Natural Ventilation in Buildings Architectural Concepts, Consequences and Possibilities

Total Page:16

File Type:pdf, Size:1020Kb

Natural Ventilation in Buildings Architectural Concepts, Consequences and Possibilities Natural Ventilation in Buildings Architectural concepts, consequences and possibilities by Tommy Kleiven Thesis submitted in partial fulfilment of the requirements for the degree of Doktor Ingeniør at Norwegian University of Science and Technology Faculty of Architecture and Fine Art Department of Architectural Design, History and Technology March 2003 URN:NBN:no-7242 URN:NBN:no-7242 Preface Natural ventilation in buildings relies on wind and thermal buoyancy as driving forces. Humankind has used these driving forces throughout history to create the desired thermal environment and to transport away undesired contaminants. From the first primitive living quarters with the fireplace in the centre of a tent or a cabin, the technique we take advantage of to control and adjust our indoor climate has grown ever more sophisticated. This technique has in the 20th century been dominated by mechanical ventilation and air conditioning. These technologies have developed into systems of great complexity with an increasing number of components, need for space, and use of energy. Despite this, many of the mechanical systems do not manage to deliver the desired indoor climate. Because of this contradiction, the focus has again been put on simpler, more robust and less energy consuming solutions. The driving pressures derived from wind and thermal buoyancy are low compared to those produced by fans in mechanical ventilation systems. It is therefore necessary to minimise the resistance in the airflow path through the building. Thus, the building itself, with its envelope, rooms, corridors and stairways, rather than the ducts familiar from mechanical ventilation systems, is used as air path. A natural ventilation concept is therefore highly integrated in the building body and will consequently have influence on building design and architecture. Le Corbusier’s perhaps most famous dictum was “a house is a machine for living in.” In the context of natural ventilation it can be said that the building in itself is a machine, and not a structure to put a machine into. This work examines the relationship between building design and natural ventilation. The work tries in the first instance to seek out the architectural consequences of natural ventilation, and in the next instance to find out to what extent the natural airflow has a potential of being a design criterion, a contributing parameter in the design of buildings. The primary goal of this study is to offer a better understanding of the architectural presuppositions for utilisation of natural ventilation, and from that suggest some architectural possibilities associated with the utilisation of natural driving forces. The target group of this thesis is primarily architects in general and researchers within the field, but also other actors in the building industry, e.g. consultants, contractors and building owners, may find this study of interest. URN:NBN:no-7242 URN:NBN:no-7242 Contents Abstract 6 1 Introduction 7 1.1 Research field 8 1.2 Research questions 13 1.3 Focus 15 1.4 Research approach 16 1.5 Outline of the dissertation 22 2 Principles and elements of natural ventilation 27 2.1 The purpose of ventilation 30 2.2 Natural driving forces 36 2.3 Natural ventilation principles 41 2.4 Local and central supply and exhaust paths 44 2.5 Combination of natural and mechanical ventilation 46 2.6 Characteristic elements of natural ventilation 52 3 Case studies and architectural aspects 71 3.1 Classification of natural ventilation concepts 72 3.2 Selection of case study buildings 76 3.3 Checklist for architectural aspects 79 4 Natural ventilation in a high-rise building 83 4.1 Description of the GSW case study building 85 4.2 Architectural consequences of natural ventilation in GSW 98 4.3 Experiences of the design team 117 4.4 Summary and conclusions 121 5 Natural ventilation in a medium-rise building 127 5.1 Description of the B&O case study building 128 5.2 Architectural consequences of natural ventilation in B&O 141 5.3 Experiences of the design team 158 5.4 Summary and conclusions 160 6 Natural ventilation in a low-rise building 167 6.1 Description of the Mediå School case study building 168 6.2 Architectural consequences of natural ventilation in Mediå School 177 6.3 Experiences of the design team 190 6.4 Summary and conclusions 192 7 Architectural possibilities of natural ventilation 197 7.1 Possibilities related to the façade 200 7.2 Possibilities related to the roof 216 7.3 Possibilities related to the plan and the section 224 7.4 Possibilities related to the interior spaces 235 8 Conclusions and reflections 257 8.1 Findings regarding the architectural consequences of natural ventilation 258 8.2 Findings regarding the architectural possibilities of natural ventilation 265 8.3 Design team experiences and implications for future designs 267 8.4 Further research and development 270 Literature 271 Appendix: Sub-case buildings 281 Acknowledgements 304 URN:NBN:no-7242 Abstract This thesis, “Natural Ventilation in Buildings -Architectural concepts, consequences and possibilities”, is the result of a PhD study financed by Hydro Aluminium/Wicona, The Research Council of Norway and the Norwegian University of Science and Technology (NTNU). The work was carried out at the Department of Architectural Design, History and Technology, Faculty of Architecture and Fine Art at NTNU in the period January 2000 to March 2003. The study has been conducted in close collaboration with fellow researchers Bjørn J. Wachenfeldt and Tor Arvid Vik. Chapter 2 “Principles and elements of natural ventilation” is in its entirety written by the three of us together. The main objectives of this work have been to identify and investigate the architectural consequences and possibilities of natural ventilation in office and school buildings in Northern Europe. Case studies and interviews with architects and HVAC consultants have been the most central “research instruments” in achieving this. Three buildings have been studied in detail. These are the GSW Headquarters in Germany, the B&O Headquarters in Denmark, and the Mediå Primary School in Norway. In addition, a larger set of buildings has been used to substantiate the findings. The most important findings of this work are that: utilisation of natural ventilation in buildings has architectural consequences as well as possibilities. natural ventilation primarily affects the facades, the roof/silhouette and the layout and organisation of the interior spaces. the ventilation principle applied (single-sided, cross- or stack ventilation) together with the nature of the supply and extract paths, i.e. whether they are local or central, are of key importance for the architectural consequences and possibilities. designing a naturally ventilated building is more difficult than designing a similar but mechanically ventilated building. An interdisciplinary approach from the initial stages of design is mandatory for achieving successful natural ventilation concepts. URN:NBN:no-7242 1 Introduction This work examines the relationship between building design and the utilisation of natural ventilation in high-rise, medium-rise and low-rise buildings. By studying and comparing these three generic building types, the study explores how the architecture of naturally ventilated buildings of varying height is affected. This should make it possible to find out if there are different sets of “rules” for utilisation of natural ventilation for the three generic building types, and then implicitly if there are differing architectural consequences and possibilities for the three types. The basic idea is that natural ventilation is so integrated with the building, in fact is a part of the building, that it will have significant consequences for the building design and the architectural expression both in the exterior and in the interior. Furthermore, the utilisation and characteristics of the two natural driving forces associated with natural ventilation, thermal buoyancy and wind, are influenced by the height of the building. As a consequence, the naturally induced airflow is an important parameter among all the other parameters contributing to the shaping of a building. The natural airflow, described by the laws of physics, can thus be regarded as an important design criterion in the design of naturally ventilated buildings, constituting a design instrument for the architect and the consultants. This chapter describes why and how this study has been conducted. The chapter starts by describing the research field that has been addressed, in section 1.1. From this description a set of research questions are formulated in section 1.2. The focus of the research is described in section 1.3. A description of the research strategy, i.e. an explanation of how the research questions will be answered, is presented in section 1.4. The chapter ends with an outline of the dissertation in section 1.5. URN:NBN:no-7242 Chapter 1. Introduction 1.1 Research field Why natural ventilation? Or, the heading could rather have been formulated: why natural ventilation again? Natural ventilation, relying on wind and thermal buoyancy as driving forces, is surely not a new phenomenon or invention. Utilisation of the natural driving forces for the purpose of ventilation has for several millennia provided the desired thermal comfort and air quality for both man and animals1. I thought I heard Buddy Bolden say, Open up that window, let the foul air get away! Open up that window, let the foul air out! That’s what I heard him shout. Traditional (Banham, 1969). Figure 1.1 Wind and thermal buoyancy, here illustrated with the wind blowing in a tree (left) and a glider ascending attributable to thermal buoyancy (right), are the two natural “engines” that can be utilised to drive air in, through and out of buildings. The use of a mechanical driving force, i.e. fans, to drive the ventilation through a network of ducts has however dominated over natural ventilation in the twentieth century.
Recommended publications
  • Heat Generation Technology Landscaping Study, Scotland's
    Heat Generation Technology Landscaping Study, Scotland’s Energy Efficiency Programme (SEEP) BRE August 2017 Summary This landscaping study has reviewed the status and suitability of a number of near-term heat generation technologies that are not already significantly established in the market-place. The study has been conducted to inform Scottish Government on the status and the technologies so that they can make informed decisions on the potential suitability of the technologies for inclusion within Scotland’s Energy Efficiency Programme (SEEP). Some key findings which have emerged from the research include: • High temperature, hybrid and gas driven heat pumps all have the potential to increase the uptake of low carbon heating solutions in the UK in the short to medium term. • High temperature heat pumps are particularly suited for off-gas grid retrofit projects, whereas hybrids and gas driven products are suited to on-gas grid properties. They may all be used with no or limited upgrades to existing heating systems, and each offers some advantages (but also some disadvantages) compared with standard electric heat pumps. • District heating may continue to have a significant role to play – albeit more on 3rd and 4th generation systems than the large high temperature systems typical in other parts of Europe in the 1950s and 60s – due to lower heating requirements of modern retrofitted buildings. • Longer term, the development of low carbon heating fuel markets may also present significant opportunity e.g. biogas, and possibly hydrogen.
    [Show full text]
  • 5Th-Generation Thermox WDG Flue Gas Combustion Analyzer
    CONTROL EXCLUSIVE 5th-Generation Thermox WDG Flue Gas Combustion Analyzer “For more than 40 years, we have been a leader in combustion gas analysis,” says Mike Fuller, divison VP of sales and marketing and business development for Ametek Process Instruments, “and we believe the WDG-V is the combustion analyzer of the future.” WDG analyzers are based on a zirconium oxide cell that provides a reliable and cost-effective solution for measuring excess oxygen in flue gas as well as CO and methane levels. This information allows operators to obtain the highest fuel effi- ciency, while lowering emissions for NOx, CO and CO2. The zir- conium oxide cell responds to the difference between the concen- tration of oxygen in the flue gas versus an air reference. To assure complete combustion, the flue gas should contain several percent oxygen. The optimum excess oxygen concentration is dependent on the fuel type (natural gas, hydrocarbon liquids and coal). The WDG-V mounts directly to the process flange, and is heated to maintain all sample-wetted components above the acid dewpoint. Its air-operated aspirator draws a sample into the ana- lyzer and returns it to the process. A portion of the sample rises into the convection loop past the combustibles and oxygen cells, Ametek’s WDG-V flue gas combustion analyzer meets SIL-2 and then back into the process. standards for safety instrumented systems. This design gives a very fast response and is perfect for process heat- ers. It features a reduced-drift, hot-wire catalytic detector that is resis- analyzer with analog/HART, discrete and Modbus RS-485 bi-direc- tant to sulfur dioxide (SO ) degradation, and the instrument is suitable 2 tional communications, or supplied in a typical “sensor/controller” for process streams up to 3200 ºF (1760 ºC).
    [Show full text]
  • Resurrection from Bunkers and Data Centers Adam Fish and Bradley L
    Resurrection from Bunkers and Data Centers Adam Fish and Bradley L. Garrett Abstract Bunkers are imposing physical objects that reveal surprising insights into how humans attempt to control time. This brief article investigates how concepts of time are structured through the architectural form by comparing two types: bunkers built to preserve human life and bunkers built to preserve data, or data centers. Though these two bunkers differ in what they seek to protect, each hinges on resurrection. In other words, the success of the bunker requires the emergence of its contents (people and/or data) at some point in the future. Where emergence is premature or never takes place, the temporality of the bunker is interrupted, rendering its materiality moot; unplanned interruptions may have serious consequences for life and death. Introduction: Materiality → Temporality ‘If our planet remains a self-sustaining environment, how nice for everyone and how bloody unlikely,’ she said. ‘Either way, the subterrane is where the advanced model realizes itself. This is not submission to a set of difficult circumstances. This is simply where the human endeavor has found what it needs.’ -Don Delillo (2016: 339) The bunker is a securitized storage space that bodies, objects, and materialized information enter in defense against anticipated threat. The mountain or cliff cave was humanity’s prehistoric bunker - a geological gift of sanctuary - where our ancestors lived, stored food, and buried their dead. Bunker development, from excavation and underground construction, co-evolved with agricultural sedentarism to protect grain, living people, and stored riches, with these bunkers always outliving their harboured artifacts, and the people who built them.
    [Show full text]
  • Fire Service Features of Buildings and Fire Protection Systems
    Fire Service Features of Buildings and Fire Protection Systems OSHA 3256-09R 2015 Occupational Safety and Health Act of 1970 “To assure safe and healthful working conditions for working men and women; by authorizing enforcement of the standards developed under the Act; by assisting and encouraging the States in their efforts to assure safe and healthful working conditions; by providing for research, information, education, and training in the field of occupational safety and health.” This publication provides a general overview of a particular standards- related topic. This publication does not alter or determine compliance responsibilities which are set forth in OSHA standards and the Occupational Safety and Health Act. Moreover, because interpretations and enforcement policy may change over time, for additional guidance on OSHA compliance requirements the reader should consult current administrative interpretations and decisions by the Occupational Safety and Health Review Commission and the courts. Material contained in this publication is in the public domain and may be reproduced, fully or partially, without permission. Source credit is requested but not required. This information will be made available to sensory-impaired individuals upon request. Voice phone: (202) 693-1999; teletypewriter (TTY) number: 1-877-889-5627. This guidance document is not a standard or regulation, and it creates no new legal obligations. It contains recommendations as well as descriptions of mandatory safety and health standards. The recommendations are advisory in nature, informational in content, and are intended to assist employers in providing a safe and healthful workplace. The Occupational Safety and Health Act requires employers to comply with safety and health standards and regulations promulgated by OSHA or by a state with an OSHA-approved state plan.
    [Show full text]
  • Humidity in Gas-Fired Kilns Proportion of Excess Combustion
    HUMIDITY OF COMBUSTION PRODUCTS FROM WOOD AND GASEOUS FUELS George Bramhall Western Forest Products Laboratory Vancouver, British Columbia The capital and operating costs of steam kilns and the boilers necessary for their operation are so high-in Canada that they are not economically feasible for small operations drying softwoods. About thirty years ago, direct fired or hot-air kilns were intro- duced. In such kilns natural gas, propane, butane or oil is burned and the combustion products conducted directly into the drying chamber. This design eliminates the high capital and operating costs of the steam boiler, and permits the small operator to dry lumber economically. However, such kilns are not as versatile as steam kilns. While they permit good temperature control, their humidity control is limited: they can only reduce excess humidity by venting, they cannot increase it and therefore cannot relieve drying stresses at the end of drying. For this reason, they are usually limited to the drying of structural lumber. Due to the decreasing supplies and increasing costs of fossil fuels, there is growing interest in burning wood residues to pro- vide the heat for drying. Although wood residue was often the fuel for steam boilers, the capital and operating costs of boilers are no more acceptable now to the smaller operator than they were a few years ago. The present trend is rather to burn wood cleanly and conduct the combustion products into the kiln in the same man- ner as is done with gaseous fossil fuels. This is now being done successfully with at least one type of burner, and others are in the pilot stage.
    [Show full text]
  • Power Substation Construction and Ventilation System Co-Designed Using Particle Swarm Optimization
    energies Article Power Substation Construction and Ventilation System Co-Designed Using Particle Swarm Optimization Jau-Woei Perng 1, Yi-Chang Kuo 1,2,* , Yao-Tsung Chang 2 and Hsi-Hsiang Chang 2 1 Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; [email protected] 2 Taiwan Power Company Southern Region Construction Office, Kaohsiung 81166, Taiwan; [email protected] (Y.-T.C.); [email protected] (H.-H.C.) * Correspondence: [email protected]; Tel.: +886-3676901 Received: 19 February 2020; Accepted: 21 April 2020; Published: 6 May 2020 Abstract: This study discusses a numerical study that was developed to optimize the ventilation system in a power substation prior to its installation. We established a multiobjective particle swarm optimizer to identify the best approach for simultaneously improving, first, the ventilation performance considering the most appropriate inlet size and outlet openings and second, the reduction of the synthetic noise of the ventilation and power consumption from the exhaust fan equipment and its operation. The study used building information modeling to construct indoor and outdoor models of the substation building and verified the overall performance using ANSYS FLUENT 18.0 software to simulate the air velocity and air temperature distribution within the building. Results show that the exhaust fan of the B1F cable finishing room and the 23 kV gas insulated switchgear (GIS) room optimize the reduction of horsepower by approximately 1 Hp and 0.5 Hp. The combined noise is reduced by 4 dBA and 2 dBA; the exhaust fan runs for 30 min, and the two equipment rooms can cool down by 2.9 ◦C and 1.7 ◦C, respectively.
    [Show full text]
  • Air Separation, Flue Gas Compression and Purification Units for Oxy-Coal Combustion Systems
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Energy Energy Procedia 4 (2011) 966–971 www.elsevier.com/locate/procediaProcedia Energy Procedia 00 (2010) 000–000 www.elsevier.com/locate/XXX GHGT-10 Air Separation, flue gas compression and purification units for oxy-coal combustion systems Jean-Pierre Traniera, Richard Dubettierb, Arthur Dardeb, Nicolas Perrinc aAir Liquide SA-Centre de Recherche Claude Delorme,Chemin de la porte des Loges, Les Loges en Josas, Jouy en Josas F-78354, France bAir Liquide Engineering, 57 Ave. Carnot BP 313,Champigny-sur-Marne F-94503, France cAir Liquide SA, 57 Ave. Carnot BP 313, Champigny-sur-Marne F-94503, France Elsevier use only: Received date here; revised date here; accepted date here Abstract Air Liquide (AL) has been actively involved in the development of oxy-coal technologies for CO2 capture from power plants for almost 10 years. Large systems for oxygen production and flue gas purification are required for this technology. Air Liquide has been a leader in building large Air Separation Units (ASUs) and more developments have been performed to customize the air separation process for coal-fired power plants. Air Liquide is also actively involved in developing processes for purification of flue gas from oxy-coal combustion systems for enhanced oil recovery applications as well as sequestration in saline aquifers. Through optimization of the overall oxy-coal combustion system, it has been possible to identify key advantages of this solution: minimal efficiency loss associated with CO2 capture (less than 6 pts penalty on HHV efficiency compared to no capture), near zero emission, energy storage, high CO2 purity and high CO2 recovery capability.
    [Show full text]
  • Don't Let Dollars Disappear up Your Chimney!
    ENERGY SAVINGTIPS DON’T LET DOLLARS DISAPPEAR UP YOUR CHIMNEY! You wouldn’t leave a window wide open in cold weather. Having a fireplace with an open flue damper is the same as having a window open. That sends precious winter heat and money right up the chimney! Here’s how you can heat your home, and not the neighborhood! KEEP THE FIREPLACE DAMPER CLOSED WHEN THE FIREPLACE IS NOT BEING USED The damper is a flap inside the chimney or flue. It has an open and a closed position. When a fire is burning, the damper should be in the open position to allow smoke to escape up the fireplace flue and out the chimney. When you’re not using the fireplace, the damper should be closed. If you can’t see the handle or chain that opens and closes the damper, use a flashlight and look up inside the chimney flue. The handle could be a lever that moves side to side or back and forth. If a chain operates the damper, you may have to pull both sides to determine which one closes or opens the damper. KEEP YOUR HEAT IN YOUR HOME! Even the most energy efficient homes can fall victim to fireplace air leaks. Your fireplace may be reserved for a handful of special occasions or especially cold nights. When it’s not in use, though, your home loses heat – and costs you money – without you knowing it. Using the heat from your fireplace on a cold winter night may be cozy, but that fire is a very inefficient way to warm up the room.
    [Show full text]
  • Indoor Air Quality (IAQ): Combustion By-Products
    Number 65c June 2018 Indoor Air Quality: Combustion By-products What are combustion by-products? monoxide exposure can cause loss of Combustion (burning) by-products are gases consciousness and death. and small particles. They are created by incompletely burned fuels such as oil, gas, Nitrogen dioxide (NO2) can irritate your kerosene, wood, coal and propane. eyes, nose, throat and lungs. You may have shortness of breath. If you have a respiratory The type and amount of combustion by- illness, you may be at higher risk of product produced depends on the type of fuel experiencing health effects from nitrogen and the combustion appliance. How well the dioxide exposure. appliance is designed, built, installed and maintained affects the by-products it creates. Particulate matter (PM) forms when Some appliances receive certification materials burn. Tiny airborne particles can depending on how clean burning they are. The irritate your eyes, nose and throat. They can Canadian Standards Association (CSA) and also lodge in the lungs, causing irritation or the Environmental Protection Agency (EPA) damage to lung tissue. Inflammation due to certify wood stoves and other appliances. particulate matter exposure may cause heart problems. Some combustion particles may Examples of combustion by-products include: contain cancer-causing substances. particulate matter, carbon monoxide, nitrogen dioxide, carbon dioxide, sulphur dioxide, Carbon dioxide (CO2) occurs naturally in the water vapor and hydrocarbons. air. Human health effects such as headaches, dizziness and fatigue can occur at high levels Where do combustion by-products come but rarely occur in homes. Carbon dioxide from? levels are sometimes measured to find out if enough fresh air gets into a room or building.
    [Show full text]
  • Fundamentals of Venting and Ventilation
    Fundamentals of Venting and Ventilation • Vent System Operation • Sizing, Design and Applications • Installation and Assembly • Troubleshooting © American Standard Inc. 1993 Pub. No. 34-4010-02 Contents Subject Page • Motive force in vents ................................................................................................................................... 2 • Factors affecting operation ......................................................................................................................... 3 • Ventilation air requirements........................................................................................................................ 4 • Vent design considerations - ....................................................................................................................... 6 – Category I furnaces............................................................................................................................... 6 – Category II furnaces.............................................................................................................................. 6 – Category III furnaces ............................................................................................................................. 6 – Category IV furnaces ............................................................................................................................ 7 • Types of vents .............................................................................................................................................
    [Show full text]
  • Furnaces CO Emissions Under Normal and Compromised Vent
    FURNACE CO EMISSIONS UNDER NORMAL AND COMPROMISED VENT CONDITIONS FURNACE #5 - HIGH-EFFICIENCY INDUCED DRAFT September 2000 Prepared by Christopher J. Brown Ronald A. Jordan David R. Tucholski Directorate for Laboratory Sciences The United States Consumer Product Safety Commission Washington, D.C. 20207 1. INTRODUCTION .................................................................................................................. 1 2. TEST EQUIPMENT AND SETUP ........................................................................................ 1 a. Furnace................................................................................................................................ 1 b. Test Chamber and Furnace Closet ...................................................................................... 3 c. Vent Blockage Device and Vent Disconnect...................................................................... 3 d. Measuring Equipment......................................................................................................... 4 i) Furnace Operating Parameters........................................................................................ 4 ii) Gas Sampling Systems.................................................................................................... 5 iii) Air Exchange Rate ..........................................................................................................5 iv) Room Temperature, Pressure, and Relative Humidity ................................................... 6 v) Natural
    [Show full text]
  • Flue Gas Analyser
    KANE425 Flue Gas Analyser Kane International Ltd Kane House, Swallowfield Welwyn Garden City Hertfordshire, AL7 1JG Tel: +44 (0) 1707 375550 Fax: +44 (0) 1707 393277 E-mail: [email protected] www.kane.co.uk Stock No: 18366 October 2006 © Kane International Ltd CONTENTS Page No: KANE425 Overview 4 ANALYSER LAYOUT & FEATURES 5-6 1. BATTERIES 7 2. BEFORE USING THE ANALYSER EVERY TIME 8-9 2.1 FRESH AIR PURGE 8 2.2 STATUS DISPLAY 8 3. USING THE ANALYSER AND ITS FOUR BUTTONS 10-12 4. USING THE ANALYSER 13-18 4.1 COMBUSTION TESTS 13 4.2 PRESSURE TEST 15 4.3 TIGHTNESS TESTING 16 4.4 DIFFERENTIAL TEMPERATURE 18 4.5 ROOM CO TESTING 19 4.6 KANE425 PRINTOUTS 20 5. USING THE MENU 21-22 6. USING THE KANE425 AS A THERMOMETER OR 23 PRESSURE METER 7. MEASURING FLUE GASES 24 8. ANALYSER PROBLEM SOLVING 25-26 9. ANALYSER ANNUAL RECALIBRATION AND SERVICE 27 10. ANALYSER SPECIFICATION 28-29 (NOTE MAY BE SUBJECT TO CHANGE) KANE425 manual Page 2 12. ELECTROMAGNETIC COMPATIBILITY 30 APPENDIX 1 – MAIN PARAMETERS 31-33 KANE425 manual Page 3 KANE425 Overview The KANE425 Combustion Analyser measures O2, CO, differential temperature and differential pressure. It calculates CO2, CO/CO2 ratio, losses, combustion efficiency (Nett, Gross or Condensing) & excess air. The KANE425 Combustion Analyser can measure carbon monoxide levels in ambient air - useful when a CO Alarm is triggered. It can also perform a 15 minute duration Room CO Test. The analyser has a protective rubber sleeve with a magnet for “hands–free” operation and is supplied with a flue probe with integral temperature sensor.
    [Show full text]