Best of the ARRL Contest Update Since Dayton 2011 Ward Silver NØAX, Editor

Total Page:16

File Type:pdf, Size:1020Kb

Best of the ARRL Contest Update Since Dayton 2011 Ward Silver NØAX, Editor Best of the ARRL Contest Update since Dayton 2011 Ward Silver NØAX, Editor The following is a potpourri of contester-friendly tidbits gleaned from ARRL Contest Update issues since the 2011 Dayton Hamvention. The newsletter is free to ARRL members – just log on to the ARRL website and edit your membership information to add the Contest Update to your list of newsletters and bulletins. 25,000 readers can’t be wrong! This great three-part series on impedance matching was published by Lou Frenzel W5LEF in Electronic Design magazine. Part 1, Part 2, Part 3. (Thanks, Al AB2ZY) Mike WØBTU has created an informative web page on Beverage antennas - especially how to build and control a two-wire Beverage. A reminder - asking to be spotted is considered "self-spotting" and is specifically not allowed in nearly all contests. The documentation on K2AV's Folded Counterpoise Antenna (FCA) contain a lot of good information. Take a look around the WØUCE web site for more! Jim AD1C has released version 3.1 of PASS - a program to analyze passing stations from band-to-band during contests. This version includes pass_win.exe which will work from a command prompt under Window 7/Vista as well as Windows XP. Brian K1LI writes, "In the category of "useful resources," I find that the Space Weather Alerts and Warnings Timeline gives me, at a glance, lots of information that helps me understand what's going on propagation-wise, such as the timeline for Jan 16 -31. It gives a very interesting depiction of the events we all witnessed.” If you aren't getting the ARRL Propagation Bulletin by Tad K7RA, there is a lot more to it than just solar indices. Tad spices up the discussion with background on solar events, stories from readers, and great links to online resources. Log into the ARRL web site and click "Edit Your Profile" - you'll find the bulletin on the "Edit Email Subscriptions" tab. The website Amanogawa has many nice online electromagnetic engineering Java applets that open in separate windows for circuits, antennas, transmission lines, EMC/EMI, and a very interesting Smith Chart tutorial. This week's handy map gadget was contributed by Bob N6TV who located this interactive topo map that offers features useful to hams scouting out QTHs and antenna locations. Not only does the map tell you the elevation, it tells you the slope angle and slope direction of US locations, as well. The late G4FGQ created a number of useful calculator utility programs such as this radial calculator that includes the conductivity of the soil. With it you can begin to answer the question, "How many ground mounted radials do I need and how long do they need to be?" All such calculators are a model and probably deviate from an exact simulation but you can get an idea of what might work. Another tack is to vary the radial length but keep the number of radials constant. (Thanks, Bob N6TV) Todd KC9BQA has made several new web posts to that are helpful to newer VHF+ contesters, such as the articles titled VHF Contesting School. The articles are broken down into bite-sized pieces geared toward getting a novice VHF+ operator comfortable calling "CQ Contest". With the CQ 160 contests coming up shortly, here's a simple receive antenna recommended by Tim K3LR. The VE3DO loop is also straightforward to build and install, making it a good "temporary" antenna. John G3JVC/GM3JVC recommends a useful publication for your bookshelf on fighting EMI developed by the US Naval Postgraduate School, "The Mitigation of Radio Noise From External Sources at Receiving Sites". It's a tour-de-force on problems hams know well. The Internet Archive project has just published nearly every issue of defunct 73 magazine, all the way back to January 1961. While dominated by the editorial adventures of Wayne Green W2NSD, the magazine also featured loads of simple (sometimes too-simple) construction articles, expedition adventure writing by Gus Browning W4BPD and others, and had a loyal following for many years. You may read the material online or download PDF files. (Thanks Leigh WA5ZNU via the QRZ.com website) If you answer a CQing station and they respond with an error in your call, the most reliable way to be sure they have your call correct is to send only your call sign again and not the exchange. Don't send the exchange until the CQer responds with your correct call - then send your exchange. Mike K5WMG has written and published a good paper illustrating the effects of height-above-ground on vertical takeoff angle for beam antennas. It shows why a good "first tower" height of 50 feet works well and why higher performance antennas need that extra vertical "oomph". Kirk K4RO found this nice video about building Beverage antenna transformers. I especially like the "mount on lid, not box" idea. Sometimes finding the right person to answer questions at the local power company is more difficult than the 80th section near the end of Sweepstakes! In the meantime, complete documentation and all sorts of valuable guying information and soil information can be found at the AB Chance civil construction web pages. (Thanks, Tom N4NW) If you live in a location where ice can build up on your guy wires, watch out for melting ice sliding down into the Preform Big Grips - they can be knocked loose by a big enough impact! Dave W6NL suggests placing a small hose clamp around the end of the grip - this prevents the grip from loosening due to an impact. Voice maintenance - to keep your voice in good shape during a long contest, learn to speak clearly at a comfortable level without shouting. It helps to practice with a friend on the air in setting your mic gain and compression levels properly. If you use voice recordings, take steps to reduce the amount of background noise in them and try to match your normal speaking voice settings for clean transmitted signals. (And watch that VFO frequency when clicking on a spot - it's easy to not notice that the frequency is outside your operating privileges or too close to a band edge.) If you know what cables will be in a run of conduit, an alternative to pulling them through the finished run is to lay them out next to the trenches and slide the conduit sections into place over the cables. Then glue the sections together as you lay them into the trenches. You can include a pull rope in to the bundle for future use. Make sure the conduit joint surfaces are completely clean before gluing. This might not be practical for very long runs of conduit, though. (Thanks, Alan K9MBQ) Pat WW9R contributes this tip for computer logging - "I find it helpful to run a strip of masking tape above the Function keys and mark what each one does. Then, in the heat of the battle or when you get really tired, you can find all the messages! I fill all available CW messages with something like "73""GL" "?" "AGN" and the individual parts of the exchange; sometimes a slowed-down version of the exchange so I don't need to touch the CW speed setting." Tektronix veteran, Don W7WLL recommends the YouTube videos by W2AEW as really good tutorials on using an oscilloscope for ham radio measurements. He also has an excellent video at the same site titled "Scopes For Dopes" - it is an excellent tutorial for those who are daunted by the oscilloscope. Read the rules BEFORE the contest, runic though they may be! How much off-time and how long are the breaks? Where are the power limits set? Can single-ops use the spotting networks? Don't embarrass yourself by having to back-track after the contest, submitting in a category you didn't know you had entered! Tower climbing pro, Dan K1TO, points out that thrust bearing bolts are not designed to support a heavy mast as described in the previous issue. The way to do this properly is to have at least one muffler clamp with a saddle (or better yet, two saddles with through bolts) tightened securely to prevent any downward slippage of the mast while moving the rope attachment point. When installing antennas on a mast, don't forget to leave a "rotator loop" in the feed lines to allow the antennas to turn without pulling on the cables! As Steve K7LXC points out, "There are two rotator loop methods. One has the cable(s) coming off the mast with 5-6 extra feet to just hang off the tower and follows the mast around as it turns. The other way is to loop the cable(s) 2-3 times around the bottom of the mast at the flat top of the tower 2-3 times. The cables sit on the tower top and allow lots of rotation. Either way works Fine Business." Thanks to K6TD, the Cabrillo Statistics program originally developed by K5KA (SK) and now maintained by Bob N6TV, has just been ported to the Mac OS X environment. This program generates hour-by-hour rate sheets and valuable SO2R statistics from a Cabrillo-formatted file. It creates a simple text file that can easily be pasted into a reflector post. You may now download CBS version 10e for Windows, Mac OS X, and Linux. CBS Version 10e adds new support for NAQP-RTTY and CQ-WW- RTTY logs, as well as a number of bug fixes and minor improvements. This is a simple command line utility written entirely in C and is small enough to download from a slow dial-up connection (<100 kbytes).
Recommended publications
  • Antenna Articles Collection of Short Articles Relating to All Manners of Antennas
    Antenna Tips page 1 of 31 Source : http://www.funet.fi/pub/dx/text/antennas/antinfo.txt Antenna Articles Collection of short articles relating to all manners of antennas. These articles are the hard work of Wayne Sarosi KB4YLY (995 Alabama Street, Titusville, FL 32796) SUBJECT: Circular Polarized Antenna There has been a request for a series on 'CP' antennas. The term 'CP' eluded me at first as I was not familar with the abriviated designator for circular polarization. At work, we just use the entire words. I'm going to begin this ten part series with the basics. After researching CP designs with a few engineers and fellow hams, I found that they knew very little about the subject. I also found I didn't know quite as much as I thought I did about circular polarization. So starting at the begining will help all out. First, let's discuss the circular polarized wave. There seems to be conflicting standards used by the world of physics and the IEEE. I found this to be true in four reference manuals including the ARRL Antenna Handbook. At least it's stated right up front but biased according to which text you read. We will follow the IEEE/ARRL standard in the following series for obvious reasons. There are two types of circular polarization; right and left. All of us agree up to this point. According to the ARRL Antenna Handbook, the following statement: 'Polarization Sense is a critical factor, especially in EME work or if the satellite uses a circular polarized antenna.
    [Show full text]
  • Various Types of Antenna with Respect to Their Applications: a Review
    INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 7, NO. 3, MARCH 2016 Various Types of Antenna with Respect to their Applications: A Review Abdul Qadir Khan1, Muhammad Riaz2 and Anas Bilal3 1,2,3School of Information Technology, The University of Lahore, Islamabad Campus [email protected], [email protected], [email protected] Abstract– Antenna is the most important part in wireless point to point communication where increase gain and communication systems. Antenna transforms electrical signals lessened wave impedance are required [45]. into radio waves and vice versa. The antennas are of various As the knowledge about antennas along with its application kinds and having different characteristics according to the need is particularly less thus this review is essential for determining of signal transmission and reception. In this paper, we present various antennas and their applications in different systems. comparative analysis of various types of antennas that can be differentiated with respect to their shapes, material used, signal In this paper a detailed review of various types of antenna bandwidth, transmission range etc. Our main focus is to classify which developed to perform useful task of communication in these antennas according to their applications. As in the modern different field of communication network is presented. era antennas are the basic prerequisites for wireless communications that is required for fast and efficient II. WIRE ANTENNA communications. This paper will help the design architect to choose proper antenna for the desired application. A. Biconical Dipole Antenna Keywords– Antenna, Communications, Applications and Signal There is no restriction to the data transfer capacity of an Transmission infinite constant-impedance transmission line however any pragmatic execution of the biconical dipole has appendages of constrained extend forming an open-circuit stub in the same I.
    [Show full text]
  • Highlights of Antenna History
    ~~ IEEE COMMUNICATIONS MAGAZINE HlOHLlOHTS OF ANTENNA HISTORY JACK RAMSAY A look at the major events in the development of antennas. wires. Antenna systems similar to Edison’s were used by A. E. Dolbear in 1882 when he successfully and somewhat mysteriously succeeded in transmitting code and even speech to significant ranges, allegedly by groundconduction. NINETEENTH CENTURY WIRE ANTENNAS However, in one experiment he actually flew the first kite T is not surprising that wire antennas were inaugurated antenna.About the same time, the Irish professor, in 1842 by theinventor of wire telegraphy,Joseph C. F. Fitzgerald, calculated that a loop would radiate and that Henry, Professor’ of Natural Philosophy at Princeton, a capacitance connected to a resistor would radiate at VHF NJ. By “throwing a spark” to a circuit of wire in an (undoubtedly due to radiation from the wire connecting leads). Iupper room,Henry found that thecurrent received in a In Hertz launched,processed, and received radio 1887 H. parallel circuit in a cellar 30 ft below codd.magnetize needies. waves systematically. He used a balanced or dipole antenna With a vertical wire from his study to the roof of his house, he attachedto ’ an induction coilas a transmitter, and a detected lightning flashes 7-8 mi distant. Henry also sparked one-turn loop (rectangular) containing a sparkgap as a to a telegraph wire running from his laboratory to his house, receiver. He obtained “sympathetic resonance” by tuning the and magnetized needles in a coil attached to a parailel wire dipole with sliding spheres, and the loop by adding series 220 ft away.
    [Show full text]
  • FY 1978 Technical Progress Report
    INSTITUTE FOR TELECOMMUNICATION SCIENCES OF THE NATIONAL TELECOMMUNICATIONS AND INFORMATION ADMINISTRATION ANNUAL TECHNICAL PROGRESS REPORT 1978 For the period from October 1, 1_977 through Sept. 30, 1978 U.S. DEPARTMENT OF COMMERCE National Telecommunications and Information Administration ADMINISTRATOR Henry Geller DEPUTY ADMINISTRATOR Paul Bortz OFFICE OF PLANNING & POLICY COORDINATION Forrest Chisman, Director L. Daniel O'Neill, Deputy Director I I I I OFFICE OF THE CHIEF COUNSEL OFFICE OF OFFICE OF ADMINISTRATION OFFICE OF CONGRESSIONAL INTERNATIONAL AFFAIRS & PUBLIC AFFAIRS Gregg Skall, Chief Counsel Cloyd Dodson, Director Veronica Ahern, Director Sharon Coffey, Director I OFFICEI OF I I I OFFICE OF FEDERAL SYSTEMS INSTITUTE FOR OFFICE OF POLICY I TELECOMMUNICATIONS & SPECTRUM MANAGEMENT TELECOMMUNICATION SCIENCES ANALYSIS & DEVELOPMENT , APPLICATIONS Leland Johnson, Don Jansky, Associate Admin. Douglass Crombie, Associate Admin. Associate Administrator William Lucas William Fishman, William Utlaut, Dep. Associate Admin. I Associate Administrator Stan Cohn, Dep. Assoc. Admin. Dep. Assoc. Administrator I ITS ANNUAL TECHNICAL PROGRESS REPORT 1978 For the period October 1, 1977 through Sept. 30, 1978 U.S. DEPARTMENT OF COMMERCE Juanita M. Kreps, Secretary Henry Geller, Assistant Secretary for Communications and Information FOREWORD g. In coordination with the Office of Fiscal year 19 78 saw the beginning of the Federal Systems and Spectrum Management, National Telecommunications and Informa­ provide advice and assistance to the tion
    [Show full text]
  • SCARS Technician / General License Course Week 4
    SCARS Technician / General License Course Week 4 Radio Wave Propagation: Getting from Point A to Point B • Radio waves propagate in many ways depending on… −Frequency of the wave −Characteristics of the environment • We will discuss three basic ways: −Line of sight −Ground wave −Sky wave Line-of-Sight • Radio energy can travel in a straight line from a transmitting antenna to a receiving antenna – called the direct path • There is some attenuation of the signal as the radio wave travels due to spreading out • This is the primary propagation mode for VHF and UHF signals. Ground Wave • At lower HF frequencies radio waves can follow the Earth’s surface as they travel. • These waves will travel beyond the range of line- of-sight. • Range of a few hundred miles on bands used by amateurs. Reflect, Refract, Diffract • Diffraction occurs when a wave encounters a sharp edge ( knife-edge propagation) or corner VHF and UHF Propagation • Range is slightly better than visual line of sight due to gradual refraction (bending), creating the radio horizon . • UHF signals penetrate buildings better than HF/VHF because of the shorter wavelength. • Buildings may block line of sight, but reflected and diffracted waves can get around obstructions. VHF and UHF Propagation • Multi-path results from reflected signals arriving at the receiver by different paths and interfering with each other. • Picket-fencing is the rapid fluttering sound of multi-path from a moving transmitter “Tropo” - Tropospheric Propagation • The troposphere is the lower levels of the atmosphere
    [Show full text]
  • Low Band RX Antennas
    Low-Band Receive Antennas How to hear that great DX that you’re missing on 40, 80 and 160! Al Penney VO1NO / VE3 Tonight’s Topics… • Introduction • Receiving Basics • RX Loops • Elongated Terminated Loops – EWE Antenna – Flag Antenna – Pennant Antenna – K9AY Loop • Beverages Why do we need separate TX and RX antennas? • Because, they have different requirements: – TX antennas need to deliver strongest possible signal into target area compared to other antennas. – Efficiency and gain are most important factors. – RX antennas need to have best Signal to Noise Ratio (SNR) – gain and efficiency are not necessary. Diagrams from ON4UN’s Low Band DXing Antenna A Antenna B (+3dB gain vs Antenna A) Is Antenna B a better TX Antenna than Antenna A? Diagrams from ON4UN’s Low Band DXing Single 720-foot Beverage. Two 720-foot Beverages. Spaced 70 feet apart. • Gain single Beverage: -11.2 dBi • Gain two Beverages (70-ft sp): -8.2 dBi • So, a pair of Beverages (with 70-ft spacing) has 3 dB gain over a single Beverage. • But, has anything actually been gained in terms of Signal/Noise ratio? NO – nothing has been gained! • The pattern is still practically identical – Front/Back is the same – Front/Side is within 0.47dB • Unwanted noise is external to the antenna. Because the directivity of the two antenna systems is the same, the Signal/Noise ratio is exactly the same for both. • We must use Directivity when comparing RX Antennas, not gain. How much Negative Gain can we tolerate with RX antennas? • Modern receivers are very sensitive.
    [Show full text]
  • BEVERAGE ANTENNA BACKGROUND INFORMATION Definition
    BEVERAGE ANTENNA BACKGROUND INFORMATION Definition The Beverage Antenna is an inexpensive but very effective long wire receiving antenna. It consists of a wire one or two wavelength long. Basics The Beverage Antenna is a relatively inexpensive but very effective long wire receiving antenna used by amateur radio, shortwave listening, and longwave radio DXers and military applications. Harold H. Beverage experimented with receiving antennas similar to the Beverage antenna in 1919 at the Otter Cliffs Naval Radio Station. By 1921, Beverage long wave receiving antennas up to nine miles (14 km) long had been installed at RCA's Riverhead, New York, Belfast, Maine, Belmar, New Jersey, and Chatham, Massachusetts receiver stations. The antenna was patented in 1921 and named for its inventor Harold H. Beverage. Perhaps the largest Beverage antenna—an array of four phased Beverages three miles (5 km) long and two miles (3 km) wide—was built by AT&T in Houlton, Maine for the first transatlantic telephone system opened in 1927. While these antennas provide excellent directivity, a large amount of space is required. Beverage antennas are highly directional and physically far too large to be practically rotated so installations often use multiple antennas to provide a choice of azimuthal coverage. A Beverage consists of a wire one or two wavelength long (hundreds of feet at HF to several kilometres for longwave). A resistor connected to a ground rod terminates the end of the antenna pointed to the target area; a 470 ohm non-inductive resistor provides excellent results for most soils. A 50 or 75 ohm coaxial transmission connects the receiver to the opposite end of the antenna through an impedance- matching transformer.
    [Show full text]
  • Monitoring Times 2000 INDEX
    Monitoring Times 1994 INDEX FEATURES: Air Show: Triumph to Tragedy Season Aug JUNE Duopolies and DXing Broadcast: Atlantic City Aero Monitoring May JULY TROPO Brings in TV & FM A Journey to Morocco May Dayton's Aviation Extravaganza DX Bolivia: Radio Under the Gun June June AUG Low Power TV Stations Broadcasting Battlefield, Colombia Flight Test Communications Jan SEP WOW, Omaha Dec Gathering Comm Intelligence OCT Winterizing Chile: Land of Crazy Geography June NOV Notch filters for good DX April Military Low Band Sep DEC Shopping for DX Receiver Deutsche Welle Aug Monitoring Space Shuttle Comms European DX Council Meeting Mar ANTENNA TOPICS Aug Monitoring the Prez July JAN The Earth’s Effects on First Year Radio Listener May Radio Shows its True Colors Aug Antenna Performance Flavoradio - good emergency radio Nov Scanning the Big Railroads April FEB The Half-Rhombic FM SubCarriers Sep Scanning Garden State Pkwy,NJ MAR Radio Noise—Debunking KNLS Celebrates 10 Years Dec Feb AntennaResonance and Making No Satellite or Cable Needed July Scanner Strategies Feb the Real McCoy Radio Canada International April Scanner Tips & Techniques Dec APRIL More Effects of the Earth on Radio Democracy Sep Spy Catchers: The FBI Jan Antenna Radio France Int'l/ALLISS Ant Topgun - Navy's Fighter School Performance Nov Mar MAY The T2FD Antenna Radio Gambia May Tuning In to a US Customs Chase JUNE Antenna Baluns Radio Nacional do Brasil Feb Nov JULY The VHF/UHF Beam Radio UNTAC - Cambodia Oct Video Scanning Aug Traveler's Beam Restructuring the VOA Sep Waiting
    [Show full text]
  • A SHORT TWO-WAY BEVERAGE ANTENNA PROJECT by Phil
    A SHORT TWO-WAY BEVERAGE ANTENNA PROJECT By Phil Anderson, WØXI I live in a suburban neighborhood and about two blocks from a shopping center. The city population is nearly 100,000. As such, you can imagine the reference noise level for AM and shortwave reception for each band of interest is not as quiet as a typical rural setting would be. My back yard is only 70 feet wide and 50 feet deep, thus reducing the selection of useable antennas. Furthermore, the city height limit for antennas in my neighborhood is 33 feet! My solutions so far to improve reception have been to install a 33 foot SteppIR vertical for 40 through 10 meters and a 40-meter dipole up 22 feet. One traditional way to reduce the noise level (floor) is to install a directional antenna. These reduce the signals received from the back side, including noise, while enabling desired signals in the forward direction with some gain. Yet, towers, rotors and a Yagi antenna are costly and perhaps disturbing for the neighbors. Hence I decided to try the age old Beverage antenna, invented in 1921 by Harold Beverage. The Beverage, like the modern Yagi, reduces signals from its back side while enhancing listening in the direction it’s pointed. Results so far have been gratifying. I’ve made two-way CW contacts with radio amateurs in Europe and listened to US AM stations in the 8 to 10 MHz range. Figure 1 depicts my first Beverage and supporting equipment. The antenna consists of the following: 70 feet of antenna wire strung out 8 feet above the ground from northeast to southwest (for contact with Europe from Kansas) supported by three 10 foot PVC Poles.
    [Show full text]
  • Universal Beverage Antenna
    ANTENTOP- 01- 2015 # 019 Universal Beverage Antenna Igor Grigorov, va3znw, Richmond Hill, Canada Beverage Antennas are widely used at commercial and Forth, Beverage Antenna is (at proper installation) military radio communication. In commercial practically invisible. That is very important in the place communication Beverage Antenna as usual is used as a where some antennas may be restricted. Fifth, receiving antenna. However, in military communication Beverage Antenna is very broadband antenna. Without Beverage Antenna is used for both purposes- for any ATU the antenna may have good SWR on all receiving and transmitting applications. amateurs HF Bands from 160 to 6 meter. Sixth, Transmitting/receiving Beverage Antenna was used in Beverage Antenna has single lobe diagram directivity. It DX- Pedition EK1NWB on to Kizhy island (the antenna is possible count again and again the advantages of the described at: Beverage Antenna. http://www.antentop.org/008/ua3znw008.htm) where the antenna (against skepticism of some persons) illuminated But we begin count disadvantages. First and the main its good job. lack of the antenna is the low efficiency on to transmission. However, the lack may be easy improved So when again in Toronto I have changed my QTH and with PA- but if you do not hear anything (usual matter in the QTH allowed me install Beverage Antenna, I did not modern city overloaded by electromagnetic smog) you hesitated. do not need PA… Beverage Antenna has lots advantages that attractive me. Figure 1 shows a Classical Beverage Antenna. First, it is low noise receiving antenna. At all my Beverage Antenna consists of a horizontal wire with previously settled QTHs I had so devastated noise level length L.
    [Show full text]
  • Thanks to Our Authors: in the Issue: Antennas Theory! Prof
    ANTENTOP 01 2006 # 008 ANTENTOP is FREE e-magazine devoted to ANTENna’s Theory, 1-2006 Operation, and Practice Edited by hams for hams Thanks to our authors: In the Issue: Antennas Theory! Prof. Natalia K.Nikolova Practical design of HF V. Filippov Antennas! N. Filenko, UA9XBI A. B. Marchenko, UA0CT Home brew Technique! Vladislav Merkulov, UU9JEW Igor Lavrushov, UA6HJQ Propagation! A. Dolinin, UA9LAK/UN7 V. Polyakov, RA3AAE QRP! And others….. And More…. Helical Antenna EDITORIAL: Well, my friends, new ANTENTOP – 01 -2006 come in! ANTENTOP is just authors’ opinions in the world of amateur radio. I do not correct and re- edit yours articles, the articles are printed “as are”. A little note, I am not a native English, so, of course, there are some sentence and grammatical mistakes there… Please, be indulgent! ANTENTOP 01 –2006 contains antenna articles, and several historical articles. Hope, it will be interesting for you. Our pages are opened for all amateurs, so, you are welcome always, both as a reader as a writer. Copyright: Here at ANTENTOP we Contact us: Just email me or just wanted to follow traditions of FREE 73! Igor Grigorov, VA3ZNW drop a letter. flow of information in our great radio Mailing address: hobby around the world. A whole issue ex: RK3ZK, UA3-117-386, Box 59056, 2238 Dundas Str., of ANTENTOP may be photocopied, UA3ZNW, UA3ZNW/UA1N, UZ3ZK printed, pasted onto websites. We don't Toronto, ON, M6R3B5, CANADA want to control this process. It comes op: UK3ZAM, UK5LAP, from all of us, and thus it belongs to all EN1NWB, EN5QRP, EN100GM Or mail to:[email protected] of us.
    [Show full text]
  • Beverage Feedpoint Matching System
    Beverage Feedpoint Matching System DXE-BFS-1 Patent Pending DXE-BFS-1-INS Revision 3a © DX Engineering 2012 P.O. Box 1491 ∙ Akron, OH 44309-1491 USA Phone: (800) 777-0703 ∙ Tech Support and International: (330) 572-3200 Fax: (330) 572-3279 ∙ E-mail: [email protected] Introduction The DXE-BFS-1 is a single-wire, single direction Beverage Feed System. This W8JI design is immune to strong signal overload and core saturation common in multi-transmitter contesting environments, and is used by winning contest stations and low-band DXers. The unit uses an isolated-winding, matching transformer system to significantly increase the signal-to-noise ratio in Beverage and other high impedance antennas. The DXE-BFS-1 works with antenna impedances from 400 to 500 Ω. Included with the DXE-BFS-1 is a 470 Ω, 2-Watt non-inductive termination resistor that withstands nearby lightning strikes significantly better than hard to find carbon composition resistors. DX Engineering has replacement resistors available, part number DXE-ECM-R470-2. The feedline impedance of the DXE-BFS-1 is optimized for 75 Ω, however, any feedline between 30 Ω and 100 Ω can be used. While not intended for transmitting, the DXE-BFS-1 can withstand power levels of 20 watts continuously, 200 watts for 5 seconds or the power rating of the termination resistor, whichever is less. The DXE-BFS-1 coaxial cable connection uses an industry standard CATV F type connector. The DXE-BFS-1 sets itself apart from competitive products by combining quality components and superior technology inside a compact metal housing.
    [Show full text]