A Mechanically Transmitted DNA Mycovirus Is Targeted by the Defence Machinery of Its Host, Botrytis Cinerea
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Changes to Virus Taxonomy 2004
Arch Virol (2005) 150: 189–198 DOI 10.1007/s00705-004-0429-1 Changes to virus taxonomy 2004 M. A. Mayo (ICTV Secretary) Scottish Crop Research Institute, Invergowrie, Dundee, U.K. Received July 30, 2004; accepted September 25, 2004 Published online November 10, 2004 c Springer-Verlag 2004 This note presents a compilation of recent changes to virus taxonomy decided by voting by the ICTV membership following recommendations from the ICTV Executive Committee. The changes are presented in the Table as decisions promoted by the Subcommittees of the EC and are grouped according to the major hosts of the viruses involved. These new taxa will be presented in more detail in the 8th ICTV Report scheduled to be published near the end of 2004 (Fauquet et al., 2004). Fauquet, C.M., Mayo, M.A., Maniloff, J., Desselberger, U., and Ball, L.A. (eds) (2004). Virus Taxonomy, VIIIth Report of the ICTV. Elsevier/Academic Press, London, pp. 1258. Recent changes to virus taxonomy Viruses of vertebrates Family Arenaviridae • Designate Cupixi virus as a species in the genus Arenavirus • Designate Bear Canyon virus as a species in the genus Arenavirus • Designate Allpahuayo virus as a species in the genus Arenavirus Family Birnaviridae • Assign Blotched snakehead virus as an unassigned species in family Birnaviridae Family Circoviridae • Create a new genus (Anellovirus) with Torque teno virus as type species Family Coronaviridae • Recognize a new species Severe acute respiratory syndrome coronavirus in the genus Coro- navirus, family Coronaviridae, order Nidovirales -
Virology Journal Biomed Central
Virology Journal BioMed Central Research Open Access The complete genomes of three viruses assembled from shotgun libraries of marine RNA virus communities Alexander I Culley1, Andrew S Lang2 and Curtis A Suttle*1,3 Address: 1University of British Columbia, Department of Botany, 3529-6270 University Blvd, Vancouver, B.C. V6T 1Z4, Canada, 2Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada and 3University of British Columbia, Department of Earth and Ocean Sciences, Department of Microbiology and Immunology, 1461-6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada Email: Alexander I Culley - [email protected]; Andrew S Lang - [email protected]; Curtis A Suttle* - [email protected] * Corresponding author Published: 6 July 2007 Received: 10 May 2007 Accepted: 6 July 2007 Virology Journal 2007, 4:69 doi:10.1186/1743-422X-4-69 This article is available from: http://www.virologyj.com/content/4/1/69 © 2007 Culley et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: RNA viruses have been isolated that infect marine organisms ranging from bacteria to whales, but little is known about the composition and population structure of the in situ marine RNA virus community. In a recent study, the majority of three genomes of previously unknown positive-sense single-stranded (ss) RNA viruses were assembled from reverse-transcribed whole- genome shotgun libraries. -
Pdf Available
Virology 554 (2021) 89–96 Contents lists available at ScienceDirect Virology journal homepage: www.elsevier.com/locate/virology Diverse cressdnaviruses and an anellovirus identifiedin the fecal samples of yellow-bellied marmots Anthony Khalifeh a, Daniel T. Blumstein b,**, Rafaela S. Fontenele a, Kara Schmidlin a, C´ecile Richet a, Simona Kraberger a, Arvind Varsani a,c,* a The Biodesign Center for Fundamental and Applied Microbiomics, School of Life Sciences, Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85287, USA b Department of Ecology & Evolutionary Biology, Institute of the Environment & Sustainability, University of California Los Angeles, Los Angeles, CA, 90095, USA c Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, 7925, Cape Town, South Africa ARTICLE INFO ABSTRACT Keywords: Over that last decade, coupling multiple strand displacement approaches with high throughput sequencing have Marmota flaviventer resulted in the identification of genomes of diverse groups of small circular DNA viruses. Using a similar Anelloviridae approach but with recovery of complete genomes by PCR, we identified a diverse group of single-stranded vi Genomoviridae ruses in yellow-bellied marmot (Marmota flaviventer) fecal samples. From 13 fecal samples we identified viruses Cressdnaviricota in the family Genomoviridae (n = 7) and Anelloviridae (n = 1), and several others that ware part of the larger Cressdnaviricota phylum but not within established families (n = 19). There were also circular DNA molecules identified (n = 4) that appear to encode one viral-like gene and have genomes of <1545 nts. This study gives a snapshot of viruses associated with marmots based on fecal sampling. -
Viral Diversity in Oral Cavity from Sapajus Nigritus by Metagenomic Analyses
Brazilian Journal of Microbiology (2020) 51:1941–1951 https://doi.org/10.1007/s42770-020-00350-w ENVIRONMENTAL MICROBIOLOGY - RESEARCH PAPER Viral diversity in oral cavity from Sapajus nigritus by metagenomic analyses Raissa Nunes dos Santos1,2 & Fabricio Souza Campos2,3 & Fernando Finoketti1,2 & Anne Caroline dos Santos1,2 & Aline Alves Scarpellini Campos1,2,3 & Paulo Guilherme Carniel Wagner2,4 & Paulo Michel Roehe 1,2 & Helena Beatriz de Carvalho Ruthner Batista2,5 & Ana Claudia Franco1,2 Received: 20 January 2020 /Accepted: 25 July 2020 / Published online: 11 August 2020 # Sociedade Brasileira de Microbiologia 2020 Abstract Sapajus nigritus are non-human primates which are widespread in South America. They are omnivores and live in troops of up to 40 individuals. The oral cavity is one of the main entry routes for microorganisms, including viruses. Our study proposed the identification of viral sequences from oral swabs collected in a group of capuchin monkeys (n = 5) living in a public park in a fragment of Mata Atlantica in South Brazil. Samples were submitted to nucleic acid extraction and enrichment, which was followed by the construction of libraries. After high-throughput sequencing and contig assembly, we used a pipeline to identify 11 viral families, which are Herpesviridae, Parvoviridae, Papillomaviridae, Polyomaviridae, Caulimoviridae, Iridoviridae, Astroviridae, Poxviridae,andBaculoviridae, in addition to two complete viral genomes of Anelloviridae and Genomoviridae. Some of these viruses were closely related to known viruses, while other fragments are more distantly related, with 50% of identity or less to the currently available virus sequences in databases. In addition to host-related viruses, insect and small vertebrate-related viruses were also found, as well as plant-related viruses, bringing insights about their diet. -
(12) United States Patent (10) Patent No.: US 9,096,585 B2 Shaw Et Al
US009096585B2 (12) United States Patent (10) Patent No.: US 9,096,585 B2 Shaw et al. (45) Date of Patent: Aug. 4, 2015 (54) ANTIVIRAL COMPOUNDS AND USES (2013.01); C07D 413/10 (2013.01); C07D THEREOF 413/12 (2013.01); A61 K 3 1/5377 (2013.01); A61 K3I/55 (2013.01) (75) Inventors: Megan Shaw, New York, NY (US); (58) Field of Classification Search Hans-Heinrich Hoffmann, New York, CPC. A61K 31/4245; A61K31/5377; A61K31/55 NY (US); Adolfo Garcia-Sastre, New USPC .................................... 514/364, 217.1, 236.2 York, NY (US); Peter Palese, Leonia, NJ See application file for complete search history. US (US) (56) References Cited (73) Assignee: Icahn School of Medicine at Mount Sinai, New York, NY (US) U.S. PATENT DOCUMENTS 6,384,064 B2 5, 2002 Camden (*) Notice: Subject to any disclaimer, the term of this 8,278,342 B2 10/2012 Ricciardi patent is extended or adjusted under 35 Continued U.S.C. 154(b) by 210 days. (Continued) (21) Appl. No.: 13? 700,049 FOREIGN PATENT DOCUMENTS y x- - - 9 (22) PCT Filed1C Mavay 31,51, 2011 WO WO 2009,136979 A2 11/2009 OTHER PUBLICATIONS (86). PCT No.: PCT/US2011/038515 Chu et al. "Analysis of the endocytic pathway mediating the infec S371 (c)(1), tious entry of mosquito-borne flavivirus West Nile into Aedes (2), (4) Date: Feb. 14, 2013 albopictus mosquito (C6/36) cells.” Virology, 2006, vol. 349, pp. 463-475. (87) PCT Pub. No.: WO2011/150413 (Continued) PCT Pub. Date: Dec. 1, 2011 Primary Examiner — Shengjun Wang (65) Prior Publication Data (74) Attorney, Agent, or Firm — Jones Day US 2013/O137678A1 May 30, 2013 (57) ABSTRACT O O Described herein are Compounds, compositions comprising Related U.S. -
Origin, Adaptation and Evolutionary Pathways of Fungal Viruses
Virus Genes 16:1, 119±131, 1998 # 1998 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands. Origin, Adaptation and Evolutionary Pathways of Fungal Viruses SAID A. GHABRIAL Department of Plant Pathology, University of Kentucky, Lexington, KY, USA Abstract. Fungal viruses or mycoviruses are widespread in fungi and are believed to be of ancient origin. They have evolved in concert with their hosts and are usually associated with symptomless infections. Mycoviruses are transmitted intracellularly during cell division, sporogenesis and cell fusion, and they lack an extracellular phase to their life cycles. Their natural host ranges are limited to individuals within the same or closely related vegetative compatibility groups. Typically, fungal viruses are isometric particles 25±50 nm in diameter, and possess dsRNA genomes. The best characterized of these belong to the family Totiviridae whose members have simple undivided dsRNA genomes comprised of a coat protein (CP) gene and an RNA dependent RNA polymerase (RDRP) gene. A recently characterized totivirus infecting a ®lamentous fungus was found to be more closely related to protozoan totiviruses than to yeast totiviruses suggesting these viruses existed prior to the divergence of fungi and protozoa. Although the dsRNA viruses at large are polyphyletic, based on RDRP sequence comparisons, the totiviruses are monophyletic. The theory of a cellular self-replicating mRNA as the origin of totiviruses is attractive because of their apparent ancient origin, the close relationships among their RDRPs, genome simplicity and the ability to use host proteins ef®ciently. Mycoviruses with bipartite genomes ( partitiviruses), like the totiviruses, have simple genomes, but the CP and RDRP genes are on separate dsRNA segments. -
Viral Gastroenteritis
viral gastroenteritis What causes viral gastroenteritis? y Rotaviruses y Caliciviruses y Astroviruses y SRV (Small Round Viruses) y Toroviruses y Adenoviruses 40 , 41 Diarrhea Causing Agents in World ROTAVIRUS Family Reoviridae Genus Segments Host Vector Orthoreovirus 10 Mammals None Orbivirus 11 Mammals Mosquitoes, flies Rotavirus 11 Mammals None Coltivirus 12 Mammals Ticks Seadornavirus 12 Mammals Ticks Aquareovirus 11 Fish None Idnoreovirus 10 Mammals None Cypovirus 10 Insect None Fijivirus 10 Plant Planthopper Phytoreovirus 12 Plant Leafhopper OiOryzavirus 10 Plan t Plan thopper Mycoreovirus 11 or 12 Fungi None? REOVIRUS y REO: respiratory enteric orphan, y early recognition that the viruses caused respiratory and enteric infections y incorrect belief they were not associated with disease, hence they were considered "orphan " viruses ROTAVIRUS‐ PROPERTIES y Virus is stable in the environment (months) y Relatively resistant to hand washing agents y Susceptible to disinfection with 95% ethanol, ‘Lyy,sol’, formalin STRUCTURAL FEATURES OF ROTAVIRUS y 60‐80nm in size y Non‐enveloped virus y EM appearance of a wheel with radiating spokes y Icosahedral symmetry y Double capsid y Double stranded (ds) RNA in 11 segments Rotavirus structure y The rotavirus genome consists of 11 segments of double- stranded RNA, which code for 6 structural viral proteins, VP1, VP2, VP3, VP4, VP6 and VP7 and 6 non-structural proteins, NSP1-NSP6 , where gene segment 11 encodes both NSP5 and 6. y Genome is encompassed by an inner core consisting of VP2, VP1 and VP3 proteins. Intermediate layer or inner capsid is made of VP6 determining group and subgroup specifici ti es. y The outer capsid layer is composed of two proteins, VP7 and VP4 eliciting neutralizing antibody responses. -
Identification and Complete Genomic Sequence of a Novel Sadwavirus
Archives of Virology https://doi.org/10.1007/s00705-020-04592-9 ANNOTATED SEQUENCE RECORD Identifcation and complete genomic sequence of a novel sadwavirus discovered in pineapple (Ananas comosus) Adriana Larrea‑Sarmiento1 · Alejandro Olmedo‑Velarde1 · James C. Green1 · Maher Al Rwahnih2 · Xupeng Wang1 · Yun‑He Li3 · Weihuai Wu4 · Jingxin Zhang5 · Tracie K. Matsumoto6 · Jon Y. Suzuki6 · Marisa M. Wall6 · Wayne Borth1 · Michael J. Melzer1 · John S. Hu1 Received: 19 December 2019 / Accepted: 15 February 2020 © Springer-Verlag GmbH Austria, part of Springer Nature 2020 Abstract The complete genomic sequence of a putative novel member of the family Secoviridae was determined by high-throughput sequencing of a pineapple accession obtained from the National Plant Germplasm Repository in Hilo, Hawaii. The predicted genome of the putative virus was composed of two RNA molecules of 6,128 and 4,161 nucleotides in length, excluding the poly-A tails. Each genome segment contained one large open reading frame (ORF) that shares homology and phylogenetic identity with members of the family Secoviridae. The presence of this new virus in pineapple was confrmed using RT-PCR and Sanger sequencing from six samples collected in Oahu, Hawaii. The name “pineapple secovirus A” (PSVA) is proposed for this putative new sadwavirus. Members of the family Secoviridae are non-enveloped has a poly-A tract at its 3’- end. Secovirids form isometric viruses containing linear positive-sense single-stranded viral particles and are classifed within eight genera: Nepo- RNA [(+)-ssRNA] genomes that are monopartite or bipar- virus, Comovirus, Fabavirus, Sadwavirus, Cheravirus, Tor- tite. Each genome segment encodes a large polyprotein, is radovirus, Sequivirus, and Waikavirus [1]. -
Residual Effects Caused by a Past Mycovirus Infection in Fusarium Circinatum
Article Residual Effects Caused by a Past Mycovirus Infection in Fusarium circinatum Cristina Zamora-Ballesteros 1,2,* , Brenda D. Wingfield 3 , Michael J. Wingfield 3, Jorge Martín-García 1,2 and Julio J. Diez 1,2 1 Sustainable Forest Management Research Institute, University of Valladolid—INIA, 34004 Palencia, Spain; [email protected] (J.M.-G.); [email protected] (J.J.D.) 2 Department of Vegetal Production and Forest Resources, University of Valladolid, 34004 Palencia, Spain 3 Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa; brenda.wingfi[email protected] (B.D.W.); Mike.Wingfi[email protected] (M.J.W.) * Correspondence: [email protected] Abstract: Mycoviruses are known to be difficult to cure in fungi but their spontaneous loss occurs commonly. The unexpected disappearance of mycoviruses can be explained by diverse reasons, from methodological procedures to biological events such as posttranscriptional silencing machinery. The long-term effects of a virus infection on the host organism have been well studied in the case of human viruses; however, the possible residual effect on a fungus after the degradation of a mycovirus is unknown. For that, this study analyses a possible residual effect on the transcriptome of the pathogenic fungus Fusarium circinatum after the loss of the mitovirus FcMV1. The mycovirus that previously infected the fungal isolate was not recovered after a 4-year storage period. Only 14 genes were determined as differentially expressed and were related to cell cycle regulation and amino acid metabolism. The results showed a slight acceleration in the metabolism of the host that had lost the mycovirus by the upregulation of the genes involved in essential functions for fungal development. -
Viruses in Transplantation - Not Always Enemies
Viruses in transplantation - not always enemies Virome and transplantation ECCMID 2018 - Madrid Prof. Laurent Kaiser Head Division of Infectious Diseases Laboratory of Virology Geneva Center for Emerging Viral Diseases University Hospital of Geneva ESCMID eLibrary © by author Conflict of interest None ESCMID eLibrary © by author The human virome: definition? Repertoire of viruses found on the surface of/inside any body fluid/tissue • Eukaryotic DNA and RNA viruses • Prokaryotic DNA and RNA viruses (phages) 25 • The “main” viral community (up to 10 bacteriophages in humans) Haynes M. 2011, Metagenomic of the human body • Endogenous viral elements integrated into host chromosomes (8% of the human genome) • NGS is shaping the definition Rascovan N et al. Annu Rev Microbiol 2016;70:125-41 Popgeorgiev N et al. Intervirology 2013;56:395-412 Norman JM et al. Cell 2015;160:447-60 ESCMID eLibraryFoxman EF et al. Nat Rev Microbiol 2011;9:254-64 © by author Viruses routinely known to cause diseases (non exhaustive) Upper resp./oropharyngeal HSV 1 Influenza CNS Mumps virus Rhinovirus JC virus RSV Eye Herpes viruses Parainfluenza HSV Measles Coronavirus Adenovirus LCM virus Cytomegalovirus Flaviviruses Rabies HHV6 Poliovirus Heart Lower respiratory HTLV-1 Coxsackie B virus Rhinoviruses Parainfluenza virus HIV Coronaviruses Respiratory syncytial virus Parainfluenza virus Adenovirus Respiratory syncytial virus Coronaviruses Gastro-intestinal Influenza virus type A and B Human Bocavirus 1 Adenovirus Hepatitis virus type A, B, C, D, E Those that cause -
Diversity and Evolution of Novel Invertebrate DNA Viruses Revealed by Meta-Transcriptomics
viruses Article Diversity and Evolution of Novel Invertebrate DNA Viruses Revealed by Meta-Transcriptomics Ashleigh F. Porter 1, Mang Shi 1, John-Sebastian Eden 1,2 , Yong-Zhen Zhang 3,4 and Edward C. Holmes 1,3,* 1 Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life & Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia; [email protected] (A.F.P.); [email protected] (M.S.); [email protected] (J.-S.E.) 2 Centre for Virus Research, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia 3 Shanghai Public Health Clinical Center and School of Public Health, Fudan University, Shanghai 201500, China; [email protected] 4 Department of Zoonosis, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China * Correspondence: [email protected]; Tel.: +61-2-9351-5591 Received: 17 October 2019; Accepted: 23 November 2019; Published: 25 November 2019 Abstract: DNA viruses comprise a wide array of genome structures and infect diverse host species. To date, most studies of DNA viruses have focused on those with the strongest disease associations. Accordingly, there has been a marked lack of sampling of DNA viruses from invertebrates. Bulk RNA sequencing has resulted in the discovery of a myriad of novel RNA viruses, and herein we used this methodology to identify actively transcribing DNA viruses in meta-transcriptomic libraries of diverse invertebrate species. Our analysis revealed high levels of phylogenetic diversity in DNA viruses, including 13 species from the Parvoviridae, Circoviridae, and Genomoviridae families of single-stranded DNA virus families, and six double-stranded DNA virus species from the Nudiviridae, Polyomaviridae, and Herpesviridae, for which few invertebrate viruses have been identified to date. -
Soybean Thrips (Thysanoptera: Thripidae) Harbor Highly Diverse Populations of Arthropod, Fungal and Plant Viruses
viruses Article Soybean Thrips (Thysanoptera: Thripidae) Harbor Highly Diverse Populations of Arthropod, Fungal and Plant Viruses Thanuja Thekke-Veetil 1, Doris Lagos-Kutz 2 , Nancy K. McCoppin 2, Glen L. Hartman 2 , Hye-Kyoung Ju 3, Hyoun-Sub Lim 3 and Leslie. L. Domier 2,* 1 Department of Crop Sciences, University of Illinois, Urbana, IL 61801, USA; [email protected] 2 Soybean/Maize Germplasm, Pathology, and Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, Urbana, IL 61801, USA; [email protected] (D.L.-K.); [email protected] (N.K.M.); [email protected] (G.L.H.) 3 Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 300-010, Korea; [email protected] (H.-K.J.); [email protected] (H.-S.L.) * Correspondence: [email protected]; Tel.: +1-217-333-0510 Academic Editor: Eugene V. Ryabov and Robert L. Harrison Received: 5 November 2020; Accepted: 29 November 2020; Published: 1 December 2020 Abstract: Soybean thrips (Neohydatothrips variabilis) are one of the most efficient vectors of soybean vein necrosis virus, which can cause severe necrotic symptoms in sensitive soybean plants. To determine which other viruses are associated with soybean thrips, the metatranscriptome of soybean thrips, collected by the Midwest Suction Trap Network during 2018, was analyzed. Contigs assembled from the data revealed a remarkable diversity of virus-like sequences. Of the 181 virus-like sequences identified, 155 were novel and associated primarily with taxa of arthropod-infecting viruses, but sequences similar to plant and fungus-infecting viruses were also identified.