafterextremelevelsofhabitatloss.

Thedegreeofgeneticdifferentiationofpopulationsacrossfragmentedlandscapes dependsonthedispersalcapabilityofindividualsandonhowanimalsperceivethelandscape.

Studiesonnonvolantsmallmammalsthatinhabitanthropogenicfragmentedlandscapeshave demonstratedhighlevelsofdifferentiation,withpairwise FST valuesrangingfrom0.018to0.46

(Garner etal.2005;Gerlach&Musolf2000;Trizio etal.2005).Thisisnotsurprising,giventhat smallnonvolantmammalshavealowerdispersalcapabilitythanmostbirdspecies.Thestriking resultofthisstudyon A.spinicauda andthatofotherstudiesthathaveexaminedthegenetic structureofbirdpopulationsinanthropogenicfragments(Galbusera etal.2000,2004;Brown et al.2004;Arguedas&Parker2000)isthatevenwithhigherdispersalcapabilities,bird populationsstillexhibitgeneticconsequencesoffragmentationevenatthetemporalandspatial scaleofhumancausedhabitatfragmentation.Thisislikelyaconsequenceofthefactthat

CintiaCornelius,2006,Ph.D.Dissertation,p. 24 dispersalofindividualsand,hence,geneflowusuallyoccursovermuchshorterdistancesthan individualsareactuallycapableofmoving(Ehrlich&Raven1969;Slatkin1987).

Theroleofgeographicdistanceinreducinggeneflowamongpopulationsislargely dependentonthescaleofanalysis(Rousset1997)andonthelandscapecharacteristicsthat promoteorrestrictmovementoforganisms(i.e.barriers,hostilehabitats).Intheagricultural landscapeinChiloé,relatednessofindividualsdidnotshowaclearpatternwithdistance.

Moreover,distanceamongfragmentswasnotagoodpredictorofgeneticdifferentiation, indicatingthatotherlandscapefeaturesneedtobeaccountedfortofullyexplainpatternsof geneticdifferentiation.Infact,thepatchproximityindexPXameasureofisolationdefinedby theneighborhoodofeachforestfragmentexplainedmoreofthevariationingeneticdifferences amongfragmentsthandistanceamongthem.Isolationbydistancewasalsoobservedbutonly aftercontrollingforthelandscapecontextofforestfragments(i.e.patchproximity).

Consequently,boththeindexPXanddistancebetweenfragmentsareimportantinshapingthe populationstructureof A.spinicauda inthefragmentedagriculturallandscape.

Theproximityindexused(modifiedfromGustafson&Parker1992)washighly correlatedwithsizeofforestfragmentsinthisstudysystemand,thus,subpopulationsinsmall fragmentswerealsohighlyisolated(i.e.surroundedbyfewandsmallforestfragments).Highest

FST valueswereobservedamongsmallfragmentsandamongsmallfragmentsandother fragmentsinthelandscape,withthehighest( FST =0.08)obtainedbetweenthetwosmallestand isolatedfragments.Thisresultalsoresemblesthatobtainedatthelargescalebetweenrelict forests,reinforcingtheroleofsmallpopulationsizeandisolationindetermininggenetic differentiationamongpopulations.Therefore,populationsinsmallfragmentsarethose contributingmosttotheoverallgeneticdifferentiationamongfragments,whichisalsothecase

CintiaCornelius,2006,Ph.D.Dissertation,p. 25 inotherfragmentedlandscapes(Galbusera etal.2000;Brown etal.2004;McDonald etal.

1999).Thisislikelytheresultofthehigherrelativeeffectofgenedriftoverotherdifferentiating processesthatoccurinsmallandisolatedhabitatfragments.

Concludingremarks

Asmorehabitatislostanddegraded,andasmoreofitbecomesfragmented,populationswill eitheradapttothenovelconditionsimposedbyhumandrivenmodificationsortheywill progressivelydeclineuntilextinction.Yet,beforeextinctionoradaptationoccur,processes associatedwithhabitatlosscanhavedetrimentalconsequencesonpopulations(Davies etal.

2001).Consequencesofreducedlandscapeconnectivityareusuallydifficulttomeasure.Theuse ofappropriategeneticmarkers,however,canprovideusefulinformationbyindirectlymeasuring movementpatternsoforganisms(Parker etal.1998).Inthisstudy,Ishowedthatpopulationsof aforestbirdincontinuousforestsshowedhighlevelsofdispersalevenacrosslargedistances(>

200km)butthatthereplacementofforestbyopenhabitat(e.g.,agriculturallandandpastures) canresultinmoderatelevelsofgeneticdifferentiationevenatshorttemporalandsmallspatial scales.

Resultsfromthisstudyareratherconservativeforthreereasons.First,levelsofforest fragmentationintheagriculturallandscapeinnortheasternChiloéarenotasextremeasinother fragmentedlandscapes.Currentforestcoverinthearearangesbetween40–50%,whichis abovethefragmentationthresholdof30%belowwhichdetrimentalconsequenceson populationsarehighest(Andren1994).Second, A.spinicauda hasmoderatedispersal capabilitiescomparedtomostunderstorybirdspeciesinthesouthtemperateforestforwhich severallinesofevidencesuggestreduceddispersalacrossopenhabitats(Sieving etal.1996;

Willson2004;Diaz etal.2006;Castellón&Sieving2006a,2006b).Therefore,basedonthe

CintiaCornelius,2006,Ph.D.Dissertation,p. 26 resultsofthisstudy,itisverylikelythatmostunderstorybirdspeciesinthislandscapewillshow equalorstrongergeneticeffectsduetohabitatfragmentation.Finally,indirectestimatesofgene flowbasedonallelicfrequencydataarealwayshigherthandirectestimatesofrealdispersal patternsoforganisms(Slatkin1987).

ThetemperaterainforestofsouthernSouthAmericahasbeenrecognizedasan endangeredecosystemwithhighconservationpriority(Dinerstein1995);itisoneofthe25 globalhotspotsofbiologicaldiversity(Myers etal.2000).Humanactivitieshaveintensively modifiedthelandscapeinthisregion,resultinginhighratesofforestfragmentation characterizedbyanincreaseinthenumberofsmallandisolatedfragments(Echeverria etal.

2006).HabitatlossandfragmentationhasbeenespeciallyhighinareasnorthofChiloéwhere onlyonelargeremnantremainsonthecoastalrangeandfewsmallfragmentsremaininthe centralvalley(SmithRamirez2004).Therefore,atcurrentratesofdeforestationandforest habitatreplacement,strongecologicalandgeneticconsequencesonplantandanimalpopulations areforeseeninthisregion.

CintiaCornelius,2006,Ph.D.Dissertation,p. 27

LiteratureCited

Andren,H.(1994)Effectsofhabitatfragmentationonbirdsandmammalsinlandscapeswith differentproportionsofsuitablehabitat:areview. Oikos 71:355366.

Arguedas,N.&Parker,G.P.(2000)Seasonalmigrationandgeneticpopulationstructurein housewrens. TheCondor 102:517528.

Avise,J.&Hamrick,J.(1996)ConservationGenetics:casehistoriesfromnature.Chapman&

Hall,NewYork.

Bates,J.M.(2002)ThegeneticeffectsofforestfragmentationonfivespeciesofAmazonian birds. JournalofAvianBiology 33:276294.

Bender,D.J.,Contreras,T.A.&Fahrig,L.(1998)Habitatlossandpopulationdecline:ameta analysisofpatchsizeeffect. Ecology 79:517533.

Brown,J.H.&KodrikBrown,A.(1977)Turnoverratesininsularbiogeography:effectof immigrationonextinction. Ecology 58:445449.

Brown,L.,Ramey,R.R.,Tamburini,B.&Gavin,T.(2004)Populationstructureand mitochondrialDNAvariationinsedentaryNeotropicalbirdsisolatedbyforestfragmentation.

ConservationGenetics 5:743757.

Castellón,T.D.&Sieving,K.E.(2006a)Anexperimentaltestofmatrixpermeabilityand corridorusebyanendemicunderstorybird. ConservationBiology 20:135145.

CintiaCornelius,2006,Ph.D.Dissertation,p. 28

Castellón,T.D.&Sieving,K.E.(2006b)Landscapehistory,fragmentation,andpatch occupancy:modelsforaforestbirdwithlimiteddispersal. EcologicalApplications 16:2233

2234.

Cornelius,C.,Ried,S.&Marquet,P.A.(2003)Conservacióndelascomunidadesdeavesenlos bosquesrelictosenChilecentral,pp.139142.In: Conservaciónybiodiversidaddelosbosques delacordilleradelacostaenChile (edsC.SmithRamirez,C.Valdovinos&J.J.Armesto).

EditorialUniversitaria,Santiago,Chile.

Cornelius,C.,Cofre,H.&Marquet,P.A.(2000)Effectsofhabitatfragmentationonbirdspecies inarelicttemperateforestinsemiaridChile. ConservationBiology 14:534543.

Davies,K.F.,Gascon,C.&Margules,C.R.(2001)Habitatfragmentation,pp.8198.In:

ConservationBiology:researchprioritiesforthenextdecade (M.E.Soule&G.H.Orians, eds.).IslandPress,WashingtonDC.

Degen,B.&Kremer,A.(2001)SGSSpatialgeneticsoftware:Acomputerprogramfor analysisofspatialgeneticandphenotypicstructuresofindividualsandpopulations. Journalof

Heredity 92:447448.

DelVa,E.,Armesto,J.J.,Barbosa,O.,Christie,D.A.,Gutierrez,A.G.,Jones,C.,Marquet,P.

A.&Weathers,K.C.(2006)RainforestislandsintheChileansemiaridregion:Fog dependency,ecosystempersistenceandtreeregeneration. Ecosystems 9:598608.

Diaz,I.A.,Armesto,J.J.,Reid,S.,Sieving,K.E.&Willson,M.F.(2005)Linkingforest structureandcomposition:aviandiversityinsuccessionalforestsofChiloéIsland,Chile.

BiologicalConservation 123:91101.

CintiaCornelius,2006,Ph.D.Dissertation,p. 29

Diaz,I.A.,Armesto,J.J.&Willson,M.F.(2006a)MatingsuccessoftheendemicDesMurs'

Wiretail( Sylviorthorhynchusdesmursii ,Furnariidae)infragmentedChileanrainforests. Austral

Ecology 31:1321.

Dinerstein,E.(1995)AconservationassessmentoftheterrestrialecoregionsofLatinAmerica andtheCaribbean.WWFFundandTheWorldBank,Washington,DC.

Echeverria,C.,Coomes,D.,Salas,J.,ReyBenayas,J.M.,Lara,A.&Newton,A.(2006)Rapid deforestationandfragmentationofChileanTemperateForests. BiologicalConservation 130:

481494.

Ehrlich,P.&Raven,P.(1969)Differentiationofpopulations. Science 165:12281232.

ElMousadik,A.&Petit,R.J.(1996)Highlevelofgeneticdifferentiationforallelicrichness amongpopulationsoftheargantree[ Arganiaspinosa (L.)Skeels]endemictoMorocco.92:832

839. TheoreticalAppliedGenetics 92:832839.

Ellegren,H.,Carlson,A.&Stenberg,I.(1999)Geneticstructureandvariabilityofwhitebacked woodpecker( Dendrocoposleucotos )populationsinnorthernEurope.Hereditas 130:291299.

Estades,C.F.&Temple,S.(1999)Deciduousforestbirdcommunitiesinafragmented landscapedominatedbyexoticpineplantations. EcologicalApplications 9:573585.

Excoffier,L.,Laval,L.G.&SchneiderS.(2005)Arlequinver.3.0:anintegratedsoftware packageforpopulationgeneticsdataanalyses. EvolutionaryBioinfromatics :4750.

CintiaCornelius,2006,Ph.D.Dissertation,p. 30

Excoffier,L.,Smouse,P.E.&Quattro,J.M.(1992)Analysisofmolecularvarianceinferred frommetricdistancesamongDNAhaplotypes:applicationtohumanmitochondrialrestriction data. Genetics 131:479491.

Galbusera,P.,Githiru,M.,Lens,L.&Matthysen,E.(2004)Geneticequilibriumdespitehabitat fragmentationinanAfrotropicalbird. MolecularEcology 13:14091421.

Galbusera,P.,Lens,L.,Waiyaki,E.,Schenck,T.&Matthysen,E.(2000)Geneticvariabilityand geneflowintheglobally,criticallyendangeredTaitathrush. ConservationGenetics 1:4555.

Garner,A.,Rachlow,J.L.&Waits,L.P.(2005)Geneticdiversityandpopulationdivergencein fragmentedhabitats:conservationofIdahogroundsquirrels. ConservationGenetics 6:759774.

Gerlach,G.&Musolf,K.(2000)Fragmentationoflandscapeasacauseforgeneticsubdivision inbankvoles. ConservationBiology 14:10661074.

Goudet,J.FSTAT:aprogramtoestimateandtestgenediversitiesandfixationindices.[2.9.1].

2000.InstituteofEcology,UniversityofLausanne,Switzerland.

Goudet,J.,Raymond,M.,Demeeus,T.&Rousset,F.(1996)Testingdifferentiationindiploid populations. Genetics 144:19331940.

Gustafson,E.J.&Parker,G.R.(1992)Relationshipsbetweenlandcoverproportionandindices oflandscapespatialpattern. LandscapeEcology 7:101110.

Gustafson,E.J.&Parker,G.R.(1994)Usinganindexofhabitatpatchproximityforlandscape design. LandscapeandUrbanPlanning 29:117130.

CintiaCornelius,2006,Ph.D.Dissertation,p. 31

Harrison,S.&Bruna,E.(1999)Habitatfragmentationandlargescaleconservation:whatdowe knowforsure? Ecography 22:225232.

Hartl,D.L.&Clark,A.G.(1997)Principlesofpopulationgenetics.SinauerAssociates,Inc.,

Sunderland,MA.

Kareiva,P.&Wennergren,U.(1995)Connectinglandscapepatternstoecosystemand populationprocesses. Nature 373:299302.

Mantel,N.(1967)Thedetectionofdiseaseclusteringandageneralizedregressionapproach.

CancerResearch 27:209220.

McDonald,D.B.,Potts,W.K.,Fitzpatrick,J.W.&Woolfenden,G.E.(1999)Contrasting geneticstructureinsisterspeciesofNorthAmericanscrubjays. ProceedingsoftheRoyal

SocietyBBiologicalSciences 266:11171125.

McGarigal,K.&Marks,B.J.(1995)Fragstats:spatialpatternanalysisprogramforquantifying landscapestructure.U.S.ForestServiceGeneralTechnicalReportPNW351.

McGuill,M.&Rowan,A.(1989)Biologicaleffectsofbloodloss:implicationsforsampling volumesandtechniques. ILARNews 31:518.

Milá,B.&Bardeleben,C.(2005)Isolationofpolymorphictetranucleotidemicrosatellite markersforthewedgedbilledwoodcreeper Glyphorynchusspirurus . MolecularEcologyNotes

5:844845.

Myers,N.,Mittermeier,R.,Mittemeier,C.,Fonseca,G.&Kent,J.(2000)Biodiversityhotspot forconservationpriorities. Nature 403:853858.

CintiaCornelius,2006,Ph.D.Dissertation,p. 32

Nauta,M.J.&Weissing,F.J.(1996)Constraintsonallelesizeatmicrosatelliteloci: implicationsforgeneticdifferentiation. Genetics 143:10211032.

NeiM.(1987)MolecularEvolutionaryGenetics.ColumbiaUniversityPress,NewYork.

Parker,P.G.,Snow,A.,Schug,M.,Booton,G.&Fuerst,P.(1998)Whatmoleculescantellus aboutpopulations:choosingandusingamolecularmarker. Ecology 79:361382.

Perez,C.&Villagrán,C.(1985)Distribucióndelaabundanciadeespeciesenbosquesrelictos delazonamediterráneadeChile. RevistaChilenadeHistoriaNatural 58:157170.

Piertney,S.B.,Shorey,L.&Höglund,J.(2002)CharacterizationofmicrosatelliteDNAmarkers inthewhitebeardedmanakin( Manakusmanacus ). MolecularEcologyNotes 2:504505.

Ried,S.,Cornelius,C.,Barbosa,O.,Meynard,C.,Silva,C.&Marquet,P.A.(2002)

ConservationoftemperateforestbirdsinChile:implicationsfromthestudyofanisolatedforest relict. BiodiversityandConservation 11:19751990.

Rousset,F.(1997)GeneticdifferentiationandestimationofgeneflowfromFstatisticsunder isolationbydistance. Genetics 145:12191228.

Saunders,D.A.,Hobbs,R.J.&Margules,C.R.(1991)Biologicalconsequencesofecosystem fragmentation:areview. ConservationBiology 5:1832.

Sieving,K.E.,Willson,M.F.&DeSanto,T.L.(1996)Habitatbarrierstomovementof understorybirdsinfragmentedsouthtemperaterainforest. Auk 113:944949.

Slatkin,M.(1987)Geneflowandthegeographicstructureofnaturalpopulations. Science 236:

787792.

CintiaCornelius,2006,Ph.D.Dissertation,p. 33

Slatkin,M.(1995)Ameasureofpopulationsubdivisionbasedonmicrosatelliteallelefrequency.

Genetics 139:457162.

SmithRamirez,C.(2004)TheChileancoastalrange:avanishingcenterofbiodiversityand endemisminSouthAmericantemperaterainforests. BiodiversityandConservation 13:373393.

Smouse,P.E.,Long,J.C.&Sokal,R.R.(1985)Multipleregressionandcorrelationextensions ofthemanteltestofmatrixcorrespondence. SystematicZoology :627632.

Tilman,D.,May,R.M.,Lehman,C.L.&Nowak,M.A.(1994)Habitatdestructionandthe extinctiondebt. Nature 371:6566.

Trizio,I.,Crestanello,B.,Galbusera,P.,Wauters,L.A.,Tosi,G.,Matthysen,E.&Hauffe,H.C.

(2005)GeographicaldistanceandphysicalbarriersshapethegeneticstructureofEurasianred squirrels( Sciurusvulgaris )intheItalianAlps. MolecularEcology 14:469481.

Troncoso,A.C.,Villagrán,C.&Muñoz,M.(1980)Unanuevahipótesisacercadelorigeny edaddelbosquedeFrayJorge(Coquimbo,Chile). BoletindelMuseoNacionaldeHistoria

Natural(Chile) 37:117152.

Villagrán,C.(1990)GlacialclimatesandtheireffectonthehistoryofvegetationofChile:A synthesisbasedonpalynologicalevidencefromIsladeChiloé. ReviewofPaleobotanyand

Palynology 65:1724.

Villagrán,C.,Armesto,J.J.,Hinojosa,F.C.,Cuevertino,J.,Perez,C.&Medina,C.(2004)El enigmáticoorigendelbosquerelictodeFrayJorge,pp.343.In:Historianaturaldelparque

CintiaCornelius,2006,Ph.D.Dissertation,p. 34 nacionalbosqueFrayJorge (edsF.Squeo,J.R.Gutierrez&I.R.Hernández).Universidaddela

Serena,LaSerena.

Waser,P.M.&Strobeck,C.(1998)Geneticsignaturesofinterpopulationdispersal. Trendsin

Ecology&Evolution 13:4344.

WeirB.S.&Cockerham,C.C.(1984)EstimatingFstatisticsfortheanalysisofpopulation structure. Evolution 38:13581370.

Whitlock,M.C.&McCauley,D.E.(1999)Indirectmeasuresofgeneflowandmigration: Fst not equalto1/(4Nm+1). Heredity 82:117125.

Willson,M.F.(2004)Lossofhabitatconnectivityhinderspairformationandjuveniledispersal ofChucaoTapaculosinChileanrainforest. Condor 106:166171.

Wright,S.(1968)EvolutionandgeneticsofpopulationsVol.1Geneticandbiometric foundations.UniversityofChicagoPress,Chicago,IL.

CintiaCornelius,2006,Ph.D.Dissertation,p. 35

Table1.Productsizerange,numberofallelesandoptimalreactionconditionspermicrosatellite primersetfor A.spinicauda.

Locus PCRproductsize(bp) Numberof Annealingtemp. MgCl 2(mM) alleles (C°) Man1 143–165 6 54 2.5 Man3 195–280 15 52 2 Man13 123–151 14 52 2 WbWc28 236–293 21 53 1 WbWc58 236271 13 51 0.75

Table2.Measuresofgeneticdiversityandpopulationstatisticsfor Aphrasturaspinicauda screenedatfivemicrosatellitelociinsixstudysitesinnorthcentralChile.

HW Population Region Forest N N A A H H F SP N R S O IS (P) 6.8 6.6 FrayJorge North Relict 1 17 0.776 0.776 0.001 0.547 (1.4) (1.4) 6.6 6.6 SantaInés North Relict 1 14 0.801 0.700 0.126 0.032 (1.3) (1.3) 8.4 8.2 Chaihuín South Continuous 1 15 0.807 0.773 0.042 0.278 (1.6) (1.6) 8.2 7.8 Parga South Continuous 1 16 0.819 0.800 0.023 0.375 (1.4) (1.4) 10.4 8.2 ChiloéNP South Continuous 4 42 0.816 0.780 0.084 0.005 (1.9) (1.5) 12.8 8.3 ChiloéAL South Fragments 9 131 0.834 0.778 0.068 <0.002 (2.2) (1.4) Thenumberofsubpopulationssampled(N SP )andindividualsgenotypedforallfive microsatellitelociareindicated(N).MeanwithSEinbracketsisindicatedfornumberofalleles

(AN)andallelicrichness( AR).Genediversity( HS)andvaluesforobservedheterozygosity( HO) arereportedasmeanvaluesoverallloci.Multilocusestimatesof FIS arereportedwith correspondingHardyWeinbergequilibrium P valuesfordeficiencyofheterozygotes(bold denotessignificanceaftercorrectionsformultiplecomparisonsbasedon600randomizations).

CintiaCornelius,2006,Ph.D.Dissertation,p. 36

Table3.Analysisofmolecularvariance(AMOVA)resultstocomparethegeneticvariationin microsatellitedatafrom A.spinicauda usingthreemodels(a,b,andc).Populationswereassigned todifferentgroupsaccordingtotheirfragmentationstatusattwodifferentspatialscales.

Structure %oftotalFixation Sourceofvariation d.f.variationindices P value Largescale a) RelictsContinuous–Fragments

Amongregions 2 1.10 0.011 (FCT )<0.02 Amongpopulationswithinregions14 2.67 0.027 (FSC )<0.001 Withinpopulations 45396.23 0.038 (FST )<0.001 Total 469 Mesoscale b) Continuous–Continuous

Amongregions 1 0.00 0.000 (FCT )NS Amongpopulationswithinregions41.32 0.013 (FSC )NS Withinpopulation 14098.68 0.013 (FST )<0.03 Total 145 c) Continuous–Fragments

Amongregions 10.350.003 (FCT )NS Amongpopulationswithinregions9 2.130.021 (FSC )<0.001 Withinpopulations 313 98.220.018 (FST )<0.001 Total 323

CintiaCornelius,2006,Ph.D.Dissertation,p. 37

Table4.Pairwise FST (lowerdiagonal)andpairwisegeographicdistanceinkm(upperdiagonal) amongthesixsamplesites(R=relict,C=continuous,FR=fragments).

Population R1 R2 C1 C2 C3 FR FrayJorge(R1) 167.5 1049.0 1212.9 1332.3 1257.4 SantaInés(R2) 0.111* 888.3 1051.9 1171.2 1095.2 Chaihuín(C1) 0.077* 0.068* 164.0 283.3 209.8 Parga(C2) 0.080* 0.025* 0.016 119.8 49.1 ChiloéNP(C3) 0.090* 0.056* 0.003 0.012 81.1 ChiloéAL(FR) 0.073* 0.044* 0.008 0.004 0.005 Asterisksindicatesignificantpairwise FST with Pvaluesobtainedafter300permutations( P<

0.003adjustednominallevelformultiplecomparisons).Greyshadingindicatescomparison betweenthetworelictforestsandthetwositesincontinuousforest.

CintiaCornelius,2006,Ph.D.Dissertation,p. 38

Table5.Pairwise FST (lowerdiagonal)andpairwisegeographicdistanceinkm(upperdiagonal) betweenthefoursitesinthecontinuousforestinChiloéNationalPark.

NP-1 NP-2 NP-3 NP-4 NP-1 3.1 13.0 14.3 NP-2 0.0055 11.2 12.3 NP-3 0.0341 0.0002 1.9 NP-4 0.0007 0.0064 0.0041

All FST valueswerenotsignificant( P>0.05after120permutations).

Table6.Pairwise FST (lowerdiagonal)andpairwisegeographicdistanceinkm(upperdiagonal) betweenthenineforestfragmentsinanagriculturallandscapeinChiloé(L=large,M= medium,S=small).

Fragment L1 L2 L3 M1 M2 M3 S1 S2 S3 L1 12.1 22.8 21.1 24.7 18.5 18.9 21.9 13.6 L2 0.037** 10.7 10.4 13.2 8.2 8.0 10.1 7.0 L3 0.006 0.007 7.4 3.9 7.8 6.8 4.2 12.6 M1 0.006 0.027* 0.006 11.3 2.5 2.0 10.9 8.0 M2 0.034* 0.012 0.004 0.028** 11.7 10.7 3.4 16.4 M3 0.018 0.018 0.000 0.007 0.000 1.1 10.4 5.7 S1 0.036** 0.050** 0.025 0.016 0.030** 0.006 9.6 6.5 S2 0.004 0.026 0.003 0.004 0.017 0.000 0.017 14.3 S3 0.060*** 0.041* 0.031** 0.059*** 0.045*** 0.050** 0.080*** 0.042** Asterisksindicatesignificantpairwise FST estimateswithPvaluesobtainedafter720 permutations(*** P<0.003adjustednominallevelformultiplecomparisons,** P<0.01,* P <

0.05).

CintiaCornelius,2006,Ph.D.Dissertation,p. 39

APPENDIXA

Observed( Hobs )andexpected( Hexp )heterozygosityperlocuswithineachpopulationandHardy Weinberg(HW)equilibriumdeparture Pvalue(exacttestusingaMarkovchain),boldvalues indicatesignificantdeparturefromHWequilibrium.N=numberofindividualsgenotyped, AN= numberofalleles. HW Population Locus N A H H N obs exp Pvalue FrayJorge Man1 17 6 0.824 0.761 0.966 Man3 17 10 0.765 0.923 0.090 Man13 17 5 0.647 0.613 1.000 wbwc28 17 7 0.882 0.811 0.839 wbwc58 17 6 0.765 0.815 0.949 SantaInés Man1 14 4 0.500 0.772 0.354 Man3 14 8 0.929 0.873 0.696 Man13 14 6 0.786 0.720 0.753 wbwc28 14 7 0.714 0.839 0.136 wbwc58 14 8 0.571 0.841 0.013 Chaihuín Man1 15 5 0.667 0.763 0.487 Man3 15 7 0.600 0.828 0.000 Man13 15 8 0.800 0.699 0.800 wbwc28 15 10 0.867 0.883 0.875 wbwc58 15 12 0.933 0.871 0.902 Parga Man1 16 5 0.625 0.843 0.031 Man3 16 10 0.813 0.865 0.064 Man13 16 8 0.688 0.770 0.665 wbwc28 16 8 0.875 0.788 0.848 wbwc58 16 10 1.000 0.855 0.662 ChiloéNP Man1 42 5 0.619 0.801 0.141 Man3 42 9 0.857 0.835 0.707 Man13 42 11 0.690 0.791 0.057 wbwc28 42 15 0.810 0.885 0.009 wbwc58 42 12 0.762 0.773 0.314 ChiloéAL Man1 131 6 0.695 0.794 0.218 Man3 131 12 0.763 0.855 0.148 Man13 131 14 0.817 0.813 0.576 wbwc28 131 19 0.791 0.893 0.014 wbwc58 131 13 0.824 0.824 0.064

CintiaCornelius,2006,Ph.D.Dissertation,p. 40

APPENDIXB Pvaluesforgenotypicdisequilibriumbetweenallpairsoflociwithineachpopulationandover allpopulations. Pvalueswerebasedon1200permutationsandwerenotsignificantafter correctionformultiplecomparisonswithanadjusted5%nominallevelof0.00083. Fray Santa Pair of loci Parga Chaihuín Chiloé-AL Chiloé-NP All Jorge Inés Man1XMan3 1.000 1.000 1.000 0.636 0.208 0.188 0.209 Man1XMan13 0.960 0.537 1.000 0.623 0.193 0.832 0.395 Man1Xwbwc28 1.000 1.000 0.483 1.000 0.674 1.000 0.834 Man1Xwbwc58 1.000 1.000 1.000 1.000 0.606 0.984 0.88 Man3XMan13 1.000 0.305 1.000 0.255 0.385 0.698 0.337 Man3Xwbwc28 1.000 0.125 1.000 1.000 0.038 0.688 0.042 Man3Xwbwc58 1.000 0.195 1.000 1.000 0.032 0.949 0.100 Man13Xwbwc28 0.909 0.385 0.369 1.000 0.104 0.042 0.025 Man13Xwbwc58 0.674 0.573 1.000 1.000 0.802 0.882 0.855 wbwc28Xwbwc58 0.220 0.285 0.353 1.000 0.467 0.823 0.263

CintiaCornelius,2006,Ph.D.Dissertation,p. 41

A

B Continuous(ChiloéNP) Fragments(ChiloéAL) FrayJorge Relict (30° S) Forests SantaInés (32° S)

Chaihuín Valdivian Region Parga Southern (40° S) 5km Region Forest ChiloéAL Chiloé Openhabitat (42° S) ChiloéNP Semiaridregion Mediterraneanregion Rainforestregion

Figure1. (A)Six samplesitesacrosscentralsouthernChilelocatedinthenorthernsemiarid regionandsoutherntemperateforestregion(B)PopulationsinChiloéweresubdividedintofour sitesinthecontinuousforest(ChiloeNP)andintonineforestfragmentsintheagricultural landscape(ChiloéAL).

CintiaCornelius,2006,Ph.D.Dissertation,p. 42

0.040 * 0.035

0.030 * 0.025 A

(Φ) 0.020 Fst ST F 0.015 C 0.010

F 0.005 * P < 0.001 0.000 Fragments Continuous Allsites (F) (C) (A)

Spatial scale

Figure2.Globalpopulationdifferentiationestimates(Weir&Cockerham’s FST (Φ)±SE),

measuredamongpopulationsatthreedifferentspatialscales:smallscalecomparisonamong9

humancausedfragmentsinanagriculturallandscape(F),mesoscalecomparisonamong3

populationslocatedincontinuousforests(C),andlargescalecomparisonamong6populations

includingrelict,continuousandfragmentedforestpopulations(A).Asterisksindicated P<

0.001.

CintiaCornelius,2006,Ph.D.Dissertation,p. 43

0.14

0.12

0.10

0.08

0.06

0.04

0.02

Geneticdistance(Fst/1Fst) FrayJorgeSantaInés FrayJorgeSouth 0.00 SantaInésSouth SouthSouth

0 200 400 600 800 1000 1200 1400 Distance(km)

Figure3.Relationshipbetweenpairwisegeographicdistanceandgeneticdistanceamongthesix populationsstudiedatthelargespatialscale(Manteltest R2=0.34, P =0.023).

CintiaCornelius,2006,Ph.D.Dissertation,p. 44

A) B)

5 5

10 10

15 15

20 20 25

25

30 loglikelihoodValdivia loglikelihoodFrayJorge

30 35

40 35 40 35 30 25 20 15 10 5 35 30 25 20 15 10 5 loglikelihoodSta.Inés loglikelihoodParga

Figure4.(A)AssignmenttestbetweenindividualssampledinFrayJorgeandSantaInés,two

relictforestsseparatedby165kmofsemiaridscruband(B)assignmenttestbetweenindividuals

sampledinChaihuínandPargalocatedinacontinuousforestinthesouthernregionseparatedby

165kmofforest.

CintiaCornelius,2006,Ph.D.Dissertation,p. 45



Legend

samplingsites

Proximity Index

0 100 100 600 600 1,600 1,600 4,000 4,000 7,000 7,000 14,000 14,000 32,000 32,000 55,000 55,000 160,000 Nonforesthabitat

Meters 02,100 4,200 8,400

Figure5.AgriculturallandscapeinnortheasternChiloéinwhich A.spinicauda wassampledin nineforestfragments.Fragmentsareclassifiedaccordingtotheirisolationusingamodified versionofGustafsonandParker(1992)proximityindex(PX)calculatedinFRAGSTATwitha1 kmbufferfromeachfocalpatch.LowvaluesofPXindicatehighlevelsofisolation(i.e.fewer andsmallerneighboringfragments)whereaslargervaluesindicatelessisolation(moreandlarger neighboringfragments).

CintiaCornelius,2006,Ph.D.Dissertation,p. 46

0.08

Observed 0.06 95%ConfidenceInterval

0.04 ) q 0.02

0.00

0.02 Moran'sIndex(I 0.04

0.06

0.08 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 Distance(km)

Figure6.Moran’sI(Iq)correlogramindicatingthepatternofspatialautocorrelationof individualgenotypes.Opencirclesindicatevaluesofrelatednessthatarehigherorlowerthan expectedbychance(P<0.05).

CintiaCornelius,2006,Ph.D.Dissertation,p. 47

A) B)

0.10 0.06 2

) R2=0.0438 R =0.1143 st P=0.222 P=0.042 0.08 0.04 /(1F st

0.06 geneticdistance) 0.02 vs. vs.

0.04

0.00 0.02

0.02 0.00 PairwisegeneticdistanceF

0.02 residualfit(proximityindex 0.04 0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6

log 10 pairwisedistance(km) residualfit(proximityindex vs. geographicaldistance)

C) D)

0.10 2.0

2 ) R =0.1977 2 st P=0.0052 1.5 R =0.2569 0.08 P=0.0018 /(1F

st 1.0 0.06 geneticdistance) 0.5 vs. 0.04

0.0

0.02 0.5

0.00 1.0 PairwisegeneticdistanceF

0.02 residualfit(geographical 1.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 0.04 0.02 0.00 0.02 0.04 0.06 0.08 log proximityindex 10 residualfit(geographicaldistancevs.proximityindex)

Figure7.(A)Relationshipbetweengeographicandgeneticdistanceamongsubpopulationsin

thenineforestfragmentsintheagriculturallandscapeinChiloéand(B)controllingforpatch

proximityasmeasuredbytheindexPX.(C)Relationshipbetweenpatchproximity(ameasureof

fragmentisolation)andgeneticdistanceand(D)controllingforgeographicdistanceamong

fragments.Significancewasobtainedafter10,000permutationsusingMantelandpartialMantel

tests.

CintiaCornelius,2006,Ph.D.Dissertation,p. 48

0.040

0.035

0.030

0.025

(Φ) 0.020 Fst ST F 0.015

0.010

0.005

0.000 Continuous FragmentsAllsites Relict

Timesince isolation

Figure8.GlobalpopulationdifferentiationestimatesbasedinWeir&Cockerham’s FST (Φ)

measuredamongpopulationsbutreorderedalongatimesinceisolationscale.

CintiaCornelius,2006,Ph.D.Dissertation,p. 49

CHAPTERII

Separatingecologicaleffectsofforeststructureandhabitatfragmentationonbreeding

birds:anexperimentalstudywithasecondarycavitynestingbird

Abstract .Humandrivenlandscapemodificationsusuallyentailhabitatdegradationandhabitat fragmentation.Inmanycases,however,thesetwoprocessesoccursimultaneouslymakingit difficulttodisentangletheireffects.Thegoalofthisstudyistoseparatetheecologicaleffectsof changesinforeststructurecausedbyselectiveloggingfromthosetriggeredbyhabitat fragmentationonbreedingbirds.Istudiedpopulationsofasecondarycavitynester( Aphrastura spinicauda ,Furnariidae)intheSouthAmericantemperaterainforestduringthreebreeding seasons(20032005).In2003,Ievaluatednestsiteavailability,densityandnestsuccessof A. spinicauda inthreehabitattreatmentseachreplicatedintwo10haplots.Thehabitattreatments wereoldgrowthforest(OGF),selectivelyloggedforest(SLF;largeenoughtotestforhabitat degradationperse ),andselectivelyloggedforestfragments(LFR;smallandisolatedfragments totestforadditionaleffectsoffragmentation).Totestfornestsitelimitation,anestsite supplementationexperimentwascarriedoutinSLFandLFRplots.Nestboxeswereplacedafter the2003breedingseasonandpopulationswerefollowedduringtwosubsequentyears.This experimentallowedmetoassesstherolesofselectiveloggingandhabitatfragmentationin determiningnestsiteavailability.Overall,thereweremorepotentialnaturalnestsitesinOGF thaninSLFandLFR.In2003,beforenestboxaddition,densityof A.spinicauda inOGFwas higherthaninSLF,butdidnotdifferfromdensityinLFR.In2004,densityinOGFremained unchanged,butdensityincreasedinSLFafternestboxeswereadded,suggestingnestsite limitationinselectivelyloggedforests.DensityinLFRdidnotincreaseafternestboxaddition

CintiaCornelius,2006,Ph.D.Dissertation,p. 50 asexpected,butnestboxusewashigherthaninSLFsuggestingnestsitelimitationinfragments aswell.Patternsweresimilarin2005exceptforanoveralldecreaseindensityattributedtohigh mortalityduringthepreviouswinter.Dailynestsurvivalwasnotdifferentamongthethree habitattreatments,butnestsinsnagshadhighernestsuccessthannestsinlivetrees,regardless offoresttype.Resultssuggestthatnestsiteavailability,whichisaffectedbychangesinforest structure,isanimportantfactorlimitingdensitiesof A.spinicauda ,butthatlandscapelevel processestriggeredbyhabitatfragmentationcanalsoinfluencepopulationresponsestonestsite limitation.Individualbirdsinfragmentsmayfaceanestsiteselectiontradeoffwithrespectto thecostofdispersingacrossopenhabitatsorstayinginfragmentswithreducedavailabilityof cavities.

Keywords: Aphrasturaspinicauda ,cavitynester,Chile,fragmentation,habitatdegradation, nestsitelimitation,southtemperaterainforest.

Introduction

Humandrivenlandscapemodifications,suchasselectiveloggingandhabitatfragmentation,may influencethedistribution,abundanceandfitnessofspecies,especiallyifthosespeciesrelyon resourcesthatarestronglyaffectedbyhabitatalteration.Secondarycavitynestingbirdsarenon excavatorsthattypicallynestinoldtreesorsnags,wheremostcavitiesareformed(Newton

1994).Ifcavitiesarelimited,competitioncanforcesomeindividualstouselowerquality cavitieswhichmayleadtopopulationlimitation(Li&Martin1991;Martin&Pingjung1992;

Newton1994;Holt&Martin1997;Martinetal.2004;butseeWiebeetal.2006).Selective loggingoftenleadstoremovaloflargetreesand,asaconsequence,canreducetheavailabilityof cavitiesandtherebydecreasehabitatqualityforsecondarycavitynesters.

CintiaCornelius,2006,Ph.D.Dissertation,p. 51

Landscapemodificationsthatalsoinvolvehabitatfragmentationcantriggerprocesses thathaveadditionaldetrimentalconsequencesonpopulations.Ingeneral,habitatfragmentation involvestwotypesofprocessesthatinfluencepopulations,thoseassociatedwithsizeand isolationofpatches(e.g.metapopulationdynamics)andthoseassociatedwithreductionin habitatquality.Inmosthumanmodifiedlandscapes,however,theseprocessesarenot independent(Armstrong2005).Insomecases,habitatqualityiscorrelatedwithfragmentsize, becausehabitatdegradationisassociatedwithedgeeffectsthathaveagreaterinfluenceinsmall patches(e.g.increasedpredationratesorphysicalmicroclimaticchangesonedges;Murcia

1995).Inothercases,habitatdeteriorationmaybeintensifiedbyeffectsofhumanencroachment

(e.g.fire,selectiveloggingandcattle)thatgenerallyextendwellbeyondtheusual“edgeeffects”

(Laurance2000).Inthiscase,theoverallhabitatqualitywithinfragmentsmaybereducedmore thanexpectedsimplyonthebasisofarea,invalidatingtheuseoffragmentsizeasasurrogatefor habitatquality.Therefore,theexplicitandindependentconsiderationofhabitatfragmentation andreductionofhabitatqualityisessentialforacompleteunderstandingofpopulationresponses tohabitatloss(Harrison&Bruna1999)becauseevenlargeforestsorwellconnectedfragments cannotensurethepersistenceofpopulationsifhabitatisnotadequateforsuccessfulbreeding.

Infragmentedlandscapes,reproductivesuccessofsecondarycavitynestingbirdsshould, therefore,notonlydependonthepresenceofkeystructures,suchasoldtreesandsnags,butalso onlandscapelevelprocessessuchasthosetriggeredbyhabitatfragmentation.Theseprocesses canbemanifestedaspopulationchangesofnestpredatorsorchangesinmicroclimatic conditionsthatcanmodifythequalityofavailablenestingcavities.Intemperateforestsofthe northernhemisphere,increasednestpredationhasbeenidentifiedasoneofthemainnegative effectsofhabitatfragmentationonbirdpopulations(Robinsonetal.1995;Lampilaetal.2005).

CintiaCornelius,2006,Ph.D.Dissertation,p. 52

Similarly,inthetemperaterainforestofSouthAmerica,nestpredationisalsoanimportantfactor bothforopencupandcavitynestingbirdsinfragmentedlandscapes(Willsonetal.2001;De

Santoetal.2002;Vergara&Simonetti2003).

Otherlandscapelevelprocesses,suchasthoserelatedtodispersalcapabilitiesand connectivityofthelandscape,areimportantbecausetheydeterminewhetherindividualbirds willbeabletodisperseifcavitiesarelimited.Moststudiesofsecondarycavitynestingbirds havebeencarriedoutinundisturbedforests(Aitkenetal2002;Brightsmith2005)orinmanaged forests(Brawn&Balda1988;Newton1994;Holt&Martin1997)wherenestsitescanbe limited.Nostudieshaveattempted,however,toexperimentallyseparatetheeffectsofreduction innestsiteavailability(e.g.,throughselectivelogging)fromtheeffectsduetoreductionin landscapeconnectivity(e.g.,throughhabitatfragmentation).Yet,consequencesofnestsite limitation,atthepopulationandindividuallevel,maydependonthelandscapecontextinwhich nestsitelimitationoccurs.Thegoalofthisstudyistoseparatetheeffectsofreductioninhabitat qualityduetoselectiveloggingfromthosetriggeredbyhabitatfragmentationonpopulationsofa secondarycavitynestingbird.ForthisIestablishedanestsitesupplementationexperimentin studyplotslocatedinforeststhatdifferinqualityanddegreeofisolation.

Study layout and predictions

Secondarycavitynestingbirdsareagoodmodelsystembecauseanimportantcomponentof fitness(i.e.reproduction)reliesonthepresenceofeasytoquantifystructures,suchaslargetrees andsnagswherecavitiesareformed.Habitatqualityisoftendefinedinrelationtopopulation densityandresourceavailability,butpopulationdensityshouldnotbeusedastheonlyindicator ofhabitatquality(VanHorne1983;Brawn&Robinson1996).Habitatselectionmodels

(Fretwell&Lucas1970;Rosenzweig1991)predictthathabitatsofhigherquality,which

CintiaCornelius,2006,Ph.D.Dissertation,p. 53 maximizefitness,willbepreferredoverpoorqualitysites,resultinginan“idealfree distribution”(Fretwell&Lucas1970),hereafterIDF.Underthisscenario,betterqualityhabitats

(e.g.oldgrowthforest)areoccupiedfirst,untiltheircarryingcapacityisreachedoruntilthe qualityhasbeenreducedtothepointwhereitequalsthatofunoccupiedlowerqualityhabitats

(e.g.selectivelyloggedforest).Atthatpoint,useof“suboptimal”habitatsmightbemore beneficialthanstayingina“good”habitatinwhichhighdensitieshavedecreasedsuitability.

Thus,reproductivesuccessshouldbesimilarinlowerdensity,poorqualityhabitatswhen comparedtohighdensity,goodqualityhabitats(Fretwell&Lucas1970).

Basedonthe“idealfreedistribution”modelthisstudyaimstotesttwopredictions.First,

IexpectthatdensityofsecondarycavitynestingbirdsshouldfollowanIFD,inwhichdensity shoulddecreasealongagradientofhabitatquality(oldgrowthforest>loggedforest>logged fragments)asmeasuredbyreductioninavailabilityandqualityofcavities.Secondly,Idonot expectreproductivesuccesstoremainconstantalongthehabitatqualitygradientastheIFD modelwouldpredict.Suchadistributionassumesthatindividualsare“free”toenterandleave anyhabitatonanequalbasis,whichmaynotbethecaseiftheconnectivityofthelandscapeis reduced.Aspopulationsincreaseindensity,densitydependentprocessesmaybecome important,resultingindecreasedreproduction,decreasedsurvivalorincreasedemigration

(Turchin1999).Thus,underascenarioofreducedconnectivity,Ipredictthatindividualsare forcedtostayinhabitatfragmentsandusecavitiesoflowerqualitycausingadeclineinthe averagereproductivesuccessinfragments.

Totestthesetwopredictions,Icompareddensityandnestingsuccessofasecondary cavitynestingbirdamongthreehabitattreatments.Thefirsttwohabitattreatments(largeand connectedoldgrowthforestsandlargeandconnectedselectivelyloggedforests),allowedmeto

CintiaCornelius,2006,Ph.D.Dissertation,p. 54 determinetheconsequencesofhabitatdegradationindependentofhabitatfragmentation.The thirdhabitattreatment(selectivelyloggedforestfragments)allowedmetocontrasttheeffectsof habitatdegradationwiththeaddedeffectofhabitatfragmentation.Then,tomeasurewhether cavitieswerealimitingresourceinselectivelyloggedforests,Iconductedanestsite supplementationexperiment.Finally,Ideterminedifthenestsitelimitationprocesswas modifiedbecauseofhabitatfragmentation.

Methods

Study system

TheThorntailedRayadito( Aphrasturaspinicauda ,Furnariidae)isaninsectivorous,yearround residentandendemicbirdofthetemperaterainforestofsouthernSouthAmerica.Thisspeciesis asecondarycavitynesterthatnestsmostlyinnaturalcavitiesinlargetreesandsnags(Chapter

3),itisanidealspeciesforthisstudybecauseitoccursindifferentforesttypesatvarying densities(Estades&Temple1999;Diazetal.2005)andhasbeenidentifiedasalargetreeuser

(Willsonetal.1994;Diazetal.2005;Tomasevic&Estades2006).Nonraptorcavitynesting birdsinthesouthtemperateforestincludefourspeciesconsideredgoodtoweakexcavatorsand eightnonexcavatorspecies,fourofwhicharestrictlyunderstorybirds(Rhinocryptidae).

Aphrasturaspinicauda isfoundinthecanopyandsubcanopy,andmayinteractoreventually competeforsuitablecavitieswiththreeothernonexcavatorbirds(twoparrotandoneswallow species)andafewexcavatorspeciessuchasanotherfurnarid( P.albogularis )andthreespecies ofwoodpeckers.Althoughnostudieshavespecificallyinvestigatedinteractionsamongcavity nestersinthissystemwithlowspeciesrichness,itisverylikelythatinteractionsareless complexthaninothermorediversetemperate(Martinetal.2004)andtropicalforests

(Brightsmith2005).

CintiaCornelius,2006,Ph.D.Dissertation,p. 55

ThisstudywasconductedinthetemperaterainforestregiononIslaGrandedeChiloé, southernChile(41°55’S,73°35’W),duringeachspringandearlysummer(SeptemberJanuary) of2003through2005.TheforestisabroadleafedevergreenrainforestoftheValdivianand

NorthPatagoniantypeswithmixeddominanceof Nothofagus , Drymis , Eucryphia ,and

Podocarpus trees,severaltreesandfromthefamily,andadensebamboo

(Chusquea spp.)understory.Largeandoldtreesusuallyarecoveredwithvinesandepiphytes suchasferns,mosses,andbromeliads(Muñozetal.2003).Theclimateiswettemperatewitha strongoceanicinfluence(2,0002,500mmrainfall/year;meanannualtemperatureof12°C;Di

Castri&Hajek1976).Thestudyareaisinanapproximately25x25kmagriculturallandscape inthevicinityofSendaDarwinBiologicalStation,northernChiloé(Fig.1a).Thelandscapeis characterizedbyflatlandsandhills(50to100melevation)thatarecoveredbywoodlandsand forestfragmentsdispersedinamatrixofpastures,cultivatedfields,andscrublands.Majorforms ofhumancausedhabitatdegradationhavebeenwidespreaduseoffiretoclearlandforpastures, forestencroachmentbycattle,selectiveloggingofvaluabletimbertrees,andasignificant amountofloggingfordomesticfireuse.Loggingiscarriedoutusuallybylocallandownerswith nodefinedsilviculturalsystem.Theseactivities,whichhavemostlyoccurredoverthepast100 years,havemarkedlymodifiedthelandscapebyincreasingforestfragmentationandhabitat degradation(Willson&Armesto1996,Castellón&Sieving2006b).Theislandwascoveredby forestinthelate1800sbutcurrentforestcoverinthestudyareaisabout35%(Castellón&

Sieving2006a).Humanpracticeshave,asaresult,generatedalandscapemosaicwithforests thatexhibitabroadrangeofsuccessionalstagesanddegreesofdegradation,fromrecently disturbedtoafewprotectedoldgrowthforests(Aravenaetal.2002).Forestremnantsdifferin

CintiaCornelius,2006,Ph.D.Dissertation,p. 56 theirstructureandpresenceofhabitatfeaturesthatareimportantforbirds(Willsonetal.1994;

Reidetal.2004;Diazetal.2005).

Experimental design

Iestablishedthreehabitattreatments,oldgrowthforest(OGF),selectivelyloggedforest(SLF), andselectivelyloggedforestfragment(LFR),toevaluatetheeffectsofhabitatdegradation per se andtheaddedeffectsofhabitatfragmentation.Eachtreatmentwasreplicatedintwodistinct

10hastudyplots,foratotalofsixstudyplots(Fig.1b).Ineachplot,Iestablishedanarrayof threetoeighttransects,withatotaltransectlengthperplotof1,600to1,800m.Transectswere systematicallyplacedevery50mwitharandomstartingpoint.Bird,nest,andvegetationsurveys

(seebelow)wereconductedalongthesetransects.Totestforeffectsofforeststructure perse ,

OGFandSLFplotswerelocatedinsufficientlylarge(>1000ha)andnotisolatedforests(see

Chapter1)whereprocessesassociatedwithhabitatfragmentationwereassumedtobe unimportant.Incontrast,LFRplotswereestablishedinisolatedforestfragments(seeChapter1) ofaboutthesamesizeasthestudyplots(1012ha),totestfortheaddedeffectsofhabitat fragmentation.Myintentwasnottoidentifyeffectsofdifferentprocessesassociatedwithhabitat fragmentation(i.e.relatedtosize,sizeedgeratio,andisolation).Instead,thegoalwastotestfor thecombinedeffectsoftheseprocessesintwofragmentsofsimilarsize,degreeofisolation

(botharesurroundedbyopenpasturesandsimilarlyisolated,Chapter1),andsizeedgeratios.

Moreover,becauseIcontrolledforeffectsofsampleareabystudyingplotsofthesamesizebut indifferenthabitatcontexts,Iwasabletoquantifytheeffectsofforeststructureand fragmentationapartfromanyconfoundingeffectsassociatedwithsamplearea.

CintiaCornelius,2006,Ph.D.Dissertation,p. 57

Forest structure and nest site availability

Thediameteratbreastheight(dbh)ofalllivetreesandsnags(>40cmdbhand>15cmdbh, respectively)werecountedandmeasuredwithin10mradius(314m2)circularplotslocated every100malongtransectswithineachstudyplot(18vegetationplots/10ha).Cutoffdiameters forlivetreeswasanarbitraryvaluebelowthelowerboundaryoftheconfidenceintervalfornest treesfoundin2003(n=12,mean=77.1cm,95%CIof55.998.2cm).Cutoffdiameterfor snagswasaslowastheminimumvaluerecordedbecausesnagsarelikelytohavecavities independentoftheirsize(n=17,mean=68.8cm,95%CIof45.392.2cm).Tocomparethe numberoflargetreesandsnagsamongstudyplotsthemeanofthreecircularplotsalonga300m transectwascalculatedandanestedANOVAwasconducted,withstudyplotsnestedwithin eachforesttypeandwiththemeannumberoftreesorsnagspertransectasthedependent variable.Numbersoftreesandsnags/transectweretransformedusingaBoxCox transformationtoattainconditionsofnormality.

Thenumberoflargetreesandsnagswasusedasasurrogatefornestsiteavailability.In general, A.spinicauda nestsmorethan15mfromthegroundinsmall,hiddencavitiesor crevicesintrunksorinhollow,brokenbranches(Chapter3).Becausemanycavitieswere concealedbyepiphytes,itwasimpossibletoquantifytheactualavailabilityofcavitiesinthis forest.However,foreststructure,intermsofnumberoflarge,oldtrees(i.e.thatusuallyform cavities)andnumberofsnags,canserveasagoodsurrogateforavailabilityofpotentialnest sitesforsecondarycavitynesters(Newton1994).Thisisespeciallytrueifbirdsrelyonnatural cavitiesratherthancavitiesmadebyotherbirds,whichisthecasefor A.spinicauda (Chapter3).

CintiaCornelius,2006,Ph.D.Dissertation,p. 58

Density estimates and habitat specific detection functions

Iestimateddensityof A.spinicauda ineachplotusinglinetransectsurveysandthedistance samplingmethod(Bucklandetal.2001).Birdswerecountedafterpairsestablishedtheir territoriesbutbeforeyoungfledged(October–November)inthreeconsecutivebreedingseasons

(20032005).Eachplotwassurveyedweeklyfourorfivetimesperseasononnonrainydays betweendawnand10:00hr.Thefocalspecieswasrecordedwhilewalkingalongtransectsand perpendiculardistancestoeachdetection(auralorvisual)wereestimatedwiththeaidof previouslymeasuredmarksplacedalongtransects.Surveyswereperformedbythreeobservers whohadbeentrainedtoestimatedistancesinthishabitat.Twoadjacenttransectswerenever sampledsimultaneouslywhenmorethanoneobserversurveyedaplottoavoidmovementof birdsbetweentransectsbecauseofobservers(Bucklandetal.2001).

Themeanandvarianceof A.spinicauda densitywereestimatedusingDISTANCE5.0

(Thomasetal.2005).Imodeleddetectabilityfunctionsforeachhabitattype(i.e.OGF,SLFand

LFR)toaccountfortheeffectofdifferencesinforeststructureonestimatesofdensity.Habitat specificdetectionfunctionswerebasedondatapooledoverthethreeyearsofstudytoincrease robustnessofthemodel.Becausehabitatstructuredidnotchangeoverthestudyperiod,there wasnoreasontoexpectdetectionfunctionstochangefromyeartoyear.Toincreasemodelfit andtominimizeeffectsoferrorsindistanceestimationsinthefield,distancedataweretruncated at30mandplacedintofivecategoriesforOGFandintosixcategoriesforSLFandLFR

(Bucklandetal.2001).Itestedhalfnormalandhazardratekeyfunctionswithdifferent combinationsofcosine,simplepolynomialandhermitepolynomialseriesexpansions.

CompetingmodelsofhabitatspecificdetectionfunctionswerecomparedbasedonAkaike’s

InformationCriteria(AIC,Akaike1973). Themodelthatbestfitgroupeddatawasselected

CintiaCornelius,2006,Ph.D.Dissertation,p. 59 accordingtothelowestAIC c(secondorderAICforsmallsamples) amongcandidatemodels;χ2 goodnessoffittestswereexaminedamongbestcandidatemodels.

Thedetectionfunctionforeachhabitattype(Table1)wasajointdetectionfunction basedondetectionsfromthetwoforestplotswithineachhabitatcategory.Thismethodwas selectedinoppositiontoaspecificdetectionfunctionforeachplot,basedonminimumAIC c.In allthreecases,thesumofAIC cvaluesacrossindividualstudyplotswithinahabitatcategory wasverysimilartotheAIC cvaluefromthepooledanalysis(AIC Crangedfrom0.78–2.28), whichsuggeststhatdetectionfunctionsweresimilarbetweenthetworeplicatestudyplotsand, thus,thataglobaldetectionfunctionforeachhabitattypewaswarranted(Bucklandetal.2001).

Densityestimatesof A.spinicauda fromplotswithineachhabitattype(i.e.OGF,SLF andLFR)werecomparedwithtwotailedttests(or Ztestsifdf>30).Iusedacorrectionfor lackofindependencefor tand Ztestsbecausedensitieswereestimatedbasedonthesame detectionfunction(Bucklandetal.2001).Densitiesdidnotdifferbetweenthetworeplicateplots foranyhabitattypeinanyyearofthestudy.Therefore,Ireportmeandensity(±SE)basedon datapooledacrossthetwostudyplotreplicatesforeachyearandforeachhabitattypeusingthe correspondingdetectionfunctionforeachhabitattype.

Densitiesestimatedwiththesamedetectionfunction,however,arenottrulyindependent estimatesand,thus,violatetheassumptionofindependenceforstatisticalanalyses(Bucklandet al.2001).Therefore,whencomparingdensitiesamongforesttypesusingplotsasreplicateswith

ANOVA’s(seebelow),Iuseddensityestimatesforeachstudyplotbasedonplotspecific detectionfunctions.Densityestimatesfromplotspecificdetectionfunctionswerequalitatively andquantitativelysimilartodensityestimatesfromhabitatspecificdetectionfunctions.

CintiaCornelius,2006,Ph.D.Dissertation,p. 60

Nest site supplementation experiment

Isupplementednaturalcavityavailabilitywithnestboxestotestfornestsitelimitationinlogged forests.NestboxeswereaddedinthetwoSLFandthetwoLFRplotsduringJanuaryand

February2004,aftersurveysandnestmonitoringwerefinishedforthe2003breedingseason.

Thisallowedmetohavebeforeandaftermanipulationdataonthesamestudyplots.OGFplots didnotreceivenestboxesandservedascontrolstoaccountfornaturalchangesindensity betweenyears(i.e.asaresultofenvironmentalvariation).Moreover,itwasassumedthatnest siteswerenotlimitedinoldgrowthforest(Wiebeetal.2006;Newton1998)andthatother factors,suchasactualcarryingcapacityofthesystemorterritorialityofbirds,ratherthannest siteavailability,limitmaximumdensity.

Atotalof432nestboxeswereplacedacrossthefourstudyplots,withclustersofthree nestboxesevery50malongtransectsineach10haplot(i.e.36clustersof3nestboxes,or108 boxesperstudyplot).NestboxesweremadeofwoodfollowingTomasevic&Estades(2006) andwereattachedtotrees3to4mfromtheground.Thiswassufficientlyhighfor A.spinicauda

(Tomasevic&Estades2006)andsufficienttoensurethatothersmallunderstorycavitynesting specieswouldnotusenestboxes.Thetotalnumberofnestboxesaddedperstudyplotwasbased onthemaximumdensityof A.spinicauda observedinoldgrowthforestin2003(3.9±0.28 ind./ha),correspondingtoapproximately20breedingpairsin10ha.Thegoalwastosupply enoughpotentialnestsitessothatdensitycouldincreasetoapointwhereotherfactors,suchas territorialityand/orcarryingcapacity,ratherthannestsites,wouldlimitdensity.Clustersof threeboxeslocated15mfromeachotherwereusedtoprovidebirdswithmultipleoptionswhen choosingnestsiteswithinapotentialterritory(Tomasevic&Estades2006).

CintiaCornelius,2006,Ph.D.Dissertation,p. 61

Responsetothesupplementationexperimentwasmeasuredbychangeindensityfrom before(2003)toafter(2004and2005)nestboxadditionandbycomparisonofnumberofnest boxesoccupiedbetweenhabitattypes.DensitieswerecomparedwithonewayANOVA’swith habitattype(OGF,LFO,LFR)asafixedfactorforeachyearseparately.Densityestimateswere normallydistributed(W=0.974, P=0.92).Thenumberofoccupiednestboxeswascompared betweenhabitattypesusing χ2.IalsousedarepeatedmeasureANOVAwithyearsaswithin subjectfactorandhabitattypeasbetweensubjectfactortocomparedensityof A.spinicauda overthethreeyearperiodamongthethreeforesttypes.Sphericityassumptionwasmetforthe rmANOVA(Mauchly’stest P=0.061).

Nest success and reproductive output

Systematicallysearchesfornestsinnaturalcavitieswereconductedalongtransectsineachplot, followingstandardprotocols(Martin&Geupel1993),duringthethreebreedingseasons.Mist netcaptureswerealsoconductedwithinplotstargeting A.spinicauda byusingplaybacksto attractbirdstonets.Adultbirdsweremarkedwithuniquelynumberedaluminumbandsanda uniquecolorcombinationtoaidnestsearching,territorydeterminationandnestmonitoring.

Between50and80%ofindividualswerecolorbandedineachstudyplot.Behavioralcueswere used,suchasbirdscarryingnestingmaterialorfood,tohelpfindnests;searcheswerenot restrictedtospecificnestsubstratestominimizepotentialforbiasofwherenestswerefound

(Rodewald2004).Onceanestwasfound,thetreewasmarkedandthenvisitedeverythreeto fourdaystodetermineneststatus.Nestswereobservedfromthegroundwithbinocularsfor20

30minandthenumberoftimesbirdsenteredthecavitywascombinedwithobservationsof adultscarryingmaterial,foodorfecalsacstodeterminethestageofeachnest(i.e.constructing, incubating,orfeedingnestlings;Martin&Geupel1993).Anestwasclassifiedassuccessful

CintiaCornelius,2006,Ph.D.Dissertation,p. 62 eitherifnoactivitywasobservedatthenestafter21daysoffeeding,thetypicallengthofthe nestlingstageforthisspecies(Morenoetal.2005),orifafamilygroupwasfoundthatcouldbe attributedtothatparticularnest(i.e.basedoncolorbandsofadults).Ifthenestwasfoundprior tothefeedingstageandifnoactivitywasobservedduringtwoconsecutiveobservationperiods before21daysoffeedinghadelapsed,thenestwasconsideredtohavefailed.Nestsfoundduring thefeedingstageandtowhichnofamilygroupcouldbeassigned,wereclassifiedas undeterminedunlessevidenceoffailurewasobserved(e.g.destroyedcavity).Contentsofnests innaturalcavitiescouldnotbedeterminedbecausecavitieswereinaccessibletoobservers; causesoffailurewerenot,therefore,alwayspossibletodetermine.

Themeanandvarianceofdailynestsurvival(DNS)ratewereestimatedwitha maximumlikelihoodapproachbasedontheMayfieldmethod(Mayfield1975)andimplemented withProgramMARK(White2000)usingthenestsurvivalprocedure(Dinsmoreetal.2002).I usedAIC ctoevaluatedifferenthypothesesaboutthesourceofvariationinnestsurvivalfor A. spinicauda inourstudyarea.Iusedbiologicallymeaningfulpredefinedhypothesestodevelop eightspecificmodelstoexplainvariationinnestsuccess(Table2).Iexaminedtheeffectsof foresttype(OGF,SLF,LFR),year(2003,2004,2005),andnesttreetype(livetree,snag).

Factorsinmodelswereincorporatedascovariablesandcompetingmodelswerecompared againstthenullhypothesismodel S(.) ofconstantDNS.Iusedasinelinkfunctionforthe constantDNSmodelandalogitlinkfunctionformodelsthatincorporatedcovariates(Dinsmore etal.2002).Thismethod,however,doesnotallowincorporationofnestswithuncertainfateinto themodel,whichhasbeenshowntobiasDNSestimates(Manolisetal.2000).Inmydataset,

12.7%ofnests(13outof102)haduncertainfate.Therefore,Ialsoconductedthetraditional

DNSMayfieldcalculationincludingnestswithuncertainfate(Manolisetal.2000)todetermine

CintiaCornelius,2006,Ph.D.Dissertation,p. 63 ifourDNSestimatesfromprogramMARKwereupwardbiased.Nestingsuccesswasassessed astheprobabilityofsurvivingtheentirenestingcycle,fromtheegglayingperiodthroughthe nestlingperioduntilfledgling,whichwasconsideredtobe45daysfor A.spinicauda basedon

Moreno etal .(2005)andourfieldobservations.Nestsuccessanditsassociatedvariancewere estimatedbyraisingDNSratetotheexponentofthedurationofthenestlingcycle(Rotella

2005).

Nestboxesalsoweremonitoredevery3to4daysin2004and2005todeterminetheir content.Inthisstudy,Ionlyreportnestsuccessinnaturalnestsbecausenestsuccessinnest boxeswaslowerthaninnaturalcavities(unpublisheddata),corroboratingthebiasthatnest boxescansometimesintroduceinecologicalfieldstudies(Moore&Robinson2004).Dataon clutchsizeandnumberofnestlingsfledged/broodfromnestboxeswereused,however,to comparetheseparametersbetweenthetwohabitatswherenestboxeswereplaced(i.e.,SLFand

LFR).Clutchsizeandnumberofnestlingsbetweenthetwoforesttypeswithnestboxeswere comparedwitha ttest.TheseparameterswerenotrecordedinOGFbecausecontentsofnatural nestscouldnotbemonitored.

Results

Forest structure and nest site availability

Densityoflivelargetreesdifferedamongthethreeforesthabitats( F2,34 =30.41, P<0.0001), withmorelargetreesinOGFthaninSLForLFR( P<0.001,bothcases)butnodifference betweenSLFandLFR.Incontrast,therewasnosignificantdifferenceindensityofsnagsamong thethreeforesthabitats( F2,34 =2.59, P=0.09;Fig.2).Inaddition,therewasnoeffectofforest plotwithineachforesthabitatforsnags( F3,34 =2.57, P=0.07),buttherewasaneffectforlarge trees( F3,34 =10.82, P<0.0001).DifferencesindensityoflargetreesbetweenthetwoSLFplots

CintiaCornelius,2006,Ph.D.Dissertation,p. 64

(P<0.0001)andbetweenthetwoLFRplots( P=0.009)probablyreflectdifferencesinlogging intensitybetweenstudyplots.Incontrast,densityoflargetreesdidnotdifferbetweenthetwo

OGFplots( P=0.63)wherenologginghasoccurred.

Density and nest site supplementation

Densityof A.spinicauda waslowerinSLFthaninOGFandLFRin2003beforenestsite supplementation(F2,6 =15.12, P=0.027;Fig.3a).In2004,therewasnodifferenceindensity amongthethreeforesttypes(F2,6 =0.31, P=0.75)becauseofanincreaseindensityinSLF afternestsitesupplementation( t18 =2.59, P=0.018;Fig.3b).Althoughanetincreaseindensity wasnotobservedinLFRafternestboxeswereadded( t24 =1.28, P=0.21),thenumberofnest boxesusedoverthetwoyearperiodwashigherinLFR(47outof216boxes)thaninSLF(26 outof216boxes; χ2=6.67, P=0.007).Therewasageneraldecreaseindensityfrom2004to

2005(significantonlyforLFR; t24 =5.43, P<0.0001)but,asin2004,therewasnodifferencein densityamongforesttypes(F 2,6 =4.73, P=0.118;Fig.3c).

Densityof A.spinicauda variedacrossyears(rmANOVA, F2,18 =44.71, P<0.001),with asignificantoverallincreaseindensityfrom2003to2004afternestsitesupplementation(LSD test, P =0.04)andasignificantdecreasebetween2004and2005( P<0.001)andbetween2003 and2005( P=0.016).Asignificantinteractionbetweenyearandforesttype( F4,18 =5.72, P=

0.03)indicatedthatthepatternsofdifferencesindensityof A.spinicauda amongforests(OGF,

SLF,LFR)changedamongyears(Fig.4).Overthethreeyearstherewasnoeffectofforesttype

(F 2,18 =1.03, P=0.46)ondensityof A.spinicauda ,whichwasexpectedasaresultofnestsite supplementationin2004and2005(becausenestsiteadditionincreaseddensitieseliminatingthe foresttypeeffectpresentin2003).

CintiaCornelius,2006,Ph.D.Dissertation,p. 65

Nest success and reproductive output

Atotalof102nestsof A.spinicauda werefoundinnaturalcavitieslocatedinbothsnagsandlive trees.Fifteennestswerenotincludedintheanalysisbecausetheywereabandonedduringnest constructionandwerenotusedforreproduction.ThebestDNSmodel(seeTable2forcandidate models)onlyincorporatedtypeoftree(livetreeorsnag),suggestingthatDNSand,hence,nest successwasinfluencedbythetypeoftreewherethenestcavitywasfoundbutnotbyforesttype

(OGF,SLF,LFR)oryear.BasedonDNSestimatesfromthismodel,theoverallnestingsuccess

(±SE)was74.8%±9insnags(n=36)and46.9%±10inlivetrees(n=38).Thebestmodel andthreeothercandidatemodels,however,hadAICcvaluesthatrangedonlybetween0–1.93 andmodelweights( wi),theprobabilitythatmodel iistheactualexpectedbestmodelforthe samplesituationconsidered,rangedbetween0.30–0.11(Table2).Amongtheseequally supportedmodels(withAIC<2),however,thebestsupportedmodelwasalsothesimplest

(i.e.withthefewestparameters),supportingtheconclusionthatthemainsourceofvariationfor nestsurvivalwasgivenbythetreetypeinwhichthenestcavitywasfound.Thegeneraland simplestmodelassumingnosourceofvariationinnestsurvivalwaspoorlysupported(Table2).

Nestsuccess(±SE)basedonDNSestimatesfromMARKwasnotdifferentamong forests;61%±9inOGF(n=33),61%±8inSLF(n=27)and60%±14inLFR(n=14).

WhenDNSwascalculatedusingtheMayfieldmethodincludingnestswithuncertainfate,results weresimilar(Fig.5),indicatingthatDNSestimatesbasedonMARKwerenotupwardbiased.

DatafromnestboxesinSLFandLFRshowedthatmeanclutchsize(±SE)was4.3±0.12

(range36,n=46)and,consideringsuccessfulnestsonly,meannumberofnestlings fledged/broodwas4.1±0.21(range25,n=19).Therewasnodifferenceinclutchsizeor numberofnestlingsfledged/broodbetweenthetwoforesthabitatsinwhichnestboxeswere

CintiaCornelius,2006,Ph.D.Dissertation,p. 66

added(SLFandLFR)( t24 =0.12, P=0.9,and t24 =0.77, P=0.47respectively).

Discussion

Inmosthumanmodifiedlandscapes,habitatdegradationandhabitatfragmentationoccur simultaneously(Armstrong2005;Harrison&Bruna1999).Despitethis,moststudiesonhabitat fragmentationhavefocusedonlandscapelevelprocesses,suchasthespatialconfigurationof patchesanddispersalpatternsoforganisms,andhavegivenlessattentiontomorebasicbut essentialquestionsrelatedtohabitatdegradationwithinfragments(Harrison&Bruna1999).

Thisstudyisthefirsttouseanexperimentalapproachtocomparetheconsequencesofnestsite limitationduetohabitatdegradation perse withthoseduetohabitatfragmentationfor populationsofasecondarycavitynestingbird.Here,Idiscusspotentialmechanismsresponsible forthedifferencesinpopulationresponsestonestsitelimitation.

Forest structure, habitat fragmentation and density of A. spinicauda

Selectivelogginginthestudyareahasreducedthenumberoflargetreesand,hence,availability ofcavities,buthashadnoeffectonthenumberofsnags.Previousstudiesinthesouth temperaterainforesthaveshownthatabundancesofbirdsthatrelyonlargetreesfornestingor foragingwereconsiderablylessinpineplantationsandsecondaryforests,andthesebirdswere almostabsentfromearlysuccessionalforestswherelargetreesandsnagswerelacking suggestingnestsitelimitation(Estades&Temple1999;Diazetal.2005;Tomasevic&Estades

2006).Yet,abundancesofmostlargetreeusers,including A.spinicauda,werenotlowerin smallforestpatches(Willsonetal.1994),althoughthisstudydidnotcontrolfortheeffectof foreststructure.

Resultsfromthepresentstudyshowthatdensityof A.spinicauda waslowerinforests withselectivelogging(SLF)thaninoldgrowthforest(OGF),butthatdensitywasnotlowerin

CintiaCornelius,2006,Ph.D.Dissertation,p. 67 loggedfragments(LFR)aspredicted,despitethereductionofcavityavailability,andthereby presumedreductioninhabitatqualityinfragments.Therefore,itislikelythatmechanismsother thanthoserelatedtoselectivelogging,areresponsiblefortheobservedpatterninfragments.A widespreadpatternobservedinfragmentedsystemsinmanytaxa,includinginsectsandbirds,is apositiverelationshipbetweenareaandpopulationdensity(Connoretal.2000).Inothercases, however,confoundingfactorsassociatedwiththematrixsurroundinghabitatfragmentsorthe developmentofecologicaltraps(Estades2001;Ewers&Didham2006),sourcesinkdynamics

(Brawn&Robinson1996),stochasticprocessesandpredatorreleaseinsmallfragments

(Terborghetal.1997)mayresultinadeparturefromtheexpectedpositiverelationshipbetween abundanceofforestbirdsandsizeoffragments.Similarly,inmystudysite,someofthese mechanismsmayberesponsiblefortheobservedhigherdensityof A.spinicauda inlogged forestfragments.

Nest-site limitation

Densityof A.spinicauda increasedinselectivelyloggedforest(SLF)plotsafternestbox addition,supportingthenestsitelimitationhypothesis.Densityinselectivelyloggedfragments

(LFR),however,didnotincreaseaftersupplementation.SLFplotswerelocatedinwell connectedandlargeforestswherebirdscanleavetheforestplotwhennestsitesarelimitedand thenrecolonizefromsurroundingareaswhennestsitesincreaseinavailability.Inlogged fragments(LFR),however,birdsmaybelesslikelytodisperseifnestsitesarelimiting.Infact, densityof A.spinicauda washigherthanpredictedbytheavailabilityofcavities(asindexedby abundanceoflargetreesandsnags)andtherewasahigherproportionofnestboxusethanin loggedforest(SLF)plots.Therefore,eventhoughdensitydidnotincreaseafternestsite addition,nestsitesareprobablyalsolimitedinfragments.Moreover,geneticdataonpopulations

CintiaCornelius,2006,Ph.D.Dissertation,p. 68 of A.spinicauda inthissamefragmentedlandscapesuggestareductionofmovementof individualsamongforestfragments(Chapter1).

Thattheincreaseindensityof A.spinicauda from2003to2004inloggedforestplots

(SLF)wasaconsequenceofnestboxadditionsratherthanaresponsetoenvironmental variation,issupportedbytwolinesofevidence.First,whiledensityinSLFincreasedfrom2003 to2004,densityinoldgrowthforest(OGF),wherenestboxeswerenotadded,remained unchangedduringthisperiod.Second,therelationshipbetweendensityof A.spinicauda among thethreeforesttypeswasinfluencedbyyear(i.e.whethernestboxeswereaddedornot)as shownbyasignificantyear×foresttypeinteraction.Althoughthisinteractionmayalsobe influencedbynaturalenvironmentalchanges,suchastheoveralldecreaseindensityobservedin

2005,resultssuggestthatthenestsitesupplementationexperimentdidinfluencedensity relationships.In2003,therewasalowerdensityofbirdsinSLFthaninOFGbutthisdifference wasnotdetectedinthefollowingtwoyearswhennestboxeswerepresent.Thus,therelationship betweenSLFandOGFwasmaintainedafternestsiteaddition(i.e.theyremainedwithsimilar densities)evenin2005whenalldensitiesdecreasedbecauseofchangesinoverallenvironmental conditions(Fig.4).

Theoveralldecreaseindensityof A.spinicauda populationsin2005wasprobablya resultoflowsurvivalduringthepreviouswinter.Totalrainfallinwinter2005(May–August) was1,501mm,whilerainfallin2003and2004winterswasonly927mmand867mm, respectively(datafromSendaDarwinBiologicalStationweatherstation).Thefactthatdensity inloggedfragments(LFR)decreasedin2005toagreaterextentthandensityinlargeand connectedoldgrowthforest(OGF)andloggedforest(SLF),isprobablyalsoaconsequenceof isolationofpopulationsinforestfragments.Populationsinfragmentsmayhaveasmallerchance

CintiaCornelius,2006,Ph.D.Dissertation,p. 69 torecoverfromhighmortalityeventsthroughrecolonizationfromsurroundingareas(Davieset al2001).Furthermore,densityinfragmentswaslowerthanintheothertwoforesttypesin2005.

Althoughthisdifferencewasnotstatisticallydifferent,itmayprovideevidenceforthecombined negativeeffectsofchangesinforeststructureandfragmentationondensitythatwaspredicted initially.Finally,thisstudyillustratesthedynamicnatureofecologicalsystemsandthe importanceoflongtermmonitoringprograms.Inonlythreeyearsofmonitoringpopulationsof

A.spinicauda ,itwaspossibletodescribetheinfluenceofnaturalenvironmentalvariationon densitypatterns.Itisclearthatifthestudyhadbeenconductedonlyin2005(aftertheoverall populationdeclinepresumablyduetolowsurvivalduringarainywinter),conclusionswould havebeenverydifferent(e.g.reduceddensityof A.spinicauda inforestfragments).Therefore, longtermmonitoringprogramsshouldbeincorporatedwheneverpossibleinresearchagendasin thesouthernrainforestsandotherhumanmodifiedlandscapes.

Nest success among forests

Dailynestsurvival(DNS)rateand,hence,nestingsuccessof A.spinicauda didnotdifferamong thethreeforesttypes(OGF,SLF,LFR);nestsuccessvariedfrom53%to63%.Whereasdensity waslowerinforestswithreducednestsitenumbers[i.e.higherinoldgrowthforest(OGF)than inloggedforests(SLF)],therewasnodecreaseinnestsuccess,implyingthathabitat degradation perse causedbyselectiveloggingproducedapatternaccordingtoanIdealFree

Distribution(Fretwell&Lucas1970).Contrarytomypredictions,however,nestsuccessin loggedfragment(LFR)plotswasnotlowerthaninOGFandSLFplots.Althoughthelackof differenceinnestsuccessmightbeduetothesmallsamplesizeofnaturalnestsinLFRplots(n

=15),thismayalsoindicatethattherewerefewerpairsnestinginforestfragmentsgiventhat nestsearcheffortwasconstantacrossallstudyplots.Therefore,therearetwopossiblenon

CintiaCornelius,2006,Ph.D.Dissertation,p. 70 exclusivehypothesesthatcanexplainthelackofareducednestsuccessinloggedfragments.

Thefirstisthatsomebirdsinfragmentswerenotreproducingbecauseofnestsite limitationand,therefore,nestsuccessrateswereonlygivenbypairsreproducinginavailable goodqualitycavities.Movementofforestbirdspecies(RhinocryptidaeandFurnariidae)canbe reducedormodifiedbecauseofhabitatfragmentationintheagriculturallandscapeofChiloé

(Sievingetal.1996;Willson2004;Castellón&Sieving2006a,b;Diazetal.2006;Chapter1).

Asaconsequence,individualsof A.spinicauda mayfaceanestsiteselectiontradeoffin fragmentswithrespecttothecostofdispersingacrossopenhabitatsorstayinginfragmentswith reducedavailabilitynestsites.Underthisscenario,somebirdswouldstayinfragmentsbut wouldnotnest.Somebirdspecieslivinginextremelypatchyhabitatmayprecludereproduction becauseofinabilitytodisperseandstayashelpersinparentsterritories(e.g.Floridascrubjay;

Woolfenden&Fitzpatrick1984).Althoughthisisalesslikelyscenariofor A.spinicauda ,this hypothesiscouldatleastinpartexplainthelargerproportionofnestboxesusedinfragments thaninlargeandconnectedloggedforests(SLF).

Thesecondhypothesis,andthemostlikely,isthatqualityofcavitiesisnotlowerin forestfragmentsasIhadinitiallypredicted.Qualityofcavitiesmaychangebecauseof environmentalchangescausedbyfragmentation,suchasmicroclimaticchangestriggeredby edgeeffectsorchangesinpredatorpopulations.Inthepresentstudyarea,thereisevidencethat smallmammalsarethemainpredatorsofforestbirdnests(Willsonetal.2001).Although abundanceofsmallrodentsmayincreaseinforestfragments(Saavedra&Simonetti2005), theseareprobablypoorpredatorsofnestsincavitieslocatedhighintreesbecausemostshow poorclimbingabilities(GallardoSantisetal.2005).Thebestcandidatepredatorinthestudy areaisaforestandarborealmarsupial( Dromiciopsgliroides )thatfrequentlyplacednestsin

CintiaCornelius,2006,Ph.D.Dissertation,p. 71 nestboxesontopof A.spinicauda nests,aftereatingtheireggs(pers.obs.).Thereislittle informationaboutthebiologyandsensitivityofthismarsupialtohabitatfragmentation,butit hasbeenreportedtobeabsentfromforestfragmentsinanareanorthofChiloé(Saavedra&

Simonetti2005).InChiloéthismarsupialwasobserveddepredatingnestboxesinfragments,but thereisnoinformationavailableabouttheirdensitiesinisolatedforests.Severalarboreal marsupials,however,haveshowntobeaffectedbyhabitatfragmentationinotherforestsystems

(Lindenmayeretal.1999).Thus,thelackofareductioninnestsuccessfor A.spinicauda in loggedfragmentsispossiblyrelatedtoreducednestpredationrates.Asaresult,cavitiesthatare usuallyoflowqualitybecauseofhigherpredationratesinoldgrowthorloggedforestareno longeroflowqualityinloggedfragments.Therefore,evenifcavityavailabilityisquantitatively thesameinloggedforestsandloggedfragments,infragmentscavitiesareactuallyofhigher qualityand,thus,functionallytherearemorecavitiesavailableinloggedfragmentsthaninlarge andconnectedloggedforests.

Althoughtherelativeimportanceofthesetwoproposedmechanismscannotbe quantified,resultsofthisstudysuggestthatbothmechanism(i.e.reduceddispersalandpredator changes)arelikelyresponsibleforobservedpatterns.Iconcludethatselectiveloggingresultsin nestsitelimitationfor A.spinicauda ,thatpopulationresponsestonestsitelimitationvary becauseoflandscapelevelprocesses(e.g.changesinpredatordensitiesinfragments)andthat habitatfragmentationmayimposeatradeoffsituationinnestsiteselection.

Selective logging and nest success

Loggingactivitiesintheareaofthisstudyaffectedcavityavailabilitymostlybyreducingthe numberoflargelivetrees.Resultsofthisstudysuggestthatpairsof A.spinicauda usinglive treecavitieshadlowernestsuccessthanpairsnestinginsnagcavities,regardlessoftheforest

CintiaCornelius,2006,Ph.D.Dissertation,p. 72 typeinwhichtheywerefound.Thus,cavitiesinsnagsseemtobesafernestingsitesthan cavitiesinlivetrees.Snagsusedasnestsiteswereusuallybaretrunkswithlittleornoepiphyte cover(Chapter3),whichmaymakepotentialnestpredators,suchasthearborealmarsupial, moreexposedtotheirownpredatorswhenattemptingtoreachnests.Incontrast,trunksoflarge livetreesinthestudyarea,especiallythoseof Nothofagus trees,areusuallycoveredbyadense vineandepiphytelayer(Muñozetal.2003).Otherstudieshavealsoshownthatfailednestsof secondarycavitynestingbirdsweregenerallymoreconcealedbyfoliagethansuccessfulnests

(Li&Martin1991;Nilsson1984).

Large Nothofagus trees,however,providehabitatontheirfoliageanddenseepiphyte coverforarichandabundantarthropodassemblage(Sapagarinoetal.2001),andtherefore,can beimportantstructuresindeterminingthequalityofterritoriesintermsoffoodavailability.

Foodavailabilitywasnotdirectlyevaluatedinthisstudy,butitiswellknownthatchangesin availabilityoffoodresourcesaffectreproductiveparameterssuchasclutchsizeandnumberof fledglings/broodamongothers(Martin1987;Newton1998).Ididnotfinddifferencesinclutch sizeorinthenumberofnestlingsfledged/pairbetweenloggedforests(SLF)andlogged fragment(LFR)plots,suggestingnodifferencesinresourcesupplyamongtheseforests.

Althoughinsomecasessmallfragmentshavereducedfoodresourcesforinsectivorousbirds

(Zanetteetal.2000;Burke&Nol1998),otherstudieshaveshownnosuchreductions

(ekercioğluetal.2002).Mydataonreproductiveoutputwerebasedonnestboxesplacedin loggedfragmentandloggedforestplotsbutthesetypesofdatacouldnotberecordedfromnests inoldgrowthforestswhereonlynaturalnestsweremonitored.Therefore,furtherstudiesare neededtodeterminetheroleoffoodavailabilityforinsectivorousbirdsintheserainforests, whichisespeciallyimportantinfragmentedlandscapes(Zanetteetal.2000),andspecificallyfor

CintiaCornelius,2006,Ph.D.Dissertation,p. 73

A.spinicauda whichisoneofthemostabundantinsectivorousbirdsinthesouthtemperate rainforestecosystem.

Concludingremarks

Thisstudyshowstheecologicaleffectsofhabitatdegradationduetoselectivelogging,andthe additionaleffectsofhabitatfragmentationonpopulationsofasecondarycavitynestingbird.

Here,Ishowthatthemainfactorlimitingdensitiesofasecondarycavitynestingbirdina fragmentedlandscapeisnestsiteavailabilityinducedbychangesinforeststructure,ratherthan differencesinnestsuccessamongforests.Butprocessesrelatedtochangesinlandscape connectivityalsoinfluencedtheoutcomeofnestsitelimitation.Thus,theavailabilityofnest sitesdependsnotonlyonthepresenceofkeystructuressuchassnagsandlargetrees,butalsoon changesatthelandscapelevelthataretriggeredbyforestfragmentation,suchaschangesin dispersalpatternsofbirdsorpopulationsofnestpredators.

TemperaterainforestsinSouthAmericacontinuetobetransformedbyhumanactivities causing rapidloss,degradationandfragmentationof this ecosystem (Etcheverria et al. 2006).

Other cavitynesting species also have shown evidence of nestsite limitation (Tomasevic &

Estades2006;Diazetal.2005;DeSantoetal.2002)and,thus,arealsolikelytobeaffectedby processes similar to those described in this study. In this region, management guidelines and forest legislation should explicitly consider forest fragmentation and habitat degradation (in terms of changes in forest structure and presence of key structures) to develop better forest managementstrategies,atbothlargeandlocalscalesofloggingandforestuse.

CintiaCornelius,2006,Ph.D.Dissertation,p. 74

LiteratureCited

AitkenK.E.H.,WiebeK.L.,MartinK.(2002)Nestsitereusepatternsforacavitynesting birdcommunityininteriorBritishColumbia. Auk 119:391402

AkaikeH.(1973)Informationtheoryandanextensionofthemaximumlikelihood principle,p.267281.In:F.Csaki(ed.),SecondInternationalSymposiumon

InformationTheory.AkamemiaiKiado,Budapest,Hungary.

AravenaJ.C.,CarmonaM.R.,PerezC.,ArmestoJ.J.(2002)Changesintreespecies richness,standstructureandsoilpropertiesinasuccessionalchronosequenceinnorthern

Chiloe,Chile. RevistaChilenadeHistoria Natural75:339369

ArmstrongD.P.(2005)Integratingthemetapopulationandhabitatparadigmsfor understandingbroadscaledeclinesofspecies. ConservationBiology19:14021410

BrawnJ.,BaldaR.(1988)PopulationbiologyofcavitynestersinnorthernArizona:do nestsiteslimitbreedingdensities? TheCondor 90:6171

BrawnJ.,RobinsonS.(1996)Sourcesinkpopulationdynamicsmaycomplicatethe interpretationoflongtermcensusdata. Ecology 77:312

BrightsmithD.J.(2005)Competition,predationandnestshiftsamongtropicalcavity nesters:ecologicalevidence. JournalofAvianBiology 36:6473

BucklandS.T.,AndersonD.R.,BurnhamK.P.,LaakeJ.L.,BorchersD.L.,ThomasL.

(2001)IntroductiontoDistancesampling:estimatingabundanceofbiological populations.OxfordUniversityPress,NewYork

CintiaCornelius,2006,Ph.D.Dissertation,p. 75

BurkeD.M.,NolE.(1998)Influenceoffoodabundance,nestsite,andforest fragmentationonbreedingOvenbirds. Auk 115:96104

CastellónT.D.,SievingK.E.(2006a)Anexperimentaltestofmatrixpermeabilityand corridorusebyanendemicunderstorybird. ConservationBiology 20:135145

Castellon,T.D.&Sieving,K.E.(2006b)Landscapehistory,fragmentation,andpatch occupancy:modelsforaforestbirdwithlimiteddispersal. EcologicalApplications 16:

22332234.

ConnorE.F.,CourtneyA.C.,YoderJ.M.(2000)Individualsarearelationships:the relationshipbetweenpopulationdensityandarea. Ecology 81:734748

DaviesK.F.,GasconC.,MargulesC.R.(2001)Habitatfragmentation,pp.8198.In:

ConservationBiology:researchprioritiesforthenextdecade (SouleM.E.,OriansG.H., eds.).IslandPressWashington,DC,

DeSantoT.L.,WillsonM.F.,SievingK.E.,ArmestoJ.J.(2002)Nestingbiologyof tapaculos(Rhinocryptidae)infragmentedsouthtemperaterainforestsofChile. Condor

104:482495

DiCastriF.,HajekE.(1976)DiCastriF.,HajekE.(1976)BioclimatologíadeChile.

EdicionesUniversidadCatolicadeChile,Santiago,Chile

DiazI.A.,ArmestoJ.J.,ReidS.,SievingK.E.,WillsonM.F.(2005)Linkingforest structureandcomposition:aviandiversityinsuccessionalforestsofChiloéIsland,Chile.

BiologicalConservation 123:91101

CintiaCornelius,2006,Ph.D.Dissertation,p. 76

DiazI.A.,ArmestoJ.J.,WillsonM.F.(2006)MatingsuccessoftheendemicDesMurs'

Wiretail( Sylviorthorhynchusdesmursii ,Furnariidae)infragmentedChileanrainforests.

AustralEcology 31:1321

DinsmoreS.J.,WhiteG.M.,KnopfF.L.(2002)Advancetechniquesformodelingavian nestsurvival. Ecology 83:34763488

EstadesC.F.(2001)Theeffectofbreedinghabitatpatchsizeonbirdpopulationdensity.

LandscapeEcology 16:161173

EstadesC.F.,TempleS.(1999)Deciduousforestbirdcommunitiesinafragmented landscapedominatedbyexoticpineplantations. EcologicalApplications 9:573585

EwersR.M.,DidhamR.K.(2006)Confoundingfactorsinthedetectionofspecies responsestohabitatfragmentation. BiologicalReviews 81:117142

FretwellS.,LucasH.J.(1970)Onterritorialbehaviorandotherfactorsinfluencing habitatdistributioninbirds. ActaBiotheoretica 19:1636

GallardoSantisA.,SimonettiJ.A.,VasquezR.A.(2005)Influenceoftreediameteron climbingabilityofsmallmammals. JournalofMammalogy 86:.969973

HarrisonS.,BrunaE.(1999)Habitatfragmentationandlargescaleconservation:whatdo weknowforsure? Ecography 22:225232

HoltR.F.,MartinK.(1997)Landscapemodificationandpatchselection:The demographyoftwosecondarycavitynesterscolonizingclearcuts. Auk 114:443455

LampilaP.,MonkkonenM.,DesrochersA.(2005)Demographicresponsesbybirdsto forestfragmentation. ConservationBiology 19:15371546

CintiaCornelius,2006,Ph.D.Dissertation,p. 77

LauranceW.F.(2000)Edgeeffectsandecologicalprocesses:aretheyonthesamescale?

TrendsinEcology&Evolution 15:373

LindenmayerD.B.,CunninghamR.B.,PopeM.L.,DonnellyC.F.(1999)Theresponseof arborealmarsupialstolandscapecontext:alargescalefragmentationstudy. Ecological

Applications 9:594611

LiP.,MartinT.E.(1991)Nestsiteselectionandnestingsuccessofcavitynestingbirds inhighelevationforestdrainages. Auk 108:405418

ManolisJ.C.,AndersenD.E.,CuthbertF.J.(2000)Uncertainnestfatesinsongbird studiesandvariationinMayfieldestimation. Auk 117:615626

MartinK.,AitkenK.E.H.,WiebeK.L.(2004)Nestsitesandnestwebsforcavitynesting communitiesininteriorBritishColumbia,Canada:Nestcharacteristicsandniche partitioning. Condor 106:519

MartinT.E.,GeupelG.R.(1993)Nestmonitoringplots:methodsforlocatingnestsand monitoringsuccess. JournalofFieldOrnithology 64:507519

MartinT.E.(1987)Foodasalimitonbreedingbirds:alifehistoryperspective. Annual

ReviewofEcologyandSystematics 18:453–487

MartinT.E.,Li,P.(1992)Lifehistorytraitsofopenvs.cavitynestingbirds. Ecology 72:

579592

MayfieldH.(1975)Suggestionsforcalculatingnestsuccess. WilsonBulletin 87:456466

MooreR.P.,RobinsonW.D.(2004)Artificialbirdnests,externalvalidity,andbiasin ecologicalfieldstudies. Ecology 85:15621567

CintiaCornelius,2006,Ph.D.Dissertation,p. 78

MorenoJ.,MerinoS.,VásquezR.A.,ArmestoJ.J.(2005)BreedingBiologyoftheThorn tailedRayadito(Furnariidae)insouthtemperaterainforestsofChile. TheCondor 107:

6977

MuñozA.,ChaconP.,PerezF.,BarnertE.S.,ArmestoJ.J.(2003)Diversityandhosttree preferencesofvascularepiphytesandvinesinatemperaterainforestinsouthernChile.

AustralianJournalofBotany 51:381391

MurciaC.(1995)Edgeeffectsinfragmentedforests:Implicationsforconservation.

TrendsinEcologyandEvolution 10:5862

NewtonI.(1994)Theroleofnestsitesinlimitingthenumbersofholenestingbirds:a review. BiologicalConservation 70:265276

NewtonI.(1998)Populationlimitationinbirds.AcademicPressLimited,SanDiego,

CA.

NilssonS.G.(1984)Theevolutionofnestsiteselectionamongholenestingbirds:the importanceofnestpredationandcompetition. OrnisScandinavica 15:165175

ReidS.,DiazI.A.,ArmestoJ.J.,WillsonM.F.(2004)Importanceofnativebamboofor understorybirdsinChileantemperateforests. Auk 121:515525

RobinsonS.,ThompsonF.,DonovanN.S.,WhiteheadD.,FaaborgJ.(1995)Regional forestfragmentationandthenestingsuccessofmigratorybirds. Science 267:19871990

RodewaldA.D.(2004)Nestsearchingcuesandstudiesofnestsiteselectionandnesting success. JournalofFieldOrnithology 75:3139

CintiaCornelius,2006,Ph.D.Dissertation,p. 79

RosenzweigM.(1991)Habitatselectionandpopulationinteractions:thesearchfor mechanisms. AmericanNaturalist 137:S5S28

Rotella,J.2005.NestSurvivalModels,pp.122125.In: ProgramMARK“Agentle introduction” (Cooch,E.,andWhite,G.,eds.).5thedition.

SaavedraB.,SimonettiJ.A.(2005)SmallmammalsofMaulinoforestremnants,a vanishingecosystemofsouthcentralChile. Mammalia 69:337348

SapagarinoC.,MartinezPasturG.,PeriP.L.(2001)Changesin Nothofaguspumilio forestbiodiversityduringtheforestmanagementcycle.1.Insects. Biodiversityand

Conservation 10:20772092

ekercioğluC.H.,EhrlichP.,DailyG.,AygenD.,GoehringD.,SandiR.F.(2002)

Disappearanceofinsectivorousbirdsfromtropicalforestfragments.Proceedings ofthe

NationalAcademyofScience USA 99:263267

SievingK.E.,KarrJ.R.(1997)Avianextinctionandpersistencemechanismsinlowland

Panama,pp156170.In: TropicalForestRemnants (LauranceW.F.,BierregaardR.,eds)

UniversityofChicagoPress,Chicago,IL.

SievingK.E.,WillsonM.F.,DeSantoT.L.(1996)Habitatbarriermovementof understorybirdsinfragmentedsouthtemperaterainforest. Auk 113:944949

TerborghJ.,LopezL.,TelloJ.(1997)Birdcommunitiesintransitions:TheLagoGuri islands. Ecology 78:14941501

ThomasL.,LaakeJ.L.,StrindbergS.,MarquesF.F.C.,BucklandS.T.,BorchersD.L.,

AndersonD.R.,BurnhamK.P.,HedleyS.L.,PollardJ.H.,BishopJ.R.B.,MarquesT.A.

CintiaCornelius,2006,Ph.D.Dissertation,p. 80

(2005)Distance.[5.0Beta4].ResearchUnitforWildlifePopulationAssessment,

UniversityofSt.Andrews,UK.

TomasevicJ.A.,EstadesC.F.(2006)Standattributesandtheabundanceofsecondary cavitynestingbirdsinsouthernbeech( Nothofagus )forestsinsouthcentralChile.

OrnitologíaNeotropical 17:114

TurchinP.(1999)Populationregulation:asyntheticreview. Oikos 84:153159

VanHorneB.(1983)Densityasamisleadingindicatorofhabitatquality. Journalof

WildlifeManagement 47:893901

VergaraP.M.,SimonettiJ.A.(2003)Forestfragmentationandrhinocryptidnestpredation incentralChile. ActaOrnithologica 24:285288

WhiteG.M.(2000)MARK:MarkandRecaptureSurvivalrateEstimation.[5.1].2000.

FortCollins,CO,DepartmentofFisheryandWildlife,ColoradoStateUniversity.

WiebeK.L.,KoenigW.D.,MartinK.(2006)Evolutionofclutchsizeincavity excavatingbirds:thenestsitelimitationhypothesisrevisited. AmericanNaturalist 167:

343353

WillsonM.F.(2004)Lossofhabitatconnectivityhinderspairformationandjuvenile dispersalofChucaoTapaculosinChileanrainforest. Condor 106:166171

WillsonM.F.,ArmestoJ.J.(1996)TheNaturalHistoryofChiloé:onDarwin'strail.

RevistaChilenadeHistoriaNatural 69:149161

WillsonM.F.,DeSantoT.L.,SabagC.,ArmestoJ.J.(1994)Aviancommunitiesof fragmentedsouthtemperaterainforestsinChile. ConservationBiology 8:508520

CintiaCornelius,2006,Ph.D.Dissertation,p. 81

WillsonM.F.,MorrisonJ.,SievingK.E.,DeSantoT.L.,SantistebanL.,DiazI.(2001)

PatternsofpredationriskandsurvivalofbirdnestsinaChileanagriculturallandscape.

ConservationBiology 15:447456

WoolfendenG.E.,FitzpatrickJ.W.(1984)TheFloridaScrubJay:demographyofa cooperativebreedingbird.PrincetonUniversitypress,Princeton,NewJersey,USA.

ZanetteL.,DoyleP.,TremontS.M.(2000)Foodshortageinsmallfragments:Evidence fromanareasensitivepasserine. Ecology 81:16541666

CintiaCornelius,2006,Ph.D.Dissertation,p. 82

Table1. Summaryofhabitatspecificdetectionfunctions(selectedamongcandidate modelsbasedonsmallestAIC c)usedtoestimatedensityof A.spinicauda inthesouth temperaterainforestinChiloé(2003–2005).N=numberofobservationsusedtomodel thedetectionfunction,f(0)=probabilitydetectionfunctionat0m, cv =coefficientof variationforf(0),P=probabilityofdetectionupto30m.

ForestType N KeyFunction f(0) cv(%) P P-value*

Oldgrowth 722 HazardRate 0.0421 2.7 0.79 0.6

Loggedforest 682 HazardRate 0.0418 3.2 0.80 0.8

Loggedfragments 473 Halfnormal 0.0593 3.9 0.56 0.4

*Goodnessoffittestforgroupeddata

CintiaCornelius,2006,Ph.D.Dissertation,p. 83

Table2. SummaryofmodelselectionresultsusingMARKforthenestsurvivalof A. spinicauda inthesouthtemperaterainforestinChiloé(20032005)basedon73known fatenestsinnaturalcavities.ModelsarerankedbyascendingAIC c;wiis normalized modelweightand Knumberofparameters.

Model K AIC c AIC c wi

S (treetype) 1 151.622 0.00 0.300

S (treetype+year) 3 151.970 0.35 0.252

S(foresttype+treetype) 3 153.528 1.91 0.116

S(foresttype+year+treetype) 4 153.548 1.93 0.114

S(.) 1 153.742 2.12 0.104

S(year) 2 154.989 3.37 0.056

S(foresttype) 2 155.746 4.12 0.038

S(foresttype+year) 3 156.971 5.35 0.021

CintiaCornelius,2006,Ph.D.Dissertation,p. 84

A B 1 B 3

A 2

3

1

2

Figure1. (A)Studyregionand(B)studysiteinIslaGrandedeChiloé,southernChile.

Thesatelliteimage(Landsat5T2001)showsthespatialpatternofforestfragment distributioninthestudyarea.Squaresrepresent10haplotsineachofthreehabitat treatments[1=oldgrowthforest(OGF),2=selectivelyloggedforest(SLF),3= selectivelyloggedforestfragments(LFR)].

CintiaCornelius,2006,Ph.D.Dissertation,p. 85

5

a LargeTrees Snags 4

3

b b 2 number/circularplot

1

0 OGF SLF LFR

Figure2. Meannumber(±SE)oflargetreesandsnagspercircularvegetationplot(340 m2)amongthethreehabitattreatments;OGF=oldgrowthforest,SLF=selectively loggedforest,LFR=selectivelyloggedfragments.Differentlettersindicate P<0.001 fromTukeyposthoctestforcomparisonoflivetreesamonghabitattreatments.

CintiaCornelius,2006,Ph.D.Dissertation,p. 86

5 2003 a 4 ab

3 b

2 individuals/ha

1

0 5 2004 a a a 4

3

2 individuals/ha

1

0

5 2005

4

a a 3

a 2 individuals/ha

1

0 OGF SLF LFR Figure3. Densityof Aphrasturaspinicauda (±SE)estimatedwithhabitatspecific detectionfunctionsamongthethreeforesthabitatsbeforenestsitesupplementation

(2003),andafternestsitesupplementation(2004and2005).Differentlettersindicate P<

0.05fromTukeyposthoctestwithineachyear(OGF=oldgrowthforest,SLF= selectivelyloggedforest,LFR=selectivelyloggedfragments).

CintiaCornelius,2006,Ph.D.Dissertation,p. 87

5

4

3

2 individuals/ha

1 oldgrowthforest loggedforest loggedfragments

0 2003 2004 2005

Figure4. Comparisonamongyearsof A.spinicauda density(±SE)basedonhabitat specificdetectionfunctionsforthethreeforesthabitats.

CintiaCornelius,2006,Ph.D.Dissertation,p. 88

1.000

0.995

0.990 DNS 0.985

0.980 MARKestimaten=74 Mayfieldestimaten=87

0.975 OGF SLF LFR

Figure5. DailyNestSurvival(DNS±SE)for A.spinicauda ineachforesttype, estimatedwithMARKincludingknownfatenestsonly,andestimatedwiththeMayfield methodincludingnestswithuncertainfate(OGF=oldgrowthforest,SLF=selectively loggedforest,LFR=selectivelyloggedfragments).

CintiaCornelius,2006,Ph.D.Dissertation,p. 89

CHAPTERIII

NestSiteandTerritorySelectionbyaSecondaryCavityNestingBirdBreedingin

ForestswithDifferentNestSiteAvailabilities

Abstract .Nestsitechoicecanhaveimportantconsequencesonfitnessand,asaresult, characteristicsofnestsitesthatinfluencenestingsuccessshouldbeimportantin determiningnestsitepreferences.Characteristicsofsuccessful vs. unsuccessfulnestsites, however,arelikelytovaryovertimeandspaceinresponsetohabitatchangesthat influencenestsitequality.Asaconsequence,nestsiteselectionpatternsshouldalso varyacrossthelandscape.Thegoalofthisstudywastodetermineifnesttreeselection byasecondarycavitynestingbird,andassociatedconsequencesonfitness,varyspatially inresponsetohumandrivenlandscapemodificationssuchaschangesinforeststructure andconnectivity.Inthisstudy,Icharacterizedterritoriesandnesttreesusedby

Aphrasturaspinicauda (Furnariidae)inthetemperaterainforestofsouthernSouth

Americaamongthreeforesttypesthatdifferedinnestsiteavailabilityandlevelsof connectivity(oldgrowthforest,loggedforest,andloggedforestfragments).Results indicatedthatlandscapevariationinnestsiteselectionwasgivenbydifferencesin connectivityandnotbydifferencesinforeststructureamongstudyplots.Aphrastura spinicauda usedsmallertreesanddifferenttreespeciesinfragmentsthaninlargeand connectedforests(loggedandunlogged),althoughthisdifferentialnesttreeusehadno consequencesonfitness.Overall,nestsuccessdecreasedwithepiphytecoveroftrees.

Livetreeshadmoreepiphytecoverthansnags,andnestsinsnagshadahighersuccess

CintiaCornelius,2006,Ph.D.Dissertation,p. 90

(74.8%±9)thannestsinlivetrees(46.9%±10).Inlargeandconnectedforests(logged andunlogged),snagswereusedinahigherproportionthanbasedontheiravailability suggestinganadaptivenestsitechoice;amonglivetrees,Nothofagusnitida wasused morethanexpectedbasedontheiravailability.Inloggedfragments,however,useofnest treeswasproportionaltoavailability.Territoriesweresimilaramongforesttypesand werecharacterizedbyforestgapconditionswithopencanopy,denseunderstoryandwith morelargetreesandsnagsthanunusedareas.Resultsofthisstudyshowedevidencefor anadaptivenesttreepreferenceby A.spinicauda andalsothatnestsitechoiceis spatiallyvariableinresponsetoecologicalgradientsproducedbyhumanactivities.

Keywords: Aphrasturaspinicauda ,cavitynester,Chile,habitatfragmentation,nest siteselection,southtemperaterainforest.

Introduction

Selectionofanestsitecanhaveimportantconsequencesonfitnessand,asaresult,nest sitepreferencesareusuallyunderstrongselectioninbirds(Martin1998;Clark&Shutler

1999).Thechoiceofaparticularnestsiteisbasedonthebehaviorofindividualswhich, inmanycases,isgeneticallybased(Jaenike&Holt1991),supportingtheideaofan adaptivevalueofnestsiteselection.Therefore,factorsthatinfluencenestsitechoice shouldberelatedtoprocessesthataffectnestingsuccess(i.e.,theprobabilityoffledging atleastoneyoung).Forexample,nestpredationistheprimarycauseofnestfailurein birds(Ricklefs1969;Martin1993)and,therefore,animportantselectiveforceformost birdspecies,includingcavitynestingspecies(Nilsson1984;Martin&Li1992;Martin

1993,Fontaine&Martin2006).

CintiaCornelius,2006,Ph.D.Dissertation,p. 91

Thechancethatanindividualbirdwillfindasuitablenestsitedependsonthe availabilityofthesubstratethatispreferredfornesting.Availability,however,is influencednotonlybytheabundanceofthepreferredsubstratebutalsobyaccesstothat substrate(Jones2001).Forestbirdsthatnestincavitiestypicallyrelyonoldtreesor snags,wheremostcavitiesareformed(Newton1994),andinmanycasestheir populationscanbelimitedbytheavailabilityofsuitablenestingsites(Martin&Li1992;

Newton1994;1998;Wiebeetal.2006).Limitationofnestingsites,however,ismore likelyforsecondarycavitynestingspecies(i.e.,nonexcavators)becausetheyrelyonthe presenceofexistingcavities(Newton1994).Asaconsequence,nestsiteavailabilityfor secondarycavitynestersalsoisinfluencedbythepresenceofprimarycavitynestersthat createcavities(Martinetal.2004),andbythenumberofindividualsseekingor competingforsuitablenestingsites.Therefore,ifnestsitesarelimited,someindividuals maybeforcedtouselowerqualitycavities,suggestingthatcompetitionmaybeanother importantfactorinnestsitechoice(Nilsson1984;Li&Martin1991).

Distributionofresourcesimportantforbreedingcanvarynaturallyacrossthe landscape.Humanactivities,however,suchasselectiveloggingorclearingofforestfor pastures,caninfluencethedistribution,abundanceandavailability ofresources, especiallythoseimportantforcavitynestingbirds(i.e.,largetreesandsnags).For example,loggingpracticestypicallytargetlargetreesandcan,therefore,reducethe abundanceofcavities,leadinginmanycasestopopulationlimitation(e.g,Holt&Martin

1997,Chapter2).Ontheotherhand,habitatfragmentationcanreducethenumberof potentialnestsitesavailabletobirdsbyreducinglandscapeconnectivity.Connectivity referstothedegreetowhichalandscapefacilitatesorimpedesecologicalflow,suchas

CintiaCornelius,2006,Ph.D.Dissertation,p. 92 themovementoforganismsamonghabitatpatches(Turner&Gardner1990).Changesin landscapeconnectivity,suchasthoseresultingfromhabitatfragmentation,mayinterfere withthedispersalofbirds(Chapter1),reducingthe“functionalconnectivity”ofthe landscape(Belisle2005).Asaconsequence ,notallnestsitesmaybetrulyavailablefor birdsinareaswithreducedconnectivity. Therefore,ifnestsitesarelimited(e.g.,because ofselectivelogging)birdsmayeitherdispersetootherareasinsearchofsuitablenesting sitesor,ifconnectivityisreduced,stayinfragmentsandnotreproduceorusecavities thatotherwisewouldnotbeconsideredsuitable.

Besidesreducinglandscapeconnectivity,habitatfragmentationcantrigger changesinmicroclimaticconditionsorchangesinpredatorpopulations(Andren1994), thatalsocaninfluencethequalityofnestingcavitiesinforestfragments.Forinstance, abundanceofnestpredatorssuchassmallmammalsmayeitherincreaseordecreasein smallfragments,dependingontheidiosyncrasiesofeachsystem(reviewedinChalfoun etal.2002).Althoughseveralstudieshaveshownthatnestingsuccessforsecondary cavitynestersisnotreducedinfragments(e.g.,Matthysen&Adriansen1998;Walterset al.1999)otherstudieshavereportedincreasednestpredationinfragments(e.g.,because ofedgeeffects,Deng&Gao2005).Therefore,becausecharacteristicsofsuccessful vs. unsuccessfulnestsitesarelikelytovaryovertimeandspace(Wiens1985),nestsite selectionpatternsshouldvaryacrossthelandscapeaswell.

Aphrasturaspinicauda (Furnariidae)isasmallandcommonsecondarycavity nestingbirdinthetemperaterainforestregionofsouthernSouthAmerica.Itismost abundantinoldgrowthforests,butitdoesoccuratlowerdensitiesinsecondaryforests

(Diazetal.2005),forestswithselectivelogging(Chapter2),andexoticpineplantations

CintiaCornelius,2006,Ph.D.Dissertation,p. 93

(Estades&Temple1999).Anestsitesupplementationexperimentindicatedthat populationdensitiesof A.spinicauda werelimitedbynestsiteavailabilityinforests whereselectivelogginghadreducedthenumberoflargetrees(Chapter2).Densityand populationresponsestonestsitesupplementation,however,variednotonlyinrelationto thenumberoflargetreesandsnags,butalsoinrelationtoconnectivity(Chapter2).

Theseresultssuggestedthatnestsiteavailability,influencedbychangesinforest structure,wasanimportantfactorlimitingdensitiesof A.spinicauda ,butthatother processesrelatedtohabitatfragmentationwerealsoimportantindeterminingnestsite availability.

Thegoalofthisstudywastodetermineifnestsiteselectionby A.spinicauda,and associatedconsequencesonfitness,varyspatiallyinresponsetoforeststructure(i.e.nest siteavailability)andconnectivity.Threeaspectsofnestsiteselectionwereaddressed

(followingClark&Shutler1999).First,characteristicsofusedandnonusedterritories andnesttreesweredescribedacrossthelandscape;differencesinsuchcharacteristics,if theyexist,arethoughttoprovideevidenceconsistentwithlongtermnaturalselection.

Second,characteristicsofsuccessfulandunsuccessfulnesttreeswerecomparedby determiningthesourceofvariationinnestsurvival;suchacomparisoncanprovide evidenceconsistentwithongoingnaturalselection.Third,toshowevidenceforadaptive nestsitepreferences,fidelitytonesttreesandtheincreaseduseofspecificnesttrees wereevaluatedinrelationtofitness.

CintiaCornelius,2006,Ph.D.Dissertation,p. 94

Methods

Study site

ThisstudywasconductedinthetemperaterainforestregiononIslaGrandedeChiloé, southernChile(41°55’S,73°35’W),duringthreebreedingseasonsfrom2003through

2005.Climateinthisregioniswettemperatewithastrongoceanicinfluence(2,000

2,500mmrainfall/year;meanannualtemperatureof12°C;DiCastri&Hajek1976).The forestisabroadleafed,evergreenrainforestoftheValdivianandNorthPatagonian types,withmixeddominanceof Nothofagus , Drymis , Eucryphia ,and Podocarpus trees, severaltreesandshrubsfromthefamilyMyrtaceae,andadensebamboo( Chusquea spp.) understory.Largetreesusuallyarecoveredwithvinesandepiphytessuchasferns, mosses,andbromeliads(Muñozetal.2003).Thestudyareaisinanapproximately25x

25kmagriculturallandscapeinthevicinityofSendaDarwinBiologicalStation,northern

Chiloé(Fig.1a).Thelandscapeischaracterizedbyflatlandsandhills(50to100m elevation)thatarecoveredbywoodlandsandforestfragmentsdispersedinamatrixof pastures,cultivatedfields,andscrublands.Majorformsofhumancausedhabitat degradationincludehabitatfragmentationcausedbywidespreaduseoffiretoclearland forpastures,forestencroachmentbycattle,andselectiveloggingbylocallandownersfor domesticandcommercialuse.Asaconsequence,humanpracticeshavegenerateda landscapemosaicwithforestremnantsthatdifferintheirstructureandpresenceof habitatfeaturesthatareimportantforbirds(Willsonetal.1994;Reidetal.2004;Diazet al.2005).

CintiaCornelius,2006,Ph.D.Dissertation,p. 95

Study design

Nestsiteselectionwascomparedamongthreeforesthabitats:oldgrowthforest, selectivelyloggedforest,andselectivelyloggedforestfragment(oldgrowth,logged forest,andloggedfragmentshereafter).Eachhabitattreatmentwasreplicatedintwo distinct10hastudyplots,foratotalofsixstudyplots(Fig.1b).Oldgrowthandlogged forestplotswerelocatedinlarge(>1,000ha)andnonisolatedforeststands(seeChapter

1)whereprocessesassociatedwithhabitatfragmentationwereassumedtobe unimportant.Incontrast,loggedfragmentplotswereestablishedinforestfragmentsof aboutthesamesizeasthestudyplots(1012ha);bothfragmentswereisolatedfrom otherlargeforestfragments(seeChapter1)andcompletelysurroundedbyopenpastures withdistancestothenearestforestrangingfrom100to300m(Fig.1b).Anarrayofsix

300mtransects,encompassingatotalof1,800m,wasestablishedineach10haplotto facilitatenestsearchesandhabitatmeasurements.Infragments,however,thenumberand lengthoftransectswasadjustedtofittheformoffragmentsbutstillcoveringa10ha areawithatotaltransectlengthof1,800minonefragmentand1,250mintheother fragment.

Nestsiteavailability(asindexedbydensityoftreeslargerthan40cmdbhand snags)washigherinoldgrowthforeststhaninloggedforestandloggedfragments

(Chapter2).Densityof A. spinicauda washigherinoldgrowthforestthaninlogged forestbutnotdifferentfromdensityinloggedfragments.Consequently,densityofbirds inloggedfragmentswashigherthanexpectedbasedonnestsiteavailability.Fordetails on A. spinicauda densityestimationsseeChapter2.Further,anestsitesupplementation

CintiaCornelius,2006,Ph.D.Dissertation,p. 96 experimentprovidedevidencefornestsitelimitationinbothloggedforestsandlogged fragments(seeChapter2).

Nest-tree and territory characteristics

Nestsinnaturalcavitieswerelocatedduringthethreebreedingseasonsbysystematically searchingalongtransectsineachplot,followingstandardnestsearchingprotocols

(Martin&Geupel1993).Behavioralcues,suchasbirdscarryingnestingmaterialor food,wereusedtohelpfindnests;searcheswerenotrestrictedtospecificnestsubstrates tominimizepotentialforbiasinwherenestswerefound(Rodewald2004).Iusedmist netsandplaybackstocapture A.spinicauda individuals;birdsweremarkedwith numberedaluminumbandsandauniquecolorcombinationtoallowidentificationof birdsassociatedwithparticularnests.Between50%and80%ofindividualswerecolor bandedineachstudyplot.Eachidentifiednesttreewasmonitoredtodetermineitsstatus

(seebelow);nesttreeandcavitycharacteristicswererecordedonlyforneststhatwere usedforreproduction.Nesttreecharacteristicsrecordedweretreespecies,treecondition

(liveorsnag),diameteratbreastheight(dbh),height,andepiphytecover(estimatedin5 coverclasses0:0%,1:1%25%,2:26%50%,3:51%75%,4:76%100%).Cavities werecharacterizedbyheightfromtheground,cavitytype(1:inmaintrunktop,2:in maintrunk,3:insecondarybranch,4:inbrokenbranchend),originofcavity(1:hole fissure,2:birdmade),diameterclass(<3cm,36cm,>6cm),andconcealment

(percentageofvegetation,estimatedinclassesof10%increments,ina1mradiusand1 mtallimaginarycylinderaroundthebranchortrunkwherethecavitywaslocated).To determinecharacteristicsofavailabletreesandsnagsineachforesttype,10mradius

(314m2)circularplotsweresystematicallyplacedevery100malongtransectswithin

CintiaCornelius,2006,Ph.D.Dissertation,p. 97 eachstudyplot(18vegetationplots/10ha).Ineachcircularplot,alllargelivetreesand snags(>40cmdbhand>15cmdbh,respectively)werecountedwithheight,dbhand speciesrecorded.AllvariablesweretestedfornormalityusingaShapiroWilktestand transformedtoattainnormalitywhenpossible.Nesttree,cavityandavailabletree characteristicswerecomparedusingoneortwowayANOVAswithforesttype(old growth,loggedforest,loggedfragments)andstatus(usedandnotused)asfactors;

MannWhitneyorKruskalWallistestswereusedwhendatadidnotfitassumptionsof parametrictests.

Nestboxesweresystematicallyaddedalongtransects(108boxes/10ha)in2004 toconductanestsitesupplementationexperimentinloggedforestandloggedfragment plots;detailsaboutnestboxesandtheirdistributionwithinstudyplotsaredescribedin

Chapter2.Territorycharacteristicswererecordedwithintheareasurroundingnatural nests(n=30)andusednestboxes(n=24).Habitatcharacteristicsweremeasuredineach territoryalongtwo40mperpendiculartransectscenteredatthenest.Allsnagsandlive treesfoundin2mstripsoneachsideofeachtransectwereidentifiedtothespecieslevel, counted,andassignedtoasizeclass(dbh<40cm,40–80cm,and>80cm).Canopy cover,canopyheight,andunderstoryvolumewererecordedinfive2mradiuscircular plots,oneateachendofatransectandonecenteredonthenest.Canopycoverwas estimatedusingfourcoverclasses(1:025%,2:26%50%,3:51%75%,4:76%100); understoryvolumewasdeterminedbymeasuringunderstoryheight(h)andgroundcover

(c)estimatedin10%incrementcoverclasseswithinthe2mradius(r)circle.Volume wasthencalculatedash*c*πr 2followingReidetal.(2004).Meanvaluesacrossthefive circularplotswereusedinfurtheranalyses.Tocompareterritorycharacteristicsofused

CintiaCornelius,2006,Ph.D.Dissertation,p. 98 vs. unusedterritories,habitatmeasurementswererecordedfollowingthesamemethods butwithtransectscenteredonnonusednestboxes(n=16).Nonusedterritorieswere definedastheareasurroundinganestboxthatwasunoccupiedduringanyseasonand hadneitheranaturalnestnoraterritoryeverrecordedwithinaradiusof50m.Nonused territoriesweremeasuredinloggedforestplots(n=8)andinloggedfragmentplots(n=

8).

Habitatvariableswereusedtodiscriminateamongthethreedifferentterritory typesevaluatedinthisstudy(i.e.,naturalnest,usednestbox,andnonusedterritory)and amongthethreeforesttypesusingadiscriminantfunctionanalysis.Covariancematrices weretestedforhomogeneityusingBox’s Mcriterion.Thematricesshowednon significantheteroscedasticity( P>0.05)sowithingroupcovariancematriceswereused.

Wilk’slambdawasusedforseparationofgroups.Priorprobabilitieswerecomputedfrom groupsizestoaccountfordifferencesinsamplesizesamonggroups.Resultsfroma

MANOVAwerealsousedtodescribesignificantdifferencesamonghabitatvariablesthat determinedgroupmemberships.

Nest-success and nest-tree characteristics

Nesttreeswerevisitedeverythreetofourdaystodetermineneststatus.Actualcontentof nestscouldnotbeassessedbecausecavitiesweretoohighandnotaccessibletothe observers.Therefore,parentactivitywasobservedfromthegroundwithbinocularsfor

2030min.Thisobservationperiodallowedrecordingatleastoneincubationexchange andseveralfeedingvisits(unpublisheddata).Thenumberoftimesbirdsenteredthe cavitycombinedwithobservationsofadultscarryingmaterial,foodorfecalsacswas usedtodeterminethestageofeachnest(i.e.constructing,incubating,orfeeding

CintiaCornelius,2006,Ph.D.Dissertation,p. 99 nestlings)(Martin&Geupel1993).Anestwasclassifiedassuccessfuleitherifno activitywasobservedatthenestafter21daysoffeeding,thetypicallengthofthe nestlingstageforthisspecies(Morenoetal.2005),orifafamilygroupwasfoundthat couldbeattributedtothatparticularnest(i.e.basedoncolorbandsofadults).Ifthenest wasfoundpriortothefeedingstageandifnoactivitywasobservedduringtwo consecutiveobservationperiodsbefore21daysoffeedinghadelapsed,thenestwas consideredtohavefailed.Nestsfoundduringthefeedingstageandtowhichnofamily groupcouldbeassigned,wereclassifiedasundeterminedunlessevidenceoffailurewas observed(e.g.destroyedcavity).

Themeanandvarianceofdailynestsurvival(DNS)ratewereestimatedwitha maximumlikelihoodapproachbasedontheMayfieldmethod(Mayfield1975)using

ProgramMARK(White2000)andthenestsurvivalprocedure(Dinsmoreetal.2002).

Akaike’sinformationcriterioncorrectedforsmallsamplesize(AIC c)wasusedto evaluatedifferenthypothesesaboutthesourceofvariationinnestsurvivalfor A. spinicauda inthestudyarea.Nestsinboxeshadlowernestsuccessthannaturalnestsin thisstudyarea(unpublisheddata),soonlynaturalnestswereusedtoestimatenest success(i.e.,tominimizepotentialbiasesfromnestsinboxes),withsimilarnumberof nestsineachhabitattreatment(seeresults).Dailynestsurvivalratewasexaminedin relationtonesttreecharacteristics(treetype,height,dbhandepiphytecover),cavity characteristics(cavityheight,type,concealmentanddiameter),year,andforesttype.The relativeimportanceoftheeighttreeandcavityvariablesinexplainingvariationinDNS wasexaminedbyfirstrunningaseriesofmodelsthatincorporatedonevariableatatime andsecondbycomparingthesemodelsagainstthenullhypothesismodelS(.) ofconstant

CintiaCornelius,2006,Ph.D.Dissertation,p.100

DNS.Ofthesemodels,onlytwomodels(thatincludedthevariablestreetypeorepiphyte cover)hadmoresupportthantheS(.) model.Therefore,onlythevariablestreetype

(snag,livetree)andepiphytecover(15)wereusedinadditiontoforesttype(oldgrowth, loggedforest,loggedfragments)andyear(2003,2004,2005)todevelopasetof11 a priori definedmodels(Table1).Factorsinmodelswereincorporatedascovariablesand competingmodelswerecomparedagainstthenullhypothesismodel S(.) ofconstantDNS.

AsinelinkfunctionfortheconstantDNSmodelwasusedandalogitlinkfunctionfor modelsthatincorporatedcovariates(Dinsmoreetal.2002).Theseanalysesonlyincluded naturalnestswithknownfate(n=74)becausenestswithuncertainfatecannotbe includedintothesemodels.AlthoughthismaybiasDNSestimates(Manolisetal.2000), apreviousanalysiswiththesamedatasetshowedthatDNSestimatesfromprogram

MARKwerenotdownwardbiasedwhennestswithuncertainfatewereexcluded

(Chapter2).Nestingsuccesswasassessedastheprobabilityofsurvivingtheentire nestingcycle,fromtheegglayingperiodthroughthenestlingperioduntilfledging, whichwasconsideredtobe45daysfor A.spinicauda basedonMorenoetal.(2005)and fieldobservations.Nestsuccessanditsassociatedvariancewereestimatedbyraising

DNSratetotheexponentofthedurationofthenestlingcycle(Rotella2005)

Nest-tree preferences and reuse patterns

Nesttreepreferenceswereevaluatedbycomparingthenumberoftreesusedfornesting withthenumberoftreesavailablewithinpredefinedcategoriesusingLikelihoodRatio tests( G)andtheirassociated Pvalues.Todetermineifuseofnesttreeswasadaptive, categoriescomparedweredefinedbycharacteristicsofsuccessfulandunsuccessfulnests.

First,useandavailabilitywerecomparedbetweensnagsandlivetreeswithout

CintiaCornelius,2006,Ph.D.Dissertation,p.101 consideringtheidentityofspecieswithincategories.Second,useandavailabilitywere comparedamongspeciesoftreestoevaluatepreferencefororavoidanceofparticular treespecies.

Asasecondlineofevidenceforanadaptivevalueofnestsitepreference,fidelity tonestsiteswasexaminedinrelationtonestsuccess.Acavitywasconsideredtobe reusedifatleastonebandedbird(i.e.,anindividuallyidentifiablebird)usedthesame cavityintwoormoreconsecutivebreedingattemptswithinoramongseasons.Because notallbirdswerebanded,itwasnotalwayspossibletodeterminetheidentityofbirds reusingaparticularcavity.From39reusednests,12hadknownidentitybirds(both individualsbandedn=7;oneindividualbandedn=5).Inall12cases,atleastone individualreusedanestcavityinsubsequentnestingattempts.Thus,inthisstudyI assumethatmostifnotallreuseeventsinvolvedatleastonebirdfromtheprevious nestingattempt.Moreover,allactivenestsinabreedingseasonwerecheckedforreusein subsequentseasons;therefore,patternsobservedrepresentedtruereusefrequencies.

Iffidelitytonestsitesismorefrequentfornestsinwhichfitnesswaspreviously high,asexpectedifnestsitechoiceisadaptive,thenneststhatarereusedinsubsequent seasonsshouldhaveanoverallhighernestsuccessthanneststhatarenotreused.To determinethis,DNSwasevaluatedinrelationtoreuseofnesttrees.Dailynestsurvival wasalsoevaluatedinrelationtotreetype,foresttypeandyeartodetermineifreuse variedacrossspaceandtime.Thereusevariablewasdeterminedbyclassifyingeachnest aseitherusedornotusedinthesubsequentseason.Consequently,only2003and2004 nests(n=56)wereincludedinthisanalysisbecause2005nestswerenotcheckedfor reuseinthefollowingseason.Asetofpredefinedmodelswasdevelopedandcandidate

CintiaCornelius,2006,Ph.D.Dissertation,p.102 modelswereevaluatedbasedonminimumAIC cvalues(Table2).Again,factorsin modelswereincorporatedascovariablesandcompetingmodelswerecomparedagainst thenullhypothesismodel S(.) ofconstantDNSfollowingthesameproceduresdescribed above.

Results

Nest-tree and territory use patterns

Atotalof80differentnesttrees(correspondingto102nestingattempts)wereidentified duringthecourseofthreebreedingseasons.Ofthese,15werenotusedforreproduction andwereexcludedfromanalyses.Nesttreeswereeitherlargecanopytrees(n=35)or snags(n=35);size(dbh)ofnesttreesandsnagsdidnotdiffer( F1,69 =2.13, P=0.13).

Meansize(±SE)ofnesttreesandsnagscombined(85.1±3.5cmdbh)washigherthan themeansizeofavailabletreesandsnags(57.3cm±1.8cm; F1,341 =27.3, P<0.001;

Fig.2).Whenusedandavailabletreeswerecomparedamongforests(twoway

ANOVA),therewasasignificanteffectofsizeoftreesamongforests(F 2,341 =6.72, P=

0.001)andasignificantdifferencebetweensizeoftreesusedfornestingandthose available(F 1,341 =27.3, P<0.001)withasignificantinteraction(F 2,341 =4.76, P=0.009) betweenforestandtreestatus(i.e.used vs. available).Thus,intermsofdiameter,trees usedfornestinginfragmentswere,overall,smallerandmoresimilartotreesavailable thaninoldgrowthandloggedforestplotswheretreesusedfornestingwerelargerthan availabletrees(Fig.3).

Inlivetrees,mostcavitiesusedfornestingwereinlargecanopy Nothofagus nitida (27outof35nestsinlivetrees).Othertreespeciesusedwere Eucryphia cordifolia , Laureliopsisphilippiana, andthreespeciesofthefamilyMyrtaceae.Most

CintiaCornelius,2006,Ph.D.Dissertation,p.103 snagsusedfornestingweredead Nothofagusnitida trees(24outof35nestsinsnags); remainingsnagsweremostly Weinmaniatrichospermaor undeterminedspecies:afew were Saxegothaeaconspicua , Laureliopsisphilipiana,and Eucryphiacordifolia .For furtheranalyses,allsnagsweregroupedintoasinglecategoryregardlessofspecies.

Proportionaluseoflivetreespeciesandsnagsdifferedamongforesttypes( G=26.33,df

=12, P=0.01).Inoldgrowthandloggedforestplots,mostnestcavitieswerein

Nothofagus treesorinsnags,whereasnestswerefoundinagreatervarietyoftreespecies infragments(Fig.4).For73activenestcavities,treeheight/cavityheightratiodidnot differamongforesttypes(F 2,72 =1.9, P=0.16).Cavitiesusedfornestingwereusuallyin tallcanopytreesatameanheight(±SE)of15.5±0.7m;twonestcavitiesfoundin forestfragmentswere,however,lessthan1mfromtheground.Typesofcavitiesusedfor nestingincludedsmallcrevicesorfissuresintrunks(47.9%)orinsecondarybranches

(26%),withinbrokenbranchends(15.1%),orintrunkswithbrokentops(4.1%);only

6.8%wereincavitiesmadebyotherbirds.Proportionaluseofcavitytypesdidnotdiffer amongforesttypes( G=9.15,df=8, P=0.33).Mostcavitiesweresmallwithdiameters smallerthan3cm(46.8%)orof3–6cm(51.1%);onlyonehadanentrancediameter largerthan6cm.Mostcavitieshadnoorverylittleconcealingvegetation(70.1%of cavitieshad0%or10%cover;Fig.5).

Habitatcharacteristicsvariedamongterritoriesthatsurroundednaturalnests,nest boxes,andnonusednestboxes(MANOVA,F 2,12=3.51,P<0.0001,Fig.6).Thefirst axisofthediscriminantfunctionanalysiswashighlysignificant( W=0.557, P<0.001) andexplained75.1%ofthevariance;thesecondaxisaccountedfortheremaining24.9% andwasonlymarginallysignificant( W=0.851, P=0.065).Thestructurecoefficients

CintiaCornelius,2006,Ph.D.Dissertation,p.104

(SC)ofthecorrelationsbetweendiscriminatingvariablesandthefirststandardized canonicaldiscriminantfunctionshowedahighpositiverelationshipforcanopycover(SC

=0.92),numberofsmalllivetrees(SC=0.427),andcanopyheight(SC=0.304)anda negativecorrelationforunderstoryvolume(SC=0.426).Numberoflargelivetrees(SC

=0.195)andnumberofsnags(SC=0.127)hadlowloadingsinthefirstaxis,buthad highpositiveloadingsinthesecondaxis(SC=0.729andSC=0.446,respectively;Fig.

7).Basedonthesetwoaxes,territoriesof A.spinicauda surroundingnaturalnestsand nestboxeswerecharacterizedbyanopencanopywithadenseunderstorywithafew largetreesandsnagswhereasunusedterritorieshadaclosedcanopy,scantunderstory andmanysmalltrees.

Thecanonicalaxescorrectlyclassified60%ofterritories.Thissuccessrate appearsratherlowbecauseusednestboxandnaturalnestterritorieswere interchangeablyclassifiedwitheachother.Of24nestboxterritories,41.7%were classifiedcorrectly,whereas45.8%wereclassifiedasanaturalnestterritory.Similarly, of30naturalnestterritories,66.7%wereclassifiedcorrectlywith20%classifiedasaa usednestboxterritory.Theremainingnaturalnestandnestboxterritorieswere classifiedasnonusedterritories(13.3%and12.5%,respectively).Nonusedterritories

(i.e.theareathatsurroundsanunusednestbox)hadthegreatestclassificationaccuracy, with75%(12of16)ofnonterritoriesclassifiedcorrectly.Whentheanalysiswas repeatedafterpoolingnaturalnestandusednestboxterritoriesintoonecategory,there wasahighlysignificantseparation( W=0.655, P<0.001)betweenusedandnonused territories.Structurecoefficientsremainedqualitativelyandquantitativelysimilarbut classificationaccuracyincreasedsubstantiallyfornestsitecategories,with90.7%ofused

CintiaCornelius,2006,Ph.D.Dissertation,p.105 territories(i.e.,eithernestboxesornaturalnests)classifiedcorrectly.Classification successdidnotchangefornonterritories.Finally,characteristicsofterritoriesaround nests(naturalnestsandnestboxterritoriescombined)weresimilaramongthethree foresttypes,withnosignificantseparationamongforests(W=0.666, P=0.082).

Nest success and tree characteristics

Characteristicsof74knownfatenestsinoldgrowth(n=33),loggedforest(n=27)and loggedfragments(n=14)wereusedtoevaluatetheeffectsofnesttreetype(snagorlive tree),treeepiphytecover,foresttypeandyearonDNS,using11 apriori models(Table

1).ThefirstsixmodelswereequallysupportedwithAIC cvalues<2;ofthesemodels,

S (tree)andS (epiphyte) hadthefewestparametersandhadsimilarmodelweightsand likelihood(Table1).Thus,therewerenodifferencesinnestsuccessamongthethree foresttypes;differenceswereonlygivenbythecharacteristicsoftreesinwhichnests wereplaced.Thissuggeststhatnestsuccesswasinfluencedmorebytreecharacteristics thanbyforesttypeoryear.BasedonestimatesfromtheS (tree) model,nestsuccess(±SE) washigherincavitiesinsnags(74.8%±9)thanincavitiesinlivetrees(46.9%±10).

BasedontheS (epiphyte) model,DNSdecreasedwithepiphytecover(Fig.8).Because epiphytecoverwascorrelatedwithtypeoftree,snagshadlessepiphytecoverthanlive trees( U =640.0, P=0.034),theunderlyingvariablethatlinkstreetypewithDNSisvery likelytheamountofepiphytecoverontrees.Thisisalsosupportedbythemodelwith lowestAIC cthatincludedbothtreetypeandepiphytecoverasexplanatoryvariables

(Table1).Moreover,amongnesttrees, Nothofagus wasintermediateinepiphytecover relativetosnags(leastcover)andtheremainingtreespecies(mostcover);Kruskal

Wallistest;χ 2=9.05,df=2, P=0.011).

CintiaCornelius,2006,Ph.D.Dissertation,p.106

Nest-site selection and reuse patterns

Thefrequencyofuseofdifferenttreetypeswascomparedtothefrequencyofavailable treetypestoidentifypotentialnestsitepreferences.Thesepreferenceswerealso evaluatedamongforeststodetermineifnestsiteselectionvariedoverspaceandbetween successfulandunsuccessfulneststodetermineifnestsiteselectionisadaptive.Overall, snagswereusedasnestsitesmoreoftenthanexpectedbasedontheiravailability( G=

7.67,df=1, P=0.006)comparedtowhenalllivetreeswerecombined(Fig.9).This result,however,wasnotconsistentamongforests.Inoldgrowthforestandloggedforest plots,snagsandlive Nothofagus treeswereusedinahigherproportionthanexpected basedontheiravailabilitywhereasallothertreespeciescombinedwereusedlessthan expected( G=20.56,df=2, P <0.001and G=36.63,df=2, P<0.001,respectively).In contrast,inloggedfragments,theuseofsnags , live Nothofagustrees,andallothertree speciescombineddidnotdifferfromexpectedbasedontheiravailability( G=2.79,df=

2, P=0.248;Fig.9).

Toexaminenesttreefidelitypatterns,nestsuccesswasevaluatedinrelationto reuse(i.e.,reusedornot),treetype(snagorlivetree),foresttype,andyear.Thefirsttwo modelsS (reuse+tree )andS (reuse) hadmoresupportthantheconstantDNSmodelS (.) ,but thefirstmodelhadalmosttwicethemodellikelihoodandweightasthesecond(Table2).

Thus,basedonthemodelwithmostsupport,S (reuse+tree ),nestsuccess(±SE)of A. spinicaudaintreesthatwerereusedwashigher(89.7%±9.7%,n=16)thanintrees thatwerenotreused(56%±9.8%,n=40).Moreover,nestsinsnags,whichhavea higherprobabilityofsurvival,alsoweremorelikelytobereusedthannestsinlivetrees.

CintiaCornelius,2006,Ph.D.Dissertation,p.107

Modelsthatincludedthevariablesreuseandforesttypeoryearwererankedlow(Table

2),suggestingthatreusepatternsweresimilaramongforesttypesandyears.

Discussion

Spatialdifferencesinnestsiteselectionby Aphrasturaspinicauda weremostlygivenby patternsobservedinfragmentsrelativetopatternsobservedinlargeandconnected forestsregardlessofnestsiteavailability(i.e.withorwithoutlogging).Here,Idiscuss possiblemechanismsthatmaydrivetheobservedspatialdifferencesinnestsite characteristicsandnestsiteselection.

Nest trees and territories used: evidence for long-term selection

Mosttreesusedfornestingby A. spinicauda werelargecanopytreesorlargesnags, presumablybecausethesetreesaremorelikelytoformcavitiesthanareyoungerand smallertrees(Newton1994).Themajorityofcavitiesusedfornestingwerenatural cavitiesthatdevelopedwherebranchesbecamedetached,becauseoffungaldecayor becauseoftrunkwounds,knotsorcreviceformation;lessthan7%ofusedcavitieswere madebyotherbirds.Althoughprimarycavitynestershaveanimportantrolein determiningcavityavailabilityforsmallsecondarycavitynestersinnorthernforests

(Martinetal.2004),inthesouthtemperateforest,primarycavitynestersseemnotto playanimportantroleforsmallcavitynesterslike Aphrastura .

Inoldgrowthandloggedforestplots ,Aphrastura spinicauda selectedlargesnags andlargelive Nothofagusnitida trees.Infragments,however,nesttreesusedwerenot differentinsizefromavailabletreesandnestswerefoundinseveraldifferenttree species,includingseveralspeciesofthefamilyMyrtaceae,whichwerenotusedas nestingsitesinoldgrowthorloggedforestplotsdespitetheirpresenceintheseforests.

CintiaCornelius,2006,Ph.D.Dissertation,p.108

Thisdifferentpatternofnesttreeusecouldbeattributedtodifferencesinforeststructure.

However,loggedfragmentsandloggedforestplotshadsimilarforeststructure,interms ofdensityofsnagsandlargetrees(Chapter2),buthaddifferentnesttreeusepatterns.

Ontheotherhand,nestsiteusepatternsweresimilarbetweenoldgrowthandlogged forestplotsdespitetheirdifferencesinforeststructure.Therefore,theobservednesttree usepatterninfragmentsismorelikelyaconsequenceofbirdshavingtostayinfragments becauseofisolation(i.e.reducedconnectivity),andnotaconsequenceofdifferencesin foreststructure.

Contrarytothepatternobservedfornesttrees,characteristicsofterritorieswere similaramongthedifferentforesttypes.Ingeneral, A. spinicauda territorieswere characterizedbyareaswithcanopygaps,withfewersmalltreesandmorelargetreesand snags,andwithadenseunderstory.Severallinesofevidenceinthisstudysuggestthat territoryselectionisrelativelyconserved.Nestboxesusedfornestingwereinareaswith habitatcharacteristicssimilartothosesurroundingnaturalnests.Second,territory characteristicsweresimilarregardlessofthelevelofhabitatdegradationandconnectivity oftheforests(i.e.,territorycharacteristicsdidnotvaryamongthethreeforesttypes examined).Third,characteristicsofhabitatsurroundingnestboxesthatwerenotusedfor nestingwereverydifferent,characterizedbyasecondaryforesttype,withaclosed canopyandverylittleunderstoryvegetation.Territorycharacteristicsareimportantfor survivalofadultsandforsuccessofbreedingattemptsbyprovidingshelterandfood resources.Insectbiomassisusuallyhigherincanopygapsthaninclosedcanopyareas withinforestsinthisstudyarea(Chacón&Armesto2006)andanopencanopyalso allowsadenseunderstorytodevelop.Understoryvegetation,whichinthisforestregion

CintiaCornelius,2006,Ph.D.Dissertation,p.109 ischaracterizedbythepresenceofadensebamboo( Chusquea spp ) layer , provides foragingsubstrateandshelterthatisespeciallyimportantforthepostfledglingperiod(as observedforotherbirdspeciesinthisregion,Reidetal.2004).Alessvariableterritory selectionpatternacrossthelandscapemaybeduetothefactthatselectiveloggingand fragmentation(e.g.,byproducingmoreedgehabitat)mayactuallyprovideopengap conditionsfor A.spinicauda similartothosefoundinnaturaltreefallgapsinoldgrowth forests.

Theseresultssuggestthatcertainterritorycharacteristicsarerequiredand, therefore,thepresenceofagoodcavitybyitselfdoesnotnecessarilyimplyasuitable nestingsite.Assuggestedbynesttreeandterritoryusepatternsinthisstudy,the behaviorforterritoryselectionseemslessvariablethanthebehaviorfornesttree selection(i.e.,withahigherlevelofplasticity).Moreover,whereasnesttreeselectionis likelyexplainedbya“predationavoidance”model(e.g.,Nilsson1984),territory selectionismorelikelyexplainedbya“foodbased”model(e.g.,Burke&Nol1998).

Studiesthatspecificallytestthesehypotheseshavenotbeencarriedoutyet,andwouldbe importanttodeterminetherelativeimportanceoffoodandpredatorsaslimitingfactors

(Martin1995).

Successful and unsuccessful nest-sites: evidence for ongoing selection

Nestsinsnagshadahigherprobabilityofsurvivalthannestsinlivetreesinthestudy area.Moreover,treeswithlittleepiphytecoverwerealsosafernestingsitesthantrees coveredbyepiphytes.Thesetwovariables,however,arecorrelatedbecausesnagsusually havelittleornoepiphytecover,whereaslivetreesusuallyhaveadenseepiphytecover

(Muñozetal.2003).Smallmammalsareimportantnestpredatorsinthesouthtemperate

CintiaCornelius,2006,Ph.D.Dissertation,p.110 rainforest(Willsonetal.2001)butnoinformationisavailableaboutthespecificidentity ofnestpredatorsfor Aphrastura .Asmallarborealmarsupial( Dromiciposgliroides ), however,isamongthemostprobablepredatorsfor Aphrastura spinicauda nestsinthe studyregionbecauseothersmallrodentshavepoorclimbingabilities(GallardoSantiset al.2005)andsnakesdonotusuallyentermoistforesthabitatsinthisregion(Greene&

Jaksic1992).Therefore,itislikelythatabaretrunkprovidesasafernestsitebecauseit exposesnestpredators,likethesmallopossum,totheirownpredators.Nestcavitiesalso hadverylowvegetationconcealmentregardlessofthetreetypeinwhichtheywere found,supportingthishypothesis.Otherstudiesalsohaveshownthatsuccessfulnestsof cavitynestersareusuallythosewithlowvegetationconcealmentbecauseattending parentshaveabetterviewofpredatorsapproachingnests(Li&Martin1991).Finally, nestsuccesswasnotdifferentamongthethreeforesttypesstudied,despitethefactthat patternsofnestsiteuseweredifferentinfragmentsasmanifestedbytheuseofsmaller treesandadifferentsetoftreespecies.Thisdifferentialuse,however,didnothave consequencesfornestingsuccess,asinitiallypredicted.

Adaptive nest-tree preferences

Supportforanadaptivenestsitechoice(Clark&Shutler1999)inthisstudycomesfrom twolinesofevidence.First,nesttreesinwhichnestsuccesswashigh(i.e.,snags)were usedinahigherproportionthanexpectedbasedontheiravailabilityand,secondly, fidelitywashighinnesttreesinwhichfitnesswaspreviouslyhigh.

Inoldgrowthandloggedforestplots,locatedinlargeandconnectedforests, snagswereusedmoreoftenthanexpectedbasedontheiravailabilitysuggestingthatnest sitechoiceisadaptive.Amonglivetrees, A.spinicauda nestedmoreoftenthanexpected

CintiaCornelius,2006,Ph.D.Dissertation,p.111 in Nothofagusnitida trees,basedontheiravailability. Nothofagus arelikelybettertrees fornestingbecausetheyhaveintermediatelevelsofepiphytecoverwhencomparedto snagsandotherlivetrees.Othertreespecies,however,wereusedlessthanexpected basedontheiravailability.Althoughthisalsomayberelatedtodifferencesinepiphyte cover,itmayreflectdifferencesintreestructurethatinfluencethepropensitytoform cavitiesratherthananactiveavoidanceofothertrees.

Infragments,wherenestsiteavailabilitywasreducedbyselectiveloggingand densityofbirdswashigherthanexpected(Chapter2),birdsusednesttreesindirect proportiontotheiravailabilityinrelationtobothsizeandspecies.Thisresultcouldbe interpretedasalackofnestsiteselectioninfragments.Ontheotherhand,anadaptive nestsiteselectionimpliesthatfitnessishigherinnestsitespreferredfornesting(Jones

2001).Therefore,inoldgrowthforest,nestsitesnotusedfornestingareexpectedtobe avoidedbecauseofthenegativeeffectsonfitnesstheymayentail.Infragments,however, theuseofnesttreesthatwereusuallynotusedinoldgrowthforestshadnoconsequences onnestsuccess.Giventhattherewasnocosttousingdifferentnesttreesinfragments,at leastatthelevelofnestsuccess,itispossiblethatcavitiesareofhigherqualityin fragments.

Ifprocessestriggeredbyhabitatfragmentationinfluencequalityofavailable cavities(e.g.throughchangesinpredatordensities,interactingspeciesormicroclimatic conditions),andifbirdsareabletoassessthesechanges,observednestsiteusepatterns couldreflectbehavioraladaptiveplasticityinnestsiteselection(Forstmeier&Weiss

2004).Afewstudieshavesuggestedthatbirdsarecapableofassessingchangesinhabitat qualityandadjusttheirnestsitechoiceaccordingly(Forstmeier&Weiss2004;Haemig

CintiaCornelius,2006,Ph.D.Dissertation,p.112

1999;Schmidtetal.2006;Fontaine&Martin2006 b).Therefore,iffragmentationaffects populationsofnestpredators,thencavitiesthatareusuallyoflowqualityinoldgrowth forestaresafernestingsitesinfragments.Forinstance,thestrengthoftopdownforces canvaryacrossthelandscapedependingontheecologicalresponsesofpreyandpredator populationstolandscapechanges(Patten&Bolger2003).Infact,populationsofthe smallarborealmarsupialhavebeenshowntobeaffectedbyfragmentationinanarea northofthesitewherethisstudywasconducted(Saavedra&Simonetti2005).

Finally,reusepatternsofnestsiteswereconsistentwithanadaptiveresponseof nestsitechoice.Neststhatwerereusedhadanoverallhigherdailynestsurvivalthan neststhatwerenotreused.Thissuggeststhatsuccessfulnestsweremorelikelytobe reusedthanneststhatfailedinapreviousnestingattempt.Furthermore,nestsinsnags hadahighernestsuccessthannestsinlivetreesandsnagswerereusedmoreoftenthan livetrees.Nestreusepatternswerenotinfluencedbynestsiteavailabilityor connectivity,showingaconsistentpatternofreuseacrossthelandscape.

Concludingremarks

Nestsitepreferencesareconsideredtobeadaptiveifhabitatcharacteristicsofsitesused fornestingaredifferentfromavailablehabitat,ifvariationincharacteristicsofsuccessful andunsuccessfulnestsexists,and,finally,ifanadaptiveresponseofnestsitepreference isdemonstrated(Clark&Shutler1999;Jones2001).Resultsofthisstudynotonlyshow evidenceforanadaptivenestsitepreferencein A.spinicauda butalsoshowthatnestsite choicesarespatiallyvariableinresponsetoecologicalgradientsproducedbyhuman drivenlandscapechanges.

CintiaCornelius,2006,Ph.D.Dissertation,p.113

Inloggedfragments,individualbirdsarelikelyfacedwithanestsiteselection tradeoffbetweendispersingtoothersitesinsearchofsuitablecavitiesandnestingina forestwithreducednestsiteavailability.Giventhattherewasnocosttousingdifferent nesttreesinfragments,analternativeexplanationisthatbirdsareabletoassesschanges inhabitatquality(Forstmeier&Weiss2004).Asaconsequence,birdsmaystayin fragmentsaslongassuitableterritoriesareavailableandnotbecauseofacostassociated withdispersaloveropenhabitats.Ontheotherhand,geneticdataon A.spinicauda populationsinthissamefragmentedlandscape(Chapter1)showthatgeneflowis reducedtoacertaindegreeamongfragments,andthatsmallfragmentsaccountformost oftheobservedgeneticstructureamongpopulations.Therefore,itislikelythatnestsite selectionpatternsinfragmentsareacombinationofadispersaltradeoffandthe capabilityofindividualbirdstoassesschangesinhabitatquality.Inthishuman dominatedsouthtemperateforestsystem,populationsofthecavitynestingbird A. spinicauda ,asalsoshownforgroundcavitynestingspeciesofthefamilyRhinocryptidae

(Willsonetal.2001;DeSantoetal.2002),aremorelikelytobelimitedbynestsite availabilityandtheaccesstothesenestsitesthanbynestingsuccess.

CintiaCornelius,2006,Ph.D.Dissertation,p.114

LiteratureCited

AndrenH.(1994)Effectsofhabitatfragmentationonbirdsandmammalsinlandscapes withdifferentproportionsofsuitablehabitat:areview. Oikos 71:355366

BelisleM.(2005)Measuringlandscapeconnectivity:Thechallengeofbehavioral landscapeecology. Ecology 86:19881995

BurkeD.M.,NolE.(1998)Influenceoffoodabundance,nestsite,andforest fragmentationonbreedingOvenbirds. Auk 115:96104

ChacónP.,ArmestoJ.J.(2006)Docarbonbaseddefensesreducefoliardamage?Habitat relatedeffectsontreeseedlingperformanceinatemperaterainforestofChiloéIsland,

Chile. Oecologia 146:555565

ChalfounA.D.,ThompsonF.R.,RatnaswamyM.J.(2002)Nestpredatorsand fragmentation:areviewandmetaanalysis. ConservationBiology 16:306318

ClarkR.G.,ShutlerD.(1999)AvianHabitatSelection:patternsfromprocessinnestsite usebyducks?Ecology 80:272287

DeSantoT.L.,WillsonM.F.,SievingK.E.,ArmestoJ.J.(2002)Nestingbiologyof tapaculos(Rhinocryptidae)infragmentedsouthtemperaterainforestsofChile. Condor

104:482495

DengW.H.,GaoW.(2005)Edgeeffectsonnestingsuccessofcavitynestingbirdsin fragmentedforests. BiologicalConservation 126:363370

CintiaCornelius,2006,Ph.D.Dissertation,p.115

DiCastriF.,HajekE.(1976)BioclimatologíadeChile.EdicionesUniversidadCatólica deChile,Santiago,Chile

DiazI.A.,ArmestoJ.J.,ReidS.,SievingK.E.,WillsonM.F.(2005)Linkingforest structureandcomposition:aviandiversityinsuccessionalforestsofChiloéIsland,Chile.

BiologicalConservation 123:91101

DinsmoreS.J.,WhiteG.M.,KnopfF.L.(2002)Advancetechniquesformodelingavian nestsurvival. Ecology 83:34763488

EstadesC.F.,TempleS.(1999)Deciduousforestbirdcommunitiesinafragmented landscapedominatedbyexoticpineplantations. EcologicalApplications 9:573585

FontaineJ.J.,MartinT.E.(2006)Parentbirdsassessnestpredationriskandadjusttheir reproductivestrategies .EcologyLetters 9:428434

FontaineJ.J.,MartinT.E.(2006b)Habitatselectionresponsesofparentstooffspring predationrisk:andexperimentaltest. AmericanNaturalist 168:811818.

ForstmeierW.,WeissI.(2004)Adaptiveplasticityinnestsiteselectioninresponseto changingpredationrisk. Oikos 104:487499

GallardoSantisA.,SimonettiJ.A.,VasquezR.A.(2005)Influenceoftreediameteron climbingabilityofsmallmammals. JournalofMammalogy 86:969973

GreeneH.W.,JaksicF.M.(1992)Thefeedingbehaviorandnaturalhistoryoftwo

Chileansnakes, Philodriaschamissonis and Tachymenischilensis (Colubridae).Revista

ChilenadeHistoriaNatural 65:485493

CintiaCornelius,2006,Ph.D.Dissertation,p.116

HaemigP.D.(1999)Predationriskaltersinteractionsamongspecies:competitionand facilitationbetweenantsandnestingbirdsinaborealforest. EcologyLetters 2:178184

HoltR.F.,MartinK.(1997)Landscapemodificationandpatchselection:The demographyoftwosecondarycavitynesterscolonizingclearcuts. Auk 114:443455

JaenikeJ.,HoltR.D.(1991)Geneticvariationforhabitatpreference:evidenceand explanations. AmericanNaturalist 137:S67S90

JonesJ.(2001)Habitatselectionstudiesinavianecology:Acriticalreview. Auk

118:557562

LiP.,MartinT.E.(1991)Nestsiteselectionandnestingsuccessofcavitynestingbirds inhighelevationforestdrainages. Auk 108:405418

ManolisJ.C.,AndersenD.E.,CuthbertF.J.(2000)Uncertainnestfatesinsongbird studiesandvariationinMayfieldestimation. Auk 117:615626

MartinK.,AitkenK.E.H.,WiebeK.L.(2004)Nestsitesandnestwebsforcavitynesting communitiesininteriorBritishColumbia,Canada:Nestcharacteristicsandniche partitioning. Condor 106:519

MartinT.E.(1993)Nestpredationandnestsitesnewperspectivesonoldpatterns.

BioScience 43:523532

MartinT.E.(1995)Avianlifehistoryevolutioninrelationtonestsites,nestpredation, andfood. EcologicalMonographs 65:101127

CintiaCornelius,2006,Ph.D.Dissertation,p.117

MartinT.E.(1998).Aremicrohabitatpreferencesofcoexistingspeciesunderselection andadaptive?Ecology 79:656670.

MartinT.E.,GeupelG.R.(1993)Nestmonitoringplots:methodsforlocatingnestsand monitoringsuccess. JournalofFieldOrnithology 64:507519

MartinT.E.,LiP.(1992)Lifehistorytraitsofopenvs.cavitynestingbirds. Ecology 72:

579592

MatthysenE.,AdriansenF.(1998)Forestsizeandisolationhavenoeffecton reproductivesuccessofEurasianNuthatches( Sittaeuropea ). Auk 115:955963

MayfieldH.(1975)Suggestionsforcalculatingnestsuccess. WilsonBulletin 87:456466

MorenoJ.,MerinoS.,VásquezR.A.,ArmestoJ.J.(2005)BreedingBiologyoftheThorn tailedRayadito(Furnariidae)insouthtemperaterainforestsofChile. TheCondor 107:

6977

MuñozA.,ChaconP.,PerezF.,BarnertE.S.,ArmestoJ.J.(2003)Diversityandhosttree preferencesofvascularepiphytesandvinesinatemperaterainforestinsouthernChile.

AustralianJournalofBotany 51:381391

NewtonI.(1994)Theroleofnestsitesinlimitingthenumbersofholenestingbirds:a review. BiologicalConservation 70:265276

NewtonI.(1998)Populationlimitationinbirds.AcademicPressLimited,SanDiego,

CA.

CintiaCornelius,2006,Ph.D.Dissertation,p.118

NilssonS.G.(1984)Theevolutionofnestsiteselectionamongholenestingbirds:the importanceofnestpredationandcompetition. OrnisScandinavica15:165175

PattenM.A.,BolgerD.T.(2003)Variationintopdowncontrolofavianreproductive successacrossafragmentationgradient. Oikos 101:479488

ReidS.,DiazI.A.,ArmestoJ.J.,WillsonM.F.(2004)Importanceofnativebamboofor understorybirdsinChileantemperateforests. Auk 121:515525

RicklefsR.(1969)Ananalysisofnestingmortalityinbirds. SmithsonianContributions inZoology 9:148.

RodewaldA.D.(2004)Nestsearchingcuesandstudiesofnestsiteselectionandnesting success. JournalofFieldOrnithology 75:3139

RotellaJ.J.(2005)Nestsurvivalmodels,pp.122124.In: ProgramMARK"Agentle introduction"(CoochE.,WhiteG.M.,eds),5 th edition.

SaavedraB.,SimonettiJ.A.(2005)SmallmammalsofMaulinoforestremnants,a vanishingecosystemofsouthcentralChile. Mammalia 69:337348

SchmidtK.A.,OstfeldR.S.,SmythK.N.(2006)Spatialheterogeneityinpredatoractivity, nestsurvivorship,andnestsiteselectionintwoforestthrushes. Oecologia 148:2229

TurnerM.,GardnerR.(1990)Quantitativemethodsinlandscapeecology.Springer

Verlag,NewYork

CintiaCornelius,2006,Ph.D.Dissertation,p.119

WaltersJ.R.,FordH.A.,CooperC.B.(1999)Theecologicalbasisofsensitivityofbrown treecreeperstohabitatfragmentation:apreliminaryassessment. BiologicalConservation

90:1320

WhiteG.M..MARK:MarkandRecaptureSurvivalrateEstimation.[5.1]2000,

DepartmentofFisheryandWildlife,ColoradoStateUniversity,FortCollins,CO

WiebeK.L.,KoenigW.D.,MartinK.(2006)Evolutionofclutchsizeincavity excavatingbirds:thenestsitelimitationhypothesisrevisited. AmericanNaturalist 167:

343353

WiensJ.A.(1985)Habitatselectioninvariableenvironments:steppebirds,pp.

227251.In: Habitatselectioninbirds (CodyM.,ed.).AcademicPress,Toronto,Canada.

WillsonM.F.,DeSantoT.L.,SabagC.,ArmestoJ.J.(1994)Aviancommunitiesof fragmentedsouthtemperaterainforestsinChile. ConservationBiology 8:508520

WillsonM.F.,MorrisonJ.,SievingK.E.,DeSantoT.L.,SantistebanL.,DiazI.(2001)

PatternsofpredationriskandsurvivalofbirdnestsinaChileanagriculturallandscape.

ConservationBiology 15:447456

CintiaCornelius,2006,Ph.D.Dissertation,p.120

Table1. Summaryofmodelselectiontoevaluatetheeffectsofnesttreecharacteristics,forest typeandyearonnestsurvivalof A.spinicauda inthesouthtemperaterainforestinChiloé(2003

2005)basedon74knownfatenestsinnaturalcavities. K= numberofparameters;modelsare rankedbyascendingAIC c;wiis normalized modelweight.

Model K AIC c AIC c wi Model Likelihood S (tree+epiphytecover) 3 151.241 0.00 0.176 1.0000

S (tree+epiphytecover+year) 4 151.277 0.04 0.173 0.982

S(tree) 2 151.622 0.38 0.146 0.827

S(tree+year) 3 151.970 0.73 0.123 0.695

S(epiphytecover) 2 152.239 1.00 0.107 0.607

S(tree+epiphytecover+forest) 4 153.176 1.94 0.067 0.380

S(tree+forest) 3 153.528 2.29 0.056 0.319

S(tree+forest+year) 4 153.548 2.31 0.056 0.316

S(.) 1 153.742 2.50 0.051 0.286

S(year) 2 154.989 3.75 0.027 0.154

S(forest) 2 155.746 4.51 0.019 0.105

CintiaCornelius,2006,Ph.D.Dissertation,p.121

Table 2. Summaryof modelselectiontoevaluatereusepatterns in relation to nesttree type, foresttypeandyearonnestsurvivalof A.spinicauda inthesouthtemperaterainforestinChiloé

(20032005)basedon56knownfatenestsinnaturalcavities. K= numberofparameters;models arerankedbyascendingAIC c;wiis normalized modelweight.

Model K AIC c AIC c wi Model Likelihood S (reuse+tree) 3 96.676 0.00 0.26023 1.0000

S(reuse) 2 97.983 1.31 0.13537 0.5202

S (reuse+tree+year) 4 98.229 1.55 0.11966 0.4598

S(tree) 2 98.304 1.63 0.11526 0.4429

S(reuse+tree+forest) 4 98.331 1.66 0.11375 0.4371

S(reuse+forest) 3 98.851 2.18 0.08768 0.3369

S(reuse+year) 3 99.988 3.31 0.04966 0.1908

S(.) 1 100.029 3.35 0.04867 0.1870

S(reuse+year+forest) 4 100.859 4.18 0.03213 0.1235

S(forest) 2 101.844 5.17 0.01964 0.0755

S(yeart) 2 102.023 5.35 0.01796 0.0690

CintiaCornelius,2006,Ph.D.Dissertation,p.122

A B 1 3 2 3

1

2

Figure1. Studyregion(A)andstudysites(B)inIslaGrandedeChiloé,southernChile.The satelliteimage(Landsat5T2001)showsthespatialpatternofforestfragmentsinthestudyarea.

Squares represent 10ha study plots in each of three forest types (1 = oldgrowth forest, 2 = loggedforest,3=loggedfragments)

CintiaCornelius,2006,Ph.D.Dissertation,p.123

140 18 16 120 Available Nests 14 100 12 80 10 60 8 Frequency Frequency 6 40 4 20 2

0 0 16.9 40.6 64.4 88.1 111.9 135.6 159.4 183.1 16.9 40.6 64.4 88.1 111.9 135.6 159.4 183.1 DBH(cm) DBH(cm)

Figure2. Sizedistributionandnormalcurve,asmeasuredbydiameteratbreastheight(dbh),of

availabletreesandtreesusedfornestingby Aphrasturaspinicauda inChiloé.

CintiaCornelius,2006,Ph.D.Dissertation,p.124

110

Nesttrees 100 Availabletrees

90

80

70 Dbh(cm)

60

50

40 oldgrowth loggedforest loggedfragments

Figure3. Meansize(±SE)asmeasuredbydiameteratbreastheight(dbh),ofnesttrees

usedby Aphrasturaspinicauda andtreesavailableinthethreeforesttypesinChiloé.

CintiaCornelius,2006,Ph.D.Dissertation,p.125

100

80

60

%Nesttrees 40 SNG COG LUM 20 PET TEP ARY ULM 0 oldgrowth loggedforest loggedfragments

Figure4. Percentageoftreespeciesandsnagsusedfornestingby Aphrasturaspinicauda inthe threeforesttypesinChiloé.SNG=snag,COG=Coigüe(Nothofagusnitida), LUM=Luma

(Amomyrtusluma ),PET=Peta( Myrceugeniaexsucca ),TEP=Tepa( Laureliopsisphilippiana ),

ARY=Arrayán( Lumaapiculata ), ULM=Ulmo( Eucryphiacordifolia ).

CintiaCornelius,2006,Ph.D.Dissertation,p.126

40

30

20 Numberofcavities

10

0 0 10 20 30 40 50 60 70 80 90 100

PercentageConcealment

Figure5. FrequencyofnestcavitieswithdifferentlevelsofvegetationconcealmentinChiloé forestsbasedon57activenests.

CintiaCornelius,2006,Ph.D.Dissertation,p.127

1.8 14

Naturalnests a 1.6 Nestboxes b 12 Notused 1.4 ab 10 1.2 ab b a 1.0 8 a 0.8 a 6 a

0.6 smalltrees/plot 4 snagsorlargetrees/plot 0.4

2 0.2

0.0 0 Snags Largetress Smalltrees

16 100 b Naturalnests 14 Nestboxes ab b Notused a

12 75

a 10 a a ab 8 50 )orheight(m) 3

6 b

volume(m 4 25 percentagecanopycover

2

0 0 Understoryvolume Canopyheight Canopycover

Figure6. Vegetationcharacteristicswithina20mradiusplotcenteredonanaturalnest,aused nestbox,andanonusednestbox(i.e.unusedterritory).Differentlettersdenotesignificant differencesatthe P<0.05levelwithineachvegetationvariable(Tukeyposthoctestformultiple comparisons).

CintiaCornelius,2006,Ph.D.Dissertation,p.128

3

2 Large trees Large Snags

1

2 2 3 0 1 1 3 1 GroupCentroids DiscriminantFunction2

2 Unusedboxes (1) NaturalNests (2)

3 NestBoxes (3) 4 3 2 1 1 2 3 4

Understory volume Canopy cover Canopy height Small Trees

DiscriminantFunction1

Figure7. Canonicaldiscriminantfunctionofhabitatcharacteristicsaroundnaturalnests,used nestboxes,andunusednestboxesof Aphrasturaspinicauda inChiloé.

CintiaCornelius,2006,Ph.D.Dissertation,p.129

1.000

0.995

0.990

0.985 DNS 0.980

0.975

0.970

0.965 0 20 40 60 80 100

Snags Nothofagus other tree species

EpiphyteCover(%)

Figure 8 . Daily nest survival (DNS) for Aphrastura spinicauda related to epiphyte cover of trees,basedon74knownfatemodelsofthreebreedingseasons(20032004)inChiloé.

CintiaCornelius,2006,Ph.D.Dissertation,p.130

120

100

80

60

%Availabletrees 40

20 Snags Nothofagus Otherspecies 0 oldgrowth loggedforest loggedfragments

120

100

80

60 %Nesttrees 40

20 Snags Nothofagus Otherspecies 0 oldgrowth loggedforest loggedfragments

Figure9. Comparisonofproportionsoftreesavailableandtreesusedfornestingby Aphrastura spinicauda withinthreecategories(snags, Nothofagusnitida treesandothertreespecies)among thethreeforesttypesinChiloé.