Physical Science Vocabulary

Total Page:16

File Type:pdf, Size:1020Kb

Physical Science Vocabulary PHYSICAL SCIENCE VOCABULARY acceleration- The rate of change in atomic nucleus; has a charge of 2+, an velocity (a change in direction or a atomic mass of 4, and is the largest, change in speed). slowest, and least penetrating form of acid- A substance that produces radiation. hydrogen ions in solution; these amalgam- An alloy containing the solutions have a pH less than 7. element mercury; an example is dental alternating current (AC) - Electric fillings. current that reverses its direction in a ammeter- A galvanometer that regular pattern; the 60-Hz AC in our measures electrical current passing homes changes direction 120 times each through in amperes; connected in a second. series with the circuit. acid rain - Rain with a pH less than 5.6; amorphous- Something that has no produced by substances in the air specific shape; for example, a liquid or reacting with rainwater. gas. acoustics -The study of sound. ampere -The unit of measuring current, actinide- Any of the 14 radioactive the rate of flow of electrons in a circuit. elements having atomic numbers 90- amplification- The process of increasing 103; used in nuclear power generation the strength of an electric signal. and nuclear weapons. amplitude- In a wave, the distance from active solar heating - Collecting the the rest position of the medium to either sun's energy with solar panels, heating the crest or trough. water with that energy, and storing the amplitude modulated - (AM) waves - heated water to use the energy later. Radio waves whose amplitude is varied aerosol -A liquid sprayed from a with voice, music, video, or data for pressurized container; for example, a can transmission over long distances. of insect spray. angle of incidence - In waves, the angle air resistance - Frictional force air formed by the incident wave and the exerts on a moving object; acts opposite normal. in direction to the object's motion. angle of reflection - In waves, the angle alchemist -A medieval version of the formed by the reflected wave and the modern chemist; a practitioner who normal (perpendicular). blended primitive chemistry with magic, anhydrous- A chemical compound that seeking to turn ordinary metals into normally has water molecules attached gold. to its ions but from which water has been alcohol -Type of compound formed removed. when -OH groups replace one or more antacid -An "anti-acid," or a chemical hydrogen atoms in a hydrocarbon. that changes an acid substance to a allotropes -Different structural forms of neutral substance. the same element; for example, some antifreeze -A solute added to a solvent carbon molecules form soft graphite, to lower the temperature at which the whereas others form hard diamonds. solvent will freeze. alloy -A mixture consisting of a metal aqueous -Describes a solution made and one or more elements. with water. alpha particle - A particle of nuclear radiation emitted from a decaying PHYSICAL SCIENCE VOCABULARY Archimedes' principle - This Greek beta particle - A negatively charged mathematician stated that the buoyant electron or positively charged positron force on an object in a fluid is equal to emitted from a decaying atomic nucleus. the weight of the fluid displaced by the binary compound - A chemical object. compound composed of two elements; aromatic compounds - Chemical for example, sodium chloride. compounds that contain the benzene ring biogas Mixture of gases, mostly structure; most have distinctive odors. methane, produced when biomass is artificial satellite - Human-made device allowed to rot in the absence of air. that orbits Earth; used for biomass -Organic material from such communication, weather-monitoring, sources as wood, corn, and wastes from military, and scientific purposes. animals and crops. atomic number - The number of bionics The science of designing protons in an atom's nucleus. artificial replacements for parts of the average speed - A rate of motion human body that are not working determined by dividing the total distance properly. traveled by the total travel time. boiling point - The average atomic mass - The average temperature at which vapor mass of the mixture of an element's bubbles form in a liquid and isotopes. rise to the surface, balance -A device used in laboratories increasing evaporation. to measure mass; it works by balancing a Boyle's law - British mass to be determined with a standard scientist Robert Boyle mass that is known. stated that volume of a gas decreases balanced chemical equation - A when the pressure increases, provided chemical equation that has the same the temperature stays the same. number of atoms of each element on bubble chamber - Device filled with both sides of the equation. superheated liquid; used to detect and balanced forces - Forces that are equal monitor the path of charged nuclear in size and opposite in direction. particles, which leave a trail of bubbles bar graph - A type of graph used to as they pass though the chamber. show information collected buoyant force - Ability of a fluid to by counting; uses vertical or exert an upward force on an object horizontal bars of different immersed in the fluid. lengths to help people butane -A flammable gas; part of compare quantities. natural gas. base -A substance that byte -A basic unit of computer memory produces hydroxide ions (OH-) in the represents a character (number, solution; these solutions have a pH symbol, or alphabet letter); consists of 8 over 7. bits. Bernoulli's principle - The Swiss calorimeter- An instrument used to scientist Daniel Bernoulli stated that as measure changes in thermal energy. the velocity of a fluid increases, the carbohydrate An organic compound pressure exerted by the fluid decreases. having twice as many hydrogen atoms as oxygen atoms. PHYSICAL SCIENCE VOCABULARY carbon 14 dating - Age-determining which elements are in a compound and method for carbon-containing objects up their ratios. to 50,000 years old. chemical property - A characteristic of catalyst-A substance that speeds a a substance that indicates whether it can chemical reaction without itself being undergo a specific chemical change. permanently changed. chemical reaction - A change in which cathode ray tube (CRT) - Sealed glass one or more substances are converted to vacuum tube that uses electrons and different substances. fluorescent material to produce images chemical symbol - A shorthand way to on a screen. write the name of an element; for central processing unit - The main example: C for carbon, Ag for silver. circuit board inside a chemically stable - Describes an atom computer that performs the whose outer energy level is completely calculating and holds the filled with electrons. main memory. chemically unstable - Describes an centripetal acceleration - atom whose outer-most energy level is Acceleration toward the not filled with electrons so it seeks center of a circle by an object moving electrons from other atoms and thus along a circular path. forms compounds. centripetal force - The force that causes chloro Prefix that indicates presence of an object moving along a circular path to chlorine, as in tetrachloroethylene or move toward the center of the path. chlorofluorocarbon. ceramic A material made from dried CFC A group of compounds whose clay or claylike mixtures. decomposition releases chlorine atoms cermet A tough, heat-resistant material that destroy ozone molecules in the that has the properties of both a ceramic upper atmosphere. and an alloy; ceramic-metal. circuit A closed path through which chain reaction - A continuing series of electrons flow. fission reactions in which neutrons from circuit breaker - A device that protects fissioning nuclei cause other nuclei to an electrical circuit; if too much current split, releasing more neutrons, which flows, the device opens the circuit, split more nuclei, and so on. stopping the current. Charles's law - The volume of a gas cloud chamber - Device filled with increases when temperature increases, water- or ethanol-saturated air; used to provided the pressure stays the same. detect charged nuclear particles, which chemical bond - The force that holds leave a trail as they pass through. together the atoms in a compound; it coagulation Process that destroys occurs because atoms of most elements colloid structure; can be used to reduce a become more stable by losing, gaining, colloidal form of air pollution. and sharing electrons. coal A rock formed of ancient decayed chemical change - The plants; burned as a fossil fuel. change of substances to coefficient In a chemical equation, the different substances. number that represents the number of chemical formula - A units of each substance taking part in a precise statement that tells chemical reaction. PHYSICAL SCIENCE VOCABULARY coherent light - A beam of light in constant speed - Speed that does not which all the electromagnetic waves change. travel with the crests and troughs contraction Movement of molecules aligned; thus, the beam does not spread toward one another, so that they occupy out. a smaller space. colloid A heterogeneous mixture combustion Rapid burning. containing tiny particles that never settle composite A mixture of two materials, out; for example, milk and gelatin. one of which is embedded in the other. compression In compressional waves, compound Substance made of the the dense area of the wave. combined atoms of two or more compressional wave - A type of wave elements. where matter vibrates in the same compound machine - A combination of direction the wave travels. two or more simple machines. computer A device you can program to constant In an experiment, a factor that do calculations, make logical decisions, does not change. and manipulate data. control In an experiment, a standard for computer virus - Type of program comparison that is often needed to draw designed to infect a computer, erase a meaningful conclusion. data, scramble other programs, or fill up convection The transfer of energy by the so much memory that the system is bulk movement of matter in which harmed.
Recommended publications
  • Glossary Physics (I-Introduction)
    1 Glossary Physics (I-introduction) - Efficiency: The percent of the work put into a machine that is converted into useful work output; = work done / energy used [-]. = eta In machines: The work output of any machine cannot exceed the work input (<=100%); in an ideal machine, where no energy is transformed into heat: work(input) = work(output), =100%. Energy: The property of a system that enables it to do work. Conservation o. E.: Energy cannot be created or destroyed; it may be transformed from one form into another, but the total amount of energy never changes. Equilibrium: The state of an object when not acted upon by a net force or net torque; an object in equilibrium may be at rest or moving at uniform velocity - not accelerating. Mechanical E.: The state of an object or system of objects for which any impressed forces cancels to zero and no acceleration occurs. Dynamic E.: Object is moving without experiencing acceleration. Static E.: Object is at rest.F Force: The influence that can cause an object to be accelerated or retarded; is always in the direction of the net force, hence a vector quantity; the four elementary forces are: Electromagnetic F.: Is an attraction or repulsion G, gravit. const.6.672E-11[Nm2/kg2] between electric charges: d, distance [m] 2 2 2 2 F = 1/(40) (q1q2/d ) [(CC/m )(Nm /C )] = [N] m,M, mass [kg] Gravitational F.: Is a mutual attraction between all masses: q, charge [As] [C] 2 2 2 2 F = GmM/d [Nm /kg kg 1/m ] = [N] 0, dielectric constant Strong F.: (nuclear force) Acts within the nuclei of atoms: 8.854E-12 [C2/Nm2] [F/m] 2 2 2 2 2 F = 1/(40) (e /d ) [(CC/m )(Nm /C )] = [N] , 3.14 [-] Weak F.: Manifests itself in special reactions among elementary e, 1.60210 E-19 [As] [C] particles, such as the reaction that occur in radioactive decay.
    [Show full text]
  • Leadscrew Brochure
    • High Repeatability • High accuracy • Short Lead times • Fast Prototyping High Precision Lead Screws Offering smooth, precise, cost effective positioning, lead screws are the ideal solution for your application. Thomson Neff precision lead screws from Huco Dynatork are an excellent economical solution for your linear motion requirements. For more than 25 years, Thomson has designed and manufactured the highest quality lead screw assemblies in the industry. Our precision rolling proc- ess ensures accurate positioning to .075mm/300mm and our PTFE coating process produces assemblies that have less drag torque and last longer. Huco Dynatork provides a large array of standard plastic nut assemblies in anti-backlash or standard Supernut® designs. All of our standard plastic nut assemblies use an internally lubricated Acetal providing excellent lubricity and wear resistance with or without additional lubrication. With the introduction of our new unique patented zero backlash designs, Huco Dynatork provides assemblies with high axial stiffness, zero back- lash and the absolute minimum drag torque to reduce motor requirements. These designs produce products that cost less, perform better and last longer. Both designs automatically adjust for wear ensuring zero backlash for the life of the nut. Huco Dynatork also provides engineering design services to aid in your design requirements producing a lead screw assembly to your specifica- tions. Call Huco Dynatork today on 01992 501900 to discuss your application with one of our experienced application engineers Huco Dynatork Products Deliver Performance To ensure precise positioning, the elimination of backlash is of primary concern. Several types of anti-backlash mechanisms are common in the market which utilise compliant pre- loads.
    [Show full text]
  • Free Radical Reactions (Read Chapter 4) A
    Chemistry 5.12 Spri ng 2003, Week 3 / Day 2 Handout #7: Lecture 11 Outline IX. Free Radical Reactions (Read Chapter 4) A. Chlorination of Methane (4-2) 1. Mechanism (4-3) B. Review of Thermodynamics (4-4,5) C. Review of Kinetics (4-8,9) D. Reaction-Energy Diagrams (4-10) 1. Thermodynamic Control 2. Kinetic Control 3. Hammond Postulate (4-14) 4. Multi-Step Reactions (4-11) 5. Chlorination of Methane (4-7) Suggested Problems: 4-35–37,40,43 IX. A. Radical Chlorination of Methane H heat (D) or H H C H Cl Cl H C Cl H Cl H light (hv) H H Cl Cl D or hv D or hv etc. H C Cl H C Cl H Cl Cl C Cl H Cl Cl Cl Cl Cl H H H • Why is light or heat necessary? • How fast does it go? • Does it give off or consume heat? • How fast are each of the successive reactions? • Can you control the product ratio? To answer these questions, we need to: 1. Understand the mechanism of the reaction (arrow-pushing!). 2. Use thermodynamics and kinetics to analyze the reaction. 1 1. Mechanism of Radical Chlorination of Methane (Free-Radical Chain Reaction) Free-radical chain reactions have three distinct mechanistic steps: • initiation step: generates reactive intermediate • propagation steps: reactive intermediates react with stable molecules to generate other reactive intermediates (allows chain to continue) • termination step: side-reactions that slow the reaction; usually combination of two reactive intermediates into one stable molecule Initiation Step: Cl2 absorbs energy and the bond is homolytically cleaved.
    [Show full text]
  • Electromagnetism What Is the Effect of the Number of Windings of Wire on the Strength of an Electromagnet?
    TEACHER’S GUIDE Electromagnetism What is the effect of the number of windings of wire on the strength of an electromagnet? GRADES 6–8 Physical Science INQUIRY-BASED Science Electromagnetism Physical Grade Level/ 6–8/Physical Science Content Lesson Summary In this lesson students learn how to make an electromagnet out of a battery, nail, and wire. The students explore and then explain how the number of turns of wire affects the strength of an electromagnet. Estimated Time 2, 45-minute class periods Materials D cell batteries, common nails (20D), speaker wire (18 gauge), compass, package of wire brad nails (1.0 mm x 12.7 mm or similar size), Investigation Plan, journal Secondary How Stuff Works: How Electromagnets Work Resources Jefferson Lab: What is an electromagnet? YouTube: Electromagnet - Explained YouTube: Electromagnets - How can electricity create a magnet? NGSS Connection MS-PS2-3 Ask questions about data to determine the factors that affect the strength of electric and magnetic forces. Learning Objectives • Students will frame a hypothesis to predict the strength of an electromagnet due to changes in the number of windings. • Students will collect and analyze data to determine how the number of windings affects the strength of an electromagnet. What is the effect of the number of windings of wire on the strength of an electromagnet? Electromagnetism is one of the four fundamental forces of the universe that we rely on in many ways throughout our day. Most home appliances contain electromagnets that power motors. Particle accelerators, like CERN’s Large Hadron Collider, use electromagnets to control the speed and direction of these speedy particles.
    [Show full text]
  • Electromagnetism
    EINE INITIATIVE DER UNIVERSITÄT BASEL UND DES KANTONS AARGAU Swiss Nanoscience Institute Electromagnetism Electricity and magnetism are two aspects of the same phenomenon: electromagnetism. A moving electric charge (in other words, an electric current) generates a magnetic field. Every electromagnet consists of a coil, which is nothing more than a tightly wound wire. Many electromagnets also have an iron core to make the magnetic field stronger. The more times the wire is wound around the coil, the stronger the magnetic field produced by the same current. Demonstration: Using electric current to create a magnetic field What you’ll need • a large sheet of paper on which to conduct the experiment • a sheet of stiff card or plexiglass • two batteries connected in series • a coil of copper wire • iron filings • crocodile clips (optional) • a small piece of iron (e.g. a screw) to place inside the coil (iron core) Instructions 1. Position the coil so that you can easily access the two ends of the wire and connect them to the battery. I used crocodile clips to attach them to the battery contacts, but you could also use wooden clothes pegs or electrical tape. 2. Connect the two batteries in series (+ - + - ). 3. Place the plexiglass or card over the coil. 4. When the electrical circuit is closed, slowly scatter the iron filings on top. What happens? The iron filings arrange themselves along the magnetic field lines. If you look closely, you can make out a pattern. Turn a screw into an electromagnet What you’ll need • a long iron screw or nail • two pieces of insulated copper wire measuring 15 and 30 cm • two three-pronged thumb tacks • a metal paperclip • a small wooden board • pins or paperclips • a 4.5 V battery Instructions Switch 1.
    [Show full text]
  • Roller Screws
    1213E_MSD_EXCO 1/11/06 10:06 AM Page 37 SIZEWISE Edited by Colleen Telling Sizing and applying ROLLER SCREWS Gary Shelton Roller screw shaft Principal Design Engineer Ground shaft Exlar Corp. Timing gear planetary Chanhassen, Minn. Roller screw nut roller screw How it works Roller screws convert ro- tary motion into linear mo- Roller screws’ tion just like acme and numerous ballscrews. Comparably contact points sized roller screws, however, vs. ballscrews’, have better efficiency than lengthen their acme screws and can carry lives and Spacer larger loads than ballscrews. washer increase load In addition, they can cycle Roller timing gear capacity and more often and turn signifi- stiffness. They Roller cantly faster than either, contain ground suiting them to precise, con- Retaining clip leadscrews for high- tinuous-duty applications. Roller journal precision applications Radiused flanks on the and come in tolerance rollers deliver point contact classes G1, G3, G4, and G5. like balls on a raceway, and only the radius is part of the profile. Therefore, a larger radius transversely and a precision- and additional contact points can ground spacer is inserted be- be packed into the available tween the front and back halves. space, thus lowering stress. In ad- The double nut is another alter- dition, the rolling contact be- native. As the name suggests, it tween components has low fric- uses two nuts preloaded against tion, yielding high efficiency. Be- each other on one screw. There is cause the rolling members are no sacrifice of life for its de- fixed relative to each other and creased backlash, but the double never touch adjacent rollers, nut costs more than standard sin- roller screws can turn at speeds gle-nut arrangements.
    [Show full text]
  • Object-Image Real Image Virtual Image
    Object-Image • A physical object is usually observed by reflected light that diverges from the object. • An optical system (mirrors or lenses) can 3.1 Images formed by Mirrors and Lenses produce an image of the object by redirecting the light. • Images – Real Image • Image formation by mirrors – Virtual Image • Images formed by lenses Real Image Virtual Image Optical System ing diverging erg converging diverging diverging div Object Object real Image Optical System virtual Image Light appears to come from the virtual image but does not Light passes through the real image pass through the virtual image Film at the position of the real image is exposed. Film at the position of the virtual image is not exposed. Each point on the image can be determined Image formed by a plane mirror. by tracing 2 rays from the object. B p q B’ Object Image The virtual image is formed directly behind the object image mirror. Light does not A pass through A’ the image mirror A virtual image is formed by a plane mirror at a distance q behind the mirror. q = -p 1 Parabolic Mirrors Parabolic Reflector Optic Axis Parallel rays reflected by a parabolic mirror are focused at a point, called the Parabolic mirrors can be used to focus incoming parallel rays to a small area Focal Point located on the optic axis. or to direct rays diverging from a small area into parallel rays. Spherical mirrors Parallel beams focus at the focal point of a Concave Mirror. •Spherical mirrors are much easier to fabricate than parabolic mirrors • A spherical mirror is an approximation of a parabolic Focal point mirror for small curvatures.
    [Show full text]
  • Curriculum Overview Physics/Pre-AP 2018-2019 1St Nine Weeks
    Curriculum Overview Physics/Pre-AP 2018-2019 1st Nine Weeks RESOURCES: Essential Physics (Ergopedia – online book) Physics Classroom http://www.physicsclassroom.com/ PHET Simulations https://phet.colorado.edu/ ONGOING TEKS: 1A, 1B, 2A, 2B, 2C, 2D, 2F, 2G, 2H, 2I, 2J,3E 1) SAFETY TEKS 1A, 1B Vocabulary Fume hood, fire blanket, fire extinguisher, goggle sanitizer, eye wash, safety shower, impact goggles, chemical safety goggles, fire exit, electrical safety cut off, apron, broken glass container, disposal alert, biological hazard, open flame alert, thermal safety, sharp object safety, fume safety, electrical safety, plant safety, animal safety, radioactive safety, clothing protection safety, fire safety, explosion safety, eye safety, poison safety, chemical safety Key Concepts The student will be able to determine if a situation in the physics lab is a safe practice and what appropriate safety equipment and safety warning signs may be needed in a physics lab. The student will be able to determine the proper disposal or recycling of materials in the physics lab. Essential Questions 1. How are safe practices in school, home or job applied? 2. What are the consequences for not using safety equipment or following safe practices? 2) SCIENCE OF PHYSICS: Glossary, Pages 35, 39 TEKS 2B, 2C Vocabulary Matter, energy, hypothesis, theory, objectivity, reproducibility, experiment, qualitative, quantitative, engineering, technology, science, pseudo-science, non-science Key Concepts The student will know that scientific hypotheses are tentative and testable statements that must be capable of being supported or not supported by observational evidence. The student will know that scientific theories are based on natural and physical phenomena and are capable of being tested by multiple independent researchers.
    [Show full text]
  • 3657 SIMPLE MACHINES: INCLINED PLANE, WEDGE and SCREW Grade Levels: 7-12 15 Minutes CAMBRIDGE EDUCATIONAL 1998
    #3657 SIMPLE MACHINES: INCLINED PLANE, WEDGE AND SCREW Grade Levels: 7-12 15 minutes CAMBRIDGE EDUCATIONAL 1998 DESCRIPTION Uses animated graphics and real examples to illustrate an inclined plane, wedge, and screw. Offers a definition of each and examines the relationship between the three. Shows how they have been used historically. Also defines simple machines and mechanical advantage. Reviews main concepts. ACADEMIC STANDARDS Subject Area: Science ¨ Standard: Understands motion and the principles that explain it · Benchmark: Knows the relationship between the strength of a force and its effect on an object (e.g., the greater the force, the greater the change in motion; the more massive the object, the smaller the effect of a given force) · Benchmark: Knows that when a force is applied to an object, the object either speeds up, slows down, or goes in a different direction Subject Area: Historical Understanding ¨ Standard: Understands and knows how to analyze chronological relationships and patterns · Benchmark: Knows how to construct time lines in significant historical developments that mark at evenly spaced intervals the years, decades, and centuries · Benchmark: Knows how to identify patterns of change and continuity in the history of the community, state, and nation, and in the lives of people of various cultures from times long ago until today AFTER SHOWING 1. Point out objects in the classroom that incorporate inclined planes, wedges and screws. 2. Dissect a toy or household gadget. Record progress in science notebooks with written notations and drawings. Identify each part as to type of simple machine and function. 3. Study the history of simple machines.
    [Show full text]
  • Glossary of Scientific Terms in the Mystery of Matter
    GLOSSARY OF SCIENTIFIC TERMS IN THE MYSTERY OF MATTER Term Definition Section acid A substance that has a pH of less than 7 and that can react with 1 metals and other substances. air The mixture of oxygen, nitrogen, and other gasses that is consistently 1 present around us. alchemist A person who practices a form of chemistry from the Middle Ages 1 that was concerned with transforming various metals into gold. Alchemy A type of science and philosophy from the Middle Ages that 1 attempted to perform unusual experiments, taking something ordinary and turning it into something extraordinary. alkali metals Any of a group of soft metallic elements that form alkali solutions 3 when they combine with water. They include lithium, sodium, potassium, rubidium, cesium, and francium. alkaline earth Any of a group of metallic elements that includes beryllium, 3 metals magnesium, calcium, strontium, barium, and radium. alpha particle A positively charged particle, indistinguishable from a helium atom 5, 6 nucleus and consisting of two protons and two neutrons. alpha decay A type of radioactive decay in which a nucleus emits 6 an alpha particle. aplastic anemia A disorder of the bone marrow that results in too few blood cells. 4 apothecary The person in a pharmacy who distributes medicine. 1 atom The smallest component of an element that shares the chemical 1, 2, 3, 4, 5, 6 properties of the element and contains a nucleus with neutrons, protons, and electrons. atomic bomb A bomb whose explosive force comes from a chain reaction based on 6 nuclear fission. atomic number The number of protons in the nucleus of an atom.
    [Show full text]
  • Laboratory 7: Properties of Lenses and Mirrors
    Laboratory 7: Properties of Lenses and Mirrors Converging and Diverging Lens Focal Lengths: A converging lens is thicker at the center than at the periphery and light from an object at infinity passes through the lens and converges to a real image at the focal point on the other side of the lens. A diverging lens is thinner at the center than at the periphery and light from an object at infinity appears to diverge from a virtual focus point on the same side of the lens as the object. The principal axis of a lens is a line drawn through the center of the lens perpendicular to the face of the lens. The principal focus is a point on the principal axis through which incident rays parallel to the principal axis pass, or appear to pass, after refraction by the lens. There are principle focus points on either side of the lens equidistant from the center (See Figure 1a). Figure 1a: Converging Lens, f>0 Figure 1b: Diverging Lens, f<0 In Fig. 1 the object and image are represented by arrows. Two rays are drawn from the top of the object. One ray is parallel to the principal axis which bends at the lens to pass through the principle focus. The second ray passes through the center of the lens and undeflected. The intersection of these two rays determines the image position. The focal length, f, of a lens is the distance from the optical center of the lens to the principal focus. It is positive for a converging lens, negative for a diverging lens.
    [Show full text]
  • Lecture 37: Lenses and Mirrors
    Lecture 37: Lenses and mirrors • Spherical lenses: converging, diverging • Plane mirrors • Spherical mirrors: concave, convex The animated ray diagrams were created by Dr. Alan Pringle. Terms and sign conventions for lenses and mirrors • object distance s, positive • image distance s’ , • positive if image is on side of outgoing light, i.e. same side of mirror, opposite side of lens: real image • s’ negative if image is on same side of lens/behind mirror: virtual image • focal length f positive for concave mirror and converging lens negative for convex mirror and diverging lens • object height h, positive • image height h’ positive if the image is upright negative if image is inverted • magnification m= h’/h , positive if upright, negative if inverted Lens equation 1 1 1 푠′ ℎ′ + = 푚 = − = magnification 푠 푠′ 푓 푠 ℎ 푓푠 푠′ = 푠 − 푓 Converging and diverging lenses f f F F Rays refract towards optical axis Rays refract away from optical axis thicker in the thinner in the center center • there are focal points on both sides of each lens • focal length f on both sides is the same Ray diagram for converging lens Ray 1 is parallel to the axis and refracts through F. Ray 2 passes through F’ before refracting parallel to the axis. Ray 3 passes straight through the center of the lens. F I O F’ object between f and 2f: image is real, inverted, enlarged object outside of 2f: image is real, inverted, reduced object inside of f: image is virtual, upright, enlarged Ray diagram for diverging lens Ray 1 is parallel to the axis and refracts as if from F.
    [Show full text]