Self-Organized Criticality and Pattern Emergence through the lens of Tropical Geometry N. Kalinin,1 A. Guzman-S´ aenz,´ 2 Y. Prieto, 3 M. Shkolnikov, 4 V. Kalinina,5 E. Lupercio 6∗ 1Higher School of Economics, The Laboratory of Game Theory and Decision Making Saint-Petersburg, Russia 2Computational Genomics, IBM T.J. Watson Research Center, Yorktown Heights, NY, USA 3Institut de Mathematiques´ de Toulouse, Universite´ de Toulouse III Paul Sabatier Toulouse, France 4Institute of Science and Technology Austria Klosterneuburg, Austria 5Institute of Cytology, Russian Academy of Science Saint-Petersburg, Russia 6CINVESTAV, Department of Mathematics Campus Zacatenco, CDMX, Mexico ∗To whom correspondence should be addressed; e-mail:
[email protected] Tropical Geometry, an established field in pure mathematics, is a place where String Theory, Mirror Symmetry, Computational Algebra, Auction Theory, arXiv:1806.09153v1 [nlin.AO] 24 Jun 2018 etc, meet and influence each other. In this paper, we report on our discov- ery of a tropical model with self-organized criticality (SOC) behavior. Our model is continuous, in contrast to all known models of SOC, and is a cer- tain scaling limit of the sandpile model, the first and archetypical model of SOC. We describe how our model is related to pattern formation and propor- tional growth phenomena, and discuss the dichotomy between continuous and 1 discrete models in several contexts. Our aim in this context is to present an idealized tropical toy-model (cf. Turing reaction-diffusion model), requiring further investigation. Self-Organized Criticality The statistics concerning earthquakes in a particular extended region of the Earth during a given period of time obey a power law known as the Gutenberg-Richter law (1): the logarithm of the energy of an earthquake is a linear function of the logarithm of the frequency of earthquakes of such energy.