The Ocaml System Release 4.08

Total Page:16

File Type:pdf, Size:1020Kb

The Ocaml System Release 4.08 The OCaml system release 4.08 Documentation and user's manual Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier R´emy and J´er^ome Vouillon August 6, 2019 Copyright © 2019 Institut National de Recherche en Informatique et en Automatique 2 Contents I An introduction to OCaml 11 1 The core language 13 1.1 Basics........................................... 13 1.2 Data types......................................... 14 1.3 Functions as values.................................... 16 1.4 Records and variants................................... 16 1.5 Imperative features.................................... 21 1.6 Exceptions......................................... 23 1.7 Lazy expressions...................................... 25 1.8 Symbolic processing of expressions........................... 26 1.9 Pretty-printing...................................... 27 1.10 Printf formats....................................... 28 1.11 Standalone OCaml programs............................... 30 2 The module system 33 2.1 Structures......................................... 33 2.2 Signatures......................................... 36 2.3 Functors.......................................... 37 2.4 Functors and type abstraction.............................. 38 2.5 Modules and separate compilation............................ 41 3 Objects in OCaml 43 3.1 Classes and objects.................................... 43 3.2 Immediate objects..................................... 46 3.3 Reference to self...................................... 47 3.4 Initializers......................................... 48 3.5 Virtual methods...................................... 48 3.6 Private methods...................................... 50 3.7 Class interfaces...................................... 52 3.8 Inheritance......................................... 53 3.9 Multiple inheritance.................................... 53 3.10 Parameterized classes................................... 55 3.11 Polymorphic methods................................... 58 3.12 Using coercions...................................... 61 3.13 Functional objects..................................... 65 1 2 3.14 Cloning objects...................................... 66 3.15 Recursive classes..................................... 68 3.16 Binary methods...................................... 69 3.17 Friends........................................... 71 4 Labels and variants 73 4.1 Labels........................................... 73 4.2 Polymorphic variants................................... 79 5 Polymorphism and its limitations 83 5.1 Weak polymorphism and mutation........................... 83 5.2 Polymorphic recursion.................................. 88 5.3 Higher-rank polymorphic functions........................... 91 6 Advanced examples with classes and modules 93 6.1 Extended example: bank accounts............................ 93 6.2 Simple modules as classes................................ 99 6.3 The subject/observer pattern.............................. 104 II The OCaml language 109 7 The OCaml language 111 7.1 Lexical conventions.................................... 111 7.2 Values........................................... 116 7.3 Names........................................... 118 7.4 Type expressions..................................... 121 7.5 Constants......................................... 124 7.6 Patterns.......................................... 125 7.7 Expressions........................................ 130 7.8 Type and exception definitions.............................. 144 7.9 Classes........................................... 147 7.10 Module types (module specifications).......................... 153 7.11 Module expressions (module implementations)..................... 158 7.12 Compilation units..................................... 161 8 Language extensions 163 8.1 Recursive definitions of values.............................. 163 8.2 Recursive modules..................................... 164 8.3 Private types........................................ 166 8.4 Local opens for patterns................................. 168 8.5 Locally abstract types.................................. 169 8.6 First-class modules.................................... 170 8.7 Recovering the type of a module............................. 172 8.8 Substituting inside a signature.............................. 173 8.9 Type-level module aliases................................. 175 3 8.10 Overriding in open statements.............................. 176 8.11 Generalized algebraic datatypes............................. 177 8.12 Syntax for Bigarray access................................ 182 8.13 Attributes......................................... 183 8.14 Extension nodes...................................... 189 8.15 Extensible variant types................................. 191 8.16 Generative functors.................................... 193 8.17 Extension-only syntax.................................. 194 8.18 Inline records....................................... 195 8.19 Documentation comments................................ 196 8.20 Extended indexing operators.............................. 199 8.21 Empty variant types................................... 199 8.22 Alerts........................................... 200 8.23 Generalized open statements............................... 201 8.24 Binding operators.................................... 203 III The OCaml tools 207 9 Batch compilation (ocamlc) 209 9.1 Overview of the compiler................................. 209 9.2 Options........................................... 210 9.3 Modules and the file system............................... 222 9.4 Common errors...................................... 223 9.5 Warning reference..................................... 225 10 The toplevel system or REPL (ocaml) 229 10.1 Options........................................... 230 10.2 Toplevel directives..................................... 237 10.3 The toplevel and the module system.......................... 240 10.4 Common errors...................................... 240 10.5 Building custom toplevel systems: ocamlmktop ..................... 240 10.6 The native toplevel: ocamlnat (experimental)..................... 241 11 The runtime system (ocamlrun) 243 11.1 Overview.......................................... 243 11.2 Options........................................... 244 11.3 Dynamic loading of shared libraries........................... 246 11.4 Common errors...................................... 247 12 Native-code compilation (ocamlopt) 249 12.1 Overview of the compiler................................. 249 12.2 Options........................................... 250 12.3 Common errors...................................... 263 12.4 Running executables produced by ocamlopt...................... 263 12.5 Compatibility with the bytecode compiler....................... 263 4 13 Lexer and parser generators (ocamllex, ocamlyacc) 265 13.1 Overview of ocamllex .................................. 265 13.2 Syntax of lexer definitions................................ 266 13.3 Overview of ocamlyacc .................................. 271 13.4 Syntax of grammar definitions.............................. 271 13.5 Options........................................... 274 13.6 A complete example.................................... 275 13.7 Common errors...................................... 276 14 Dependency generator (ocamldep) 279 14.1 Options........................................... 279 14.2 A typical Makefile..................................... 281 15 The browser/editor (ocamlbrowser) 285 16 The documentation generator (ocamldoc) 287 16.1 Usage............................................ 287 16.2 Syntax of documentation comments........................... 294 16.3 Custom generators.................................... 303 16.4 Adding command line options.............................. 306 17 The debugger (ocamldebug) 307 17.1 Compiling for debugging................................. 307 17.2 Invocation......................................... 307 17.3 Commands......................................... 308 17.4 Executing a program................................... 309 17.5 Breakpoints........................................ 312 17.6 The call stack....................................... 312 17.7 Examining variable values................................ 313 17.8 Controlling the debugger................................. 314 17.9 Miscellaneous commands................................. 317 17.10 Running the debugger under Emacs........................... 317 18 Profiling (ocamlprof) 319 18.1 Compiling for profiling.................................. 319 18.2 Profiling an execution................................... 320 18.3 Printing profiling information.............................. 320 18.4 Time profiling....................................... 321 19 The ocamlbuild compilation manager 323 20 Interfacing C with OCaml 325 20.1 Overview and compilation information......................... 325 20.2 The value type...................................... 332 20.3 Representation of OCaml data types.......................... 333 20.4 Operations on values................................... 336 5 20.5 Living in harmony with the garbage collector..................... 339 20.6 A complete example.................................... 343 20.7 Advanced topic: callbacks from C to OCaml...................... 347 20.8 Advanced example with callbacks............................ 352 20.9 Advanced topic: custom blocks............................
Recommended publications
  • Scala−−, a Type Inferred Language Project Report
    Scala−−, a type inferred language Project Report Da Liu [email protected] Contents 1 Background 2 2 Introduction 2 3 Type Inference 2 4 Language Prototype Features 3 5 Project Design 4 6 Implementation 4 6.1 Benchmarkingresults . 4 7 Discussion 9 7.1 About scalac ....................... 9 8 Lessons learned 10 9 Language Specifications 10 9.1 Introdution ......................... 10 9.2 Lexicalsyntax........................ 10 9.2.1 Identifiers ...................... 10 9.2.2 Keywords ...................... 10 9.2.3 Literals ....................... 11 9.2.4 Punctions ...................... 12 9.2.5 Commentsandwhitespace. 12 9.2.6 Operations ..................... 12 9.3 Syntax............................ 12 9.3.1 Programstructure . 12 9.3.2 Expressions ..................... 14 9.3.3 Statements ..................... 14 9.3.4 Blocksandcontrolflow . 14 9.4 Scopingrules ........................ 16 9.5 Standardlibraryandcollections. 16 9.5.1 println,mapandfilter . 16 9.5.2 Array ........................ 16 9.5.3 List ......................... 17 9.6 Codeexample........................ 17 9.6.1 HelloWorld..................... 17 9.6.2 QuickSort...................... 17 1 of 34 10 Reference 18 10.1Typeinference ....................... 18 10.2 Scalaprogramminglanguage . 18 10.3 Scala programming language development . 18 10.4 CompileScalatoLLVM . 18 10.5Benchmarking. .. .. .. .. .. .. .. .. .. .. 18 11 Source code listing 19 1 Background Scala is becoming drawing attentions in daily production among var- ious industries. Being as a general purpose programming language, it is influenced by many ancestors including, Erlang, Haskell, Java, Lisp, OCaml, Scheme, and Smalltalk. Scala has many attractive features, such as cross-platform taking advantage of JVM; as well as with higher level abstraction agnostic to the developer providing immutability with persistent data structures, pattern matching, type inference, higher or- der functions, lazy evaluation and many other functional programming features.
    [Show full text]
  • The Scala Experience Safe Programming Can Be Fun!
    The Scala Programming Language Mooly Sagiv Slides taken from Martin Odersky (EPFL) Donna Malayeri (CMU) Hila Peleg (Technion) Modern Functional Programming • Higher order • Modules • Pattern matching • Statically typed with type inference • Two viable alternatives • Haskel • Pure lazy evaluation and higher order programming leads to Concise programming • Support for domain specific languages • I/O Monads • Type classes • ML/Ocaml/F# • Eager call by value evaluation • Encapsulated side-effects via references • [Object orientation] Then Why aren’t FP adapted? • Education • Lack of OO support • Subtyping increases the complexity of type inference • Programmers seeks control on the exact implementation • Imperative programming is natural in certain situations Why Scala? (Coming from OCaml) • Runs on the JVM/.NET • Can use any Java code in Scala • Combines functional and imperative programming in a smooth way • Effective libraries • Inheritance • General modularity mechanisms The Java Programming Language • Designed by Sun 1991-95 • Statically typed and type safe • Clean and Powerful libraries • Clean references and arrays • Object Oriented with single inheritance • Interfaces with multiple inheritance • Portable with JVM • Effective JIT compilers • Support for concurrency • Useful for Internet Java Critique • Downcasting reduces the effectiveness of static type checking • Many of the interesting errors caught at runtime • Still better than C, C++ • Huge code blowouts • Hard to define domain specific knowledge • A lot of boilerplate code •
    [Show full text]
  • 1 Ocaml for the Masses
    PROGRAMMING LANGUAGES OCaml for the Masses Why the next language you learn should be functional Yaron Minsky, Jane Street Sometimes, the elegant implementation is a function. Not a method. Not a class. Not a framework. Just a function. - John Carmack Functional programming is an old idea with a distinguished history. Lisp, a functional language inspired by Alonzo Church’s lambda calculus, was one of the first programming languages developed at the dawn of the computing age. Statically typed functional languages such as OCaml and Haskell are newer, but their roots go deep—ML, from which they descend, dates back to work by Robin Milner in the early ’70s relating to the pioneering LCF (Logic for Computable Functions) theorem prover. Functional programming has also been enormously influential. Many fundamental advances in programming language design, from garbage collection to generics to type inference, came out of the functional world and were commonplace there decades before they made it to other languages. Yet functional languages never really made it to the mainstream. They came closest, perhaps, in the days of Symbolics and the Lisp machines, but those days seem quite remote now. Despite a resurgence of functional programming in the past few years, it remains a technology more talked about than used. It is tempting to conclude from this record that functional languages don’t have what it takes. They may make sense for certain limited applications, and contain useful concepts to be imported into other languages; but imperative and object-oriented languages are simply better suited to the vast majority of software engineering tasks.
    [Show full text]
  • Eff Directly in Ocaml
    Eff Directly in OCaml Oleg Kiselyov KC Sivaramakrishnan Tohoku University, Japan University of Cambridge, UK [email protected] [email protected] The language Eff is an OCaml-like language serving as a prototype implementation of the theory of algebraic effects, intended for experimentation with algebraic effects on a large scale. We present the embedding of Eff into OCaml, using the library of delimited continuations or the multicore OCaml branch. We demonstrate the correctness of the embedding denotationally, re- lying on the tagless-final–style interpreter-based denotational semantics, including the novel, direct denotational semantics of multi-prompt delimited control. The embedding is systematic, lightweight, performant and supports even higher-order, ‘dynamic’ effects with their polymorphism. OCaml thus may be regarded as another implementation of Eff, broadening the scope and appeal of that language. 1 Introduction Algebraic effects [33, 32] are becoming a more and more popular approach for expressing and com- posing computational effects. There are implementations of algebraic effects in Haskell [18, 22], Idris [4], OCaml [10, 18], Koka [27], Scala1, Javascript2, PureScript3, and other languages. The most direct embodiment of algebraic effect theory is the language Eff4 “built to test the mathematical ideas of alge- braic effects in practice”. It is an OCaml-like language with the native facilities (syntax, type system) to declare effects and their handlers [2]. It is currently implemented as an interpreter, with an optimizing compiler to OCaml in the works. Rather than compile Eff to OCaml, we embed it. After all, save for algebraic effects, Eff truly is a subset of OCaml and can be interpreted or compiled as a regular OCaml code.
    [Show full text]
  • An Overview of the Scala Programming Language
    An Overview of the Scala Programming Language Second Edition Martin Odersky, Philippe Altherr, Vincent Cremet, Iulian Dragos Gilles Dubochet, Burak Emir, Sean McDirmid, Stéphane Micheloud, Nikolay Mihaylov, Michel Schinz, Erik Stenman, Lex Spoon, Matthias Zenger École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne, Switzerland Technical Report LAMP-REPORT-2006-001 Abstract guage for component software needs to be scalable in the sense that the same concepts can describe small as well as Scala fuses object-oriented and functional programming in large parts. Therefore, we concentrate on mechanisms for a statically typed programming language. It is aimed at the abstraction, composition, and decomposition rather than construction of components and component systems. This adding a large set of primitives which might be useful for paper gives an overview of the Scala language for readers components at some level of scale, but not at other lev- who are familar with programming methods and program- els. Second, we postulate that scalable support for compo- ming language design. nents can be provided by a programming language which unies and generalizes object-oriented and functional pro- gramming. For statically typed languages, of which Scala 1 Introduction is an instance, these two paradigms were up to now largely separate. True component systems have been an elusive goal of the To validate our hypotheses, Scala needs to be applied software industry. Ideally, software should be assembled in the design of components and component systems. Only from libraries of pre-written components, just as hardware is serious application by a user community can tell whether the assembled from pre-fabricated chips.
    [Show full text]
  • How to Run Your Favorite Language on Web Browsers
    Benjamin Canou, Emmanuel Chailloux and Jérôme Vouillon Laboratoire d'Informatique de Paris 6 (LIP6) Laboratoire Preuves Programmes et Systèmes (PPS) How to Run your Favorite. Language on Browsers The Revenge of Virtual Machines WWW 2012, Lyon, France Introduction. Introduction . 3/20 What ? I You have a favorite language I You have just designed or extended one I You want to run it on a Web browser Why ? I To program a new Web app I To program your client with the same language than your server I To run an online demo of an existing app Introduction . 4/20 How ? I Use applets I Write an interpreter in JavaScript I Write a compiler to JavaScript Or as we present in this talk: I Reuse the language bytecode compiler I Write a bytecode interpreter in JavaScript I Write a bytecode to JavaScript expander Introduction . 5/20 An experiment report: I Project Ocsigen: use OCaml to code entire Web apps I OBrowser: an OCaml bytecode interpreter I js_of_ocaml: an OCaml bytecode expander Retrospectively, a good approach: I Reasonable time to obtain a first platform I Good performance achievable I Fidelity to language/concurrency models Core techniques. Bytecode interpretation (1/3). 7/20 Main method: 1. Make the bytecode file network compliant (ex. JSON array) 2. Choose/implement the representation of values 3. Write a minimal runtime and standard library 4. Write the main interpretation loop 5. Run tests and extend the library as needed Possible improvements: I Use core, well supported/optimized JavaScript control structures I Use simple, array based memory representation I Preliminary bytecode cleanup pass Bytecode interpretation (2/3).
    [Show full text]
  • Design Patterns in Ocaml
    Design Patterns in OCaml Antonio Vicente [email protected] Earl Wagner [email protected] Abstract The GOF Design Patterns book is an important piece of any professional programmer's library. These patterns are generally considered to be an indication of good design and development practices. By giving an implementation of these patterns in OCaml we expected to better understand the importance of OCaml's advanced language features and provide other developers with an implementation of these familiar concepts in order to reduce the effort required to learn this language. As in the case of Smalltalk and Scheme+GLOS, OCaml's higher order features allows for simple elegant implementation of some of the patterns while others were much harder due to the OCaml's restrictive type system. 1 Contents 1 Background and Motivation 3 2 Results and Evaluation 3 3 Lessons Learned and Conclusions 4 4 Creational Patterns 5 4.1 Abstract Factory . 5 4.2 Builder . 6 4.3 Factory Method . 6 4.4 Prototype . 7 4.5 Singleton . 8 5 Structural Patterns 8 5.1 Adapter . 8 5.2 Bridge . 8 5.3 Composite . 8 5.4 Decorator . 9 5.5 Facade . 10 5.6 Flyweight . 10 5.7 Proxy . 10 6 Behavior Patterns 11 6.1 Chain of Responsibility . 11 6.2 Command . 12 6.3 Interpreter . 13 6.4 Iterator . 13 6.5 Mediator . 13 6.6 Memento . 13 6.7 Observer . 13 6.8 State . 14 6.9 Strategy . 15 6.10 Template Method . 15 6.11 Visitor . 15 7 References 18 2 1 Background and Motivation Throughout this course we have seen many examples of methodologies and tools that can be used to reduce the burden of working in a software project.
    [Show full text]
  • Automated Fortran–C++ Bindings for Large-Scale Scientific Applications
    Automated Fortran–C++ Bindings for Large-Scale Scientific Applications Seth R Johnson HPC Methods for Nuclear Applications Group Nuclear Energy and Fuel Cycle Division Oak Ridge National Laboratory ORNL is managed by UT–Battelle, LLC for the US Department of Energy github.com/swig-fortran Overview • Introduction • Tools • SWIG+Fortran • Strategies • Example libraries 2 Introduction 3 How did I get involved? • SCALE (1969–present): Fortran/C++ • VERA: multiphysics, C++/Fortran • MPACT: hand-wrapped calls to C++ Trilinos 4 Project background • Exascale Computing Project: at inception, many scientific app codes were primarily Fortran • Numerical/scientific libraries are primarily C/C++ • Expose Trilinos solver library to Fortran app developers: ForTrilinos product 5 ECP: more exascale, less Fortran Higher-level { }Fortran ECP application codes over time (credit: Tom Evans) 6 Motivation • C++ library developers: expand user base, more F opportunities for development and follow-on funding • Fortran scientific app developers: use newly exposed algorithms and tools for your code C • Multiphysics project integration: in-memory coupling of C++ physics code to Fortran physics code • Transitioning application teams: bite-size migration from Fortran to C++ C++ 7 Tools 8 Wrapper “report card” • Portability: Does it use standardized interoperability? • Reusability: How much manual duplication needed for new interfaces? • Capability: Does the Fortran interface have parity with the C++? • Maintainability: Do changes to the C++ code automatically update
    [Show full text]
  • Installation and Configuration of Ocaml for Windows 10
    Installation and Configuration of OCaml for Windows 10 By: Brandon Kim, Jonathan Morley, Francis Oyebanjo, and BT Rappaport Table of Contents Introduction 2 Installing OPAM and OCaml 3 Checkpoint 7 Installing Extra Packages (OCamlfind, OUnit, rlwrap) 8 Ensuring Correct Installation and Configuration 11 Troubleshooting Errors 12 Glossary 16 1 Introduction This manual is for OCaml beginners who would like to use OCaml on a Windows 10 computer. OCaml is not very compatible for installation on a Windows computer but is made simple with Bash on Ubuntu on Windows, a brand new Windows 10 feature that enables direct use of Linux command-line tools. However, the directions available are usually not Windows 10 specific and assume the audience is already well versed in Linux tools. This manual provides beginners to OCaml and Linux with a clear and orderly set of instructions for installing and configuring OCaml on Windows 10. OCaml is a heavy-duty programming language that supports functional, imperative and object- oriented styles. OCaml’s safety, advanced type system, and automatic memory management are a few features that make it a highly effective programming tool. Even though OCaml is a powerful language, it is also simple and easy to use, making it an ideal language to expose to students in undergraduate computer science courses. In this manual we will install OCaml via OPAM, a package manager (collection of tools that automates the process of installing, upgrading, configuring, and removing programs from a computer) for OCaml. Requirements/ Materials ● Computer running Windows 10 (64-bit) with build 14393 or later ● Administrative access of the computer ● Bash on Ubuntu on Windows installed and setup ○ https://msdn.microsoft.com/en-us/commandline/wsl/install_guide ● Internet access with decent download speed Important Notes ● Copy and paste (to paste simply right click in bash where you want to paste) the commands from the manual into Bash, especially if they are long.
    [Show full text]
  • The Ocaml System Release 4.02
    The OCaml system release 4.02 Documentation and user's manual Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier R´emy and J´er^omeVouillon August 29, 2014 Copyright © 2014 Institut National de Recherche en Informatique et en Automatique 2 Contents I An introduction to OCaml 11 1 The core language 13 1.1 Basics . 13 1.2 Data types . 14 1.3 Functions as values . 15 1.4 Records and variants . 16 1.5 Imperative features . 18 1.6 Exceptions . 20 1.7 Symbolic processing of expressions . 21 1.8 Pretty-printing and parsing . 22 1.9 Standalone OCaml programs . 23 2 The module system 25 2.1 Structures . 25 2.2 Signatures . 26 2.3 Functors . 27 2.4 Functors and type abstraction . 29 2.5 Modules and separate compilation . 31 3 Objects in OCaml 33 3.1 Classes and objects . 33 3.2 Immediate objects . 36 3.3 Reference to self . 37 3.4 Initializers . 38 3.5 Virtual methods . 38 3.6 Private methods . 40 3.7 Class interfaces . 42 3.8 Inheritance . 43 3.9 Multiple inheritance . 44 3.10 Parameterized classes . 44 3.11 Polymorphic methods . 47 3.12 Using coercions . 50 3.13 Functional objects . 54 3.14 Cloning objects . 55 3.15 Recursive classes . 58 1 2 3.16 Binary methods . 58 3.17 Friends . 60 4 Labels and variants 63 4.1 Labels . 63 4.2 Polymorphic variants . 69 5 Advanced examples with classes and modules 73 5.1 Extended example: bank accounts . 73 5.2 Simple modules as classes .
    [Show full text]
  • Haskell-Like S-Expression-Based Language Designed for an IDE
    Department of Computing Imperial College London MEng Individual Project Haskell-Like S-Expression-Based Language Designed for an IDE Author: Supervisor: Michal Srb Prof. Susan Eisenbach June 2015 Abstract The state of the programmers’ toolbox is abysmal. Although substantial effort is put into the development of powerful integrated development environments (IDEs), their features often lack capabilities desired by programmers and target primarily classical object oriented languages. This report documents the results of designing a modern programming language with its IDE in mind. We introduce a new statically typed functional language with strong metaprogramming capabilities, targeting JavaScript, the most popular runtime of today; and its accompanying browser-based IDE. We demonstrate the advantages resulting from designing both the language and its IDE at the same time and evaluate the resulting environment by employing it to solve a variety of nontrivial programming tasks. Our results demonstrate that programmers can greatly benefit from the combined application of modern approaches to programming tools. I would like to express my sincere gratitude to Susan, Sophia and Tristan for their invaluable feedback on this project, my family, my parents Michal and Jana and my grandmothers Hana and Jaroslava for supporting me throughout my studies, and to all my friends, especially to Harry whom I met at the interview day and seem to not be able to get rid of ever since. ii Contents Abstract i Contents iii 1 Introduction 1 1.1 Objectives ........................................ 2 1.2 Challenges ........................................ 3 1.3 Contributions ...................................... 4 2 State of the Art 6 2.1 Languages ........................................ 6 2.1.1 Haskell ....................................
    [Show full text]
  • Top Functional Programming Languages Based on Sentiment Analysis 2021 11
    POWERED BY: TOP FUNCTIONAL PROGRAMMING LANGUAGES BASED ON SENTIMENT ANALYSIS 2021 Functional Programming helps companies build software that is scalable, and less prone to bugs, which means that software is more reliable and future-proof. It gives developers the opportunity to write code that is clean, elegant, and powerful. Functional Programming is used in demanding industries like eCommerce or streaming services in companies such as Zalando, Netflix, or Airbnb. Developers that work with Functional Programming languages are among the highest paid in the business. I personally fell in love with Functional Programming in Scala, and that’s why Scalac was born. I wanted to encourage both companies, and developers to expect more from their applications, and Scala was the perfect answer, especially for Big Data, Blockchain, and FinTech solutions. I’m glad that my marketing and tech team picked this topic, to prepare the report that is focused on sentiment - because that is what really drives people. All of us want to build effective applications that will help businesses succeed - but still... We want to have some fun along the way, and I believe that the Functional Programming paradigm gives developers exactly that - fun, and a chance to clearly express themselves solving complex challenges in an elegant code. LUKASZ KUCZERA, CEO AT SCALAC 01 Table of contents Introduction 03 What Is Functional Programming? 04 Big Data and the WHY behind the idea of functional programming. 04 Functional Programming Languages Ranking 05 Methodology 06 Brand24
    [Show full text]