New York State Artificial Reef Guide
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
I. I NOV20 2017
or UNITED STATES DEPARTMENT OF COMMERCE / National Oceanic and Atmospheric Administration * i. I NATIONAL MARINE FISHERIES SERVICE Southeast Regional Office 4rES O LQi 3U Ie1U SOU St. Petersburg, Florida 33701-5505 http://sero.nmfs.noaa.gov F/SER3 1: NMB SER-2015- 17616 NOV20 2017 Mr. Donald W. Kinard Chief, Regulatory Division U.S. Army Corps of Engineers P.O. Box 4970 Jacksonville, Florida 32232-0019 Ref.: U.S. Army Corps of Engineers Jacksonville District’s Programmatic Biological Opinion (JAXBO) Dear Mr. Kinard: Enclosed is the National Marine Fisheries Service’s (NMFS’s) Programmatic Biological Opinion (Opinion) based on our review of the impacts associated with the U.S. Army Corps of Engineers (USACE’s) Jacksonville District’s authorization of 10 categories of minor in-water activities within Florida and the U.S. Caribbean (Puerto Rico and the U.S. Virgin Islands). The Opinion analyzes the effects from 10 categories of minor in-water activities occurring in Florida and the U.S. Caribbean on sea turtles (loggerhead, leatherback, Kemp’s ridley, hawksbill, and green); smalitooth sawfish; Nassau grouper; scalloped hammerhead shark, Johnson’s seagrass; sturgeon (Gulf, shortnose, and Atlantic); corals (elkhom, staghorn, boulder star, mountainous star, lobed star, rough cactus, and pillar); whales (North Atlantic right whale, sei, blue, fin, and sperm); and designated critical habitat for Johnson’s seagrass; smalltooth sawfish; sturgeon (Gulf and Atlantic); sea turtles (green, hawksbill, leatherback, loggerhead); North Atlantic right whale; and elkhorn and staghorn corals in accordance with Section 7 of the Endangered Species Act. We also analyzed effects on the proposed Bryde’s whale. -
A Numerical Assessment of Artificial Reef Pass Wave-Induced Currents As a Renewable Energy Source
Journal of Marine Science and Engineering Article A Numerical Assessment of Artificial Reef Pass Wave-Induced Currents as a Renewable Energy Source Damien Sous 1,2 1 Mediterranean Institute of Oceanography (MIO), Aix Marseille Université, CNRS, IRD, Université de Toulon, 13288 La Garde, France; [email protected]; Tel.: +33-(0)4-9114-2109 2 Univ Pau & Pays Adour/E2S UPPA, Chaire HPC-Waves, Laboratoire des Sciences de l’Ingénieur Appliquées à la Méchanique et au Génie Electrique - Fédération IPRA, EA4581, 64600 Anglet, France Received: 21 July 2019; Accepted: 19 August 2019; Published: 22 August 2019 Abstract: The present study aims to estimate the potential of artificial reef pass as a renewable source of energy. The overall idea is to mimic the functioning of natural reef–lagoon systems in which the cross-reef pressure gradient induced by wave breaking is able to drive an outward flow through the pass. The objective is to estimate the feasibility of a positive energy breakwater, combining the usual wave-sheltering function of immersed breakwater together with the production of renewable energy by turbines. A series of numerical simulations is performed using a depth-averaged model to understand the effects of each geometrical reef parameter on the reef–lagoon hydrodynamics. A synthetic wave and tide climate is then imposed to estimate the potential power production. An annual production between 50 and 70 MWh is estimated. Keywords: artificial reef; positive energy breakwater; numerical simulation; turbines 1. Introduction Low-lying nearshore areas host a significant and increasing population. Under the combined actions of sea level rise [1], modified storm patterns [2], and increasing urbanization, these regions will face growing risks of submersion, inundation, and erosion [3–6]. -
Fire Island—Historical Background
Chapter 1 Fire Island—Historical Background Brief Overview of Fire Island History Fire Island has been the location for a wide variety of historical events integral to the development of the Long Island region and the nation. Much of Fire Island’s history remains shrouded in mystery and fable, including the precise date at which the barrier beach island was formed and the origin of the name “Fire Island.” What documentation does exist, however, tells an interesting tale of Fire Island’s progression from “Shells to Hotels,” a phrase coined by one author to describe the island’s evo- lution from an Indian hotbed of wampum production to a major summer resort in the twentieth century.1 Throughout its history Fire Island has contributed to some of the nation’s most important historical episodes, including the development of the whaling industry, piracy, the slave trade, and rumrunning. More recently Fire Island, home to the Fire Island National Seashore, exemplifies the late twentieth-century’s interest in preserving natural resources and making them available for public use. The Name. It is generally believed that Fire Island received its name from the inlet that cuts through the barrier and connects the Great South Bay to the ocean. The name Fire Island Inlet is seen on maps dating from the nineteenth century before it was attributed to the barrier island. On September 15, 1789, Henry Smith of Boston sold a piece of property to several Brookhaven residents through a deed that stated the property ran from “the Head of Long Cove to Huntting -
County of Suffolk
COUNTY OF SUFFOLK STEVE LEVY SUFFOLK COUNTY EXECUTIVE It is with great pleasure that I present the frnal recommendations of the Great South Bay (GSB) Hard Clam Restoration Working Group. This report contains the long term management recommendations for hard clam restoration in the Great South Bay. During late 2008 I initiated the formation of the GSa Hard Clam Restoration Working Group. This group was charged with making recommendations for interim and long term hard clam management. The ultimate goal of the Working Group was to provide recommendations for a sustainable hard clam fishery in the GSa for the benefrt of all Suffolk County. Interim management recommendations were adopted by each of the three GSa Towns for 2011. These interim measures are slated to expire at the end of this year. The following report contains the long term recommendations from the working group to the three GSB Towns as we move ahead into 2012. In 2005, with funding from the Suffolk County Water Quality Protection and Restoration Program, Comell Cooperative Extension and Long Island University began the largest bay scallop restoration effort ever attempted in the United States. These restoration efforts have contributed to a huge increase in scallop populations. LtU and Comell scientists documented a 5,000% increase in scallop populations in Orient Harbor. Last year's Peconic bay scallop fishery was the highest it has been in 17 years. The paragraph above describes the success we have seen in the bay scallop restoration effort. Suffolk County has also contributed to the efforts of the Nature Conservancy and the Towns to increase the stocking of adult clams in the GSB and to develop a management plan for the future. -
Fire Island Light Station
Form No. 10-306 (Rev. 10-74) UNITED STATES DEPARTMENT OF THE INTERIOR NATIONAL PARK SERVICE NATIONAL REGISTER OF HISTORIC PLACES INVENTORY -- NOMINATION FORM FOR FEDERAL PROPERTIES SEE INSTRUCTIONS IN HOW TO COMPLETE NATIONAL REGISTER FORMS TYPE ALL ENTRIES--COMPLETE APPLICABLE SECTIONS NAME HISTORIC Fire Island Light Station _NOT FOR PUBLICATION CITY. TOWN Bay Shore 0.1. STATE CODE COUNTY CODE New York 36 Suffolk HCLASSIFICATION CATEGORY OWNERSHIP STATUS PRESENT USE _ DISTRICT -XPUBLIC OCCUPIED —AGRICULTURE —MUSEUM _ BUILDING(S) ^.PRIVATE X.UNOCCUPIED —COMMERCIAL XPARK _XSTRUCTURE —BOTH —WORK IN PROGRESS —EDUCATIONAL —PRIVATE RESIDENCE —SITE PUBLIC ACQUISITION ACCESSIBLE —ENTERTAINMENT —RELIGIOUS —OBJECT _ IN PROCESS iLYES: RESTRICTED —GOVERNMENT —SCIENTIFIC —BEING CONSIDERED —YES: UNRESTRICTED —INDUSTRIAL —TRANSPORTATION —NO —MILITARY —OTHER: AGENCY REGIONAL HEADQUARTERS: (If applicable) National Park Service, Morth Atlantic Region STREET & NUMBER 15 State Street CITY. TOWN STATE VICINITY OF Massachusetts COURTHOUSE, REGISTRY OF DEEDSETC. Land Acquisition Division, National Park Service, North Atlantic CITY. TOWN STATE Boston, Massachusetts TITLE U.S. Coast Guard, 3d Dist., "Fire Island Station Annex" Civil Plot Plan 03-5523 DATE 18 June 1975, revised 8-7-80 .^FEDERAL —STATE —COUNTY —LOCAL DEPOSITORY FOR SURVEY RECORDS- Nationa-| park Service, North Atlantic Regional Office CITY, TOWN CONDITION CHECK ONE CHECK ONE —EXCELLENT _DETERIORATED —UNALTERED X-ORIGINAL SITE —GOOD _RUINS . X-ALTERED —MOVED DATE_____ X.FAIR _UNEXPOSED DESCRIBE THE PRESENT AND ORIGINAL (IF KNOWN) PHYSICAL APPEARANCE The Fire Island Light Station is situated 5 miles east of the western end of Fire Island, a barrier island off the southern coast of Long Island. It consists of a lighthouse and an adjacent keeper's quarters sitting on a raised terrace. -
Great South Bay Ecosystem-Based Management Plan
Great South Bay Ecosystem-based Management Plan Prepared by The Nature Conservancy, Long Island Chapter Prepared for The New York State Department of State with funds provided by the Environmental Protection Fund 2008 Draft Final 2012 EXECUTIVE SUMMARY Great South Bay (GSB) on the South Shore of Long Island is teeming with life, but it is also degraded compared to historical conditions. Conservation and management measures are needed to preserve and restore the health of the bay. The Long Island Chapter of the Nature Conservancy (TNC), under contract to the New York State Department of State (DOS), developed this Ecosystem-based Management (EBM) Plan for Great South Bay. Ecosystem-based Management is a management approach that considers the entire ecosystem, including humans. It promotes ecosystem viability and integrity, biodiversity, sustainability, and social values and principles. TNC’s analysis relies on choosing a set of ecological surrogates, representative species, and groups of species, or habitat types that can represent the ecological status of the biodiversity in Great South Bay. For each surrogate, specific measurable objectives are developed that describe the intended ecological state of Great South Bay with respect to each surrogate. The measurable objectives are achieved through the implementation of strategic actions and action steps described in the plan. Overarching objectives and strategic actions are also developed to address water quality, global climate change, and education. The surrogates chosen to represent the GSB ecosystem in the plan are: Hard clams Salt marshes Seagrass meadows Barrier island complex Predatory fishes Winter flounder Alewives Piping plovers Horseshoe crabs This report was originally drafted in 2008 followed by an update in 2012 to each surrogate’s current status, strategic actions and action steps. -
Harbor Protection Through Construction of Artificial Submerged Reefs
Harbor Protection through Construction of Artificial Submerged Reefs Amarjit Singh, Vallam Sundar, Enrique Alvarez, Roberto Porro, Michael Foley (www.hawaii.gov) 2 Outline • Background of Artificial Reefs • Multi-Purpose Artificial Submerged Reefs (MPASRs) ▫ Coastline Protection ▫ Harbor Protection • MPASR Concept for Kahului Harbor, Maui ▫ Situation ▫ Proposed Solution • Summary 3 Background First documented First specifically Artificial reefs in First artificial reef Artificial reefs in artificial reefs in designed artificial Hawaii– concrete/tire in Hawaii Hawaii – concrete Z- U.S. reefs in U.S. modules modules 1830’s 1961 1970’s 1985-1991 1991- Present • Uses • Materials ▫ Create Marine Habitat ▫ Rocks; Shells ▫ Enhance Fishing ▫ Trees ▫ Recreational Diving Sites ▫ Concrete Debris ▫ Surfing Enhancement ▫ Ships; Car bodies ▫ Coastal Protection ▫ Designed concrete modules ▫ Geosynthetic Materials 4 Multi-Purpose Artificial Submerged Reefs (MPASRs) Specifically designed artificial reef which can provide: • Coastline Protection or Harbor Protection ▫ Can help restore natural beach dynamics by preventing erosion ▫ Can reduce wave energy transmitted to harbor entrances • Marine Habitat Enhancement ▫ Can provide environment for coral growth and habitat fish and other marine species. ▫ Coral can be transplanted to initiate/accelerate coral growth • Recreational Uses ▫ Surfing enhancement: can provide surfable breaking waves where none exist ▫ Diving/Snorkeling: can provide site for recreational diving and snorkeling 5 MPASRs as Coastal Protection Wave Transmission: MPASRs can reduce wave energy transmitted to shoreline. Kt = Ht/Hi K = H /H t t i Breakwater K = wave transmission t Seabed coefficient, (Pilarczyk 2003) Ht= transmitted wave height shoreward of structure Hi = incident wave height seaward of structure. 6 MPASRs as Coastal Protection • Wave Refraction: MPASR causes wave refraction around the reef, focusing wave energy in a different direction. -
Review of Reef Effects of Offshore Wind Farm Strucurse and Potential for Enhancement and Mitigation
REVIEW OF REEF EFFECTS OF OFFSHORE WIND FARM STRUCTURES AND POTENTIAL FOR ENHANCEMENT AND MITIGATION JANUARY 2008 IN ASSOCIATION WITH Review of the reef effects of offshore wind farm structures and potential for enhancement and mitigation Report to the Department for Business, Enterprise and Regulatory Reform PML Applications Ltd in association with Scottish Association of Marine Sciences (SAMS) Contract No : RFCA/005/00029P This report may be cited as follows: Linley E.A.S., Wilding T.A., Black K., Hawkins A.J.S. and Mangi S. (2007). Review of the reef effects of offshore wind farm structures and their potential for enhancement and mitigation. Report from PML Applications Ltd and the Scottish Association for Marine Science to the Department for Business, Enterprise and Regulatory Reform (BERR), Contract No: RFCA/005/0029P Acknowledgements Acknowledgements The Review of Reef Effects of Offshore Wind Farm Structures and Potential for Enhancement and Mitigation was prepared by PML Applications Ltd and the Scottish Association for Marine Science. This project was undertaken as part of the UK Department for Business, Enterprise and Regulatory Reform (BERR) offshore wind energy research programme, and managed on behalf of BERR by Hartley Anderson Ltd. We are particularly indebted to John Hartley and other members of the Research Advisory Group for their advice and guidance throughout the production of this report, and to Keith Hiscock and Antony Jensen who also provided detailed comment on early drafts. Numerous individuals have also contributed their advice, particularly in identifying data resources to assist with the analysis. We are particularly indebted to Angela Wratten, Chris Jenner, Tim Smyth, Mark Trimmer, Francis Bunker, Gero Vella, Robert Thornhill, Julie Drew, Adrian Maddocks, Robert Lillie, Tony Nott, Ben Barton, David Fletcher, John Leballeur, Laurie Ayling and Stephen Lockwood – who in the course of passing on information also contributed their ideas and thoughts. -
The Baymen of the Great South Bay, New York; a Preliminary Ecological
The Baymen of the Great South Bay, New 'Ilosk of life may have to be abandoned (extinction for other species). A Preliminary Ecological Profile An ecological profile defines the fishermen's unique lifestyle and cultural re- quirements and thenconsiders them as predators on fish or shellfish, as competi- tors with each other and other species, and subjected to environmental variabili- Jeffrey Kassner ty. It shows therefore how the fishermen function within their environment and Town of Brookhaven, Division of Environmental Protection how they respond to it. The advantage to the ecological profile is that it high- lights the various interactions and constraints, ensuring that all relevant factors impacting the fishermen are considered. It is a comprehensive assessment and ABSTRACTEcology is the study of the interactions among organisms and their environ- does not consider fishermen in isolation. ment. Various theories and concepts taken from ecology, for example, optimal foraging the- The Great South Bay is an embayment located on the south shore of Long ory, have been used in theanthropological study of fishermen. While this approach canpro- Island, New York. The bay supports a significant commercial fishery for the vide useful insights, it removes the fishermen from their environment so that potentially hard clam (Mereenaria mereenaria) which is harvested by fishermen, known lo- significant factors may be taken out of context or omitted. An ecological profileof a fisher- cally as baymen or clam diggers, who are self-employed and work individually men population would present a more comprehensiveecological study, examining theecolog- from small boats (less than 10 m) on open access public bay bottom using hand ical processes of predation, competition and adaptation from the perspective of the fisher- operated rakes and tongs. -
An Experimental Investigation of Turbulence Features Induced by Typical Artificial M-Shaped Unit Reefs
applied sciences Article An Experimental Investigation of Turbulence Features Induced by Typical Artificial M-Shaped Unit Reefs Anping Shu 1,*, Jiping Qin 1, Matteo Rubinato 2 , Tao Sun 1, Mengyao Wang 3, Shu Wang 1 , Le Wang 4 , Jiapin Zhu 1 and Fuyang Zhu 5 1 School of Environment, Key Laboratory of Water and Sediment Sciences of MOE, Beijing Normal University, Beijing 100875, China; [email protected] (J.Q.); [email protected] (T.S.); [email protected] (S.W.); [email protected] (J.Z.) 2 School of Energy, Construction and Environment & Centre for Agroecology, Water and Resilience, Coventry University, Coventry CV1 5FB, UK; [email protected] 3 Beijing Water Resources Dispatching Center, Beijing 100038, China; [email protected] 4 School of Water Resources and Hydropower Engineering, North China Electric Power University, Beijing 102206, China; [email protected] 5 Power China Zhong Nan Engineering Corporation Limited, Changsha 410014, China; [email protected] * Correspondence: [email protected]; Tel.: +86-135-0117-6507 Abstract: Artificial reefs are considered to have the function of repairing and improving the coastal habitat and increasing the fishery production, which are mainly achieved by changing the regional hydrodynamic conditions. The characteristics of flow turbulence structure are an important part of the regional hydrodynamic characteristics. Different methods are used to evaluate the performance of artificial reefs according to their shape and the purpose for which the reef was built. For this study, the M-shaped unit reefs, which are to be put into the area of Liaodong Bay, were selected as the Citation: Shu, A.; Qin, J.; Rubinato, research object and have never been fully investigated before. -
The Preparedness of Suffolk County's Emergency Managers for Drinking
Walden University ScholarWorks Walden Dissertations and Doctoral Studies Walden Dissertations and Doctoral Studies Collection 2021 The Preparedness of Suffolk County’s Emergency Managers For Drinking Water Disruptions Richard Rotanz Walden University Follow this and additional works at: https://scholarworks.waldenu.edu/dissertations Part of the Public Administration Commons This Dissertation is brought to you for free and open access by the Walden Dissertations and Doctoral Studies Collection at ScholarWorks. It has been accepted for inclusion in Walden Dissertations and Doctoral Studies by an authorized administrator of ScholarWorks. For more information, please contact [email protected]. Walden University College of Social and Behavioral Sciences This is to certify that the doctoral dissertation by Richard A. Rotanz has been found to be complete and satisfactory in all respects, and that any and all revisions required by the review committee have been made. Review Committee Dr. Donald McLellan, Committee Chairperson, Public Policy and Administration Faculty Dr. Mark Stallo, Committee Member, Public Policy and Administration Faculty Dr. Karen Shafer, University Reviewer, Public Policy and Administration Faculty Chief Academic Officer and Provost Sue Subocz, Ph.D. Walden University 2021 Abstract The Preparedness of Suffolk County’s Emergency Managers For Drinking Water Disruptions by Richard A. Rotanz MA, John Jay College, 1996 BS, Empire State College 1984 Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Public Policy and Administration Walden University February 2021 Abstract For many years, a chronic issue within Suffolk County, New York, one of the most populated counties in the country, is the deterioration of its drinking water along with its polluted beaches, lakes, and rivers, which are imperative for tourism and the fishing industry. -
Using Artificial-Reef Knowledge to Enhance the Ecological Function of Offshore Wind Turbine Foundations: Implications for Fish A
Journal of Marine Science and Engineering Review Using Artificial-Reef Knowledge to Enhance the Ecological Function of Offshore Wind Turbine Foundations: Implications for Fish Abundance and Diversity Maria Glarou 1,2,* , Martina Zrust 1 and Jon C. Svendsen 1 1 DTU Aqua, Technical University of Denmark (DTU), Kemitorvet, Building 202, 2800 Kongens Lyngby, Denmark; [email protected] (M.Z.); [email protected] (J.C.S.) 2 Department of Ecology, Environment and Plant Sciences, Stockholm University, Svante Arrhenius väg 20 A (or F), 114 18 Stockholm, Sweden * Correspondence: [email protected]; Tel.: +45-50174014 Received: 13 April 2020; Accepted: 5 May 2020; Published: 8 May 2020 Abstract: As the development of large-scale offshore wind farms (OWFs) amplifies due to technological progress and a growing demand for renewable energy,associated footprints on the seabed are becoming increasingly common within soft-bottom environments. A large part of the footprint is the scour protection, often consisting of rocks that are positioned on the seabed to prevent erosion. As such, scour protection may resemble a marine rocky reef and could have important ecosystem functions. While acknowledging that OWFs disrupt the marine environment, the aim of this systematic review was to examine the effects of scour protection on fish assemblages, relate them to the effects of designated artificial reefs (ARs) and, ultimately, reveal how future scour protection may be tailored to support abundance and diversity of marine species. The results revealed frequent increases in abundances of species associated with hard substrata after the establishment of artificial structures (i.e., both OWFs and ARs) in the marine environment.