An Overview of the Izu-Bonin-Mariana Subduction Factory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cambridge University Press 978-1-108-44568-9 — Active Faults of the World Robert Yeats Index More Information
Cambridge University Press 978-1-108-44568-9 — Active Faults of the World Robert Yeats Index More Information Index Abancay Deflection, 201, 204–206, 223 Allmendinger, R. W., 206 Abant, Turkey, earthquake of 1957 Ms 7.0, 286 allochthonous terranes, 26 Abdrakhmatov, K. Y., 381, 383 Alpine fault, New Zealand, 482, 486, 489–490, 493 Abercrombie, R. E., 461, 464 Alps, 245, 249 Abers, G. A., 475–477 Alquist-Priolo Act, California, 75 Abidin, H. Z., 464 Altay Range, 384–387 Abiz, Iran, fault, 318 Alteriis, G., 251 Acambay graben, Mexico, 182 Altiplano Plateau, 190, 191, 200, 204, 205, 222 Acambay, Mexico, earthquake of 1912 Ms 6.7, 181 Altunel, E., 305, 322 Accra, Ghana, earthquake of 1939 M 6.4, 235 Altyn Tagh fault, 336, 355, 358, 360, 362, 364–366, accreted terrane, 3 378 Acocella, V., 234 Alvarado, P., 210, 214 active fault front, 408 Álvarez-Marrón, J. M., 219 Adamek, S., 170 Amaziahu, Dead Sea, fault, 297 Adams, J., 52, 66, 71–73, 87, 494 Ambraseys, N. N., 226, 229–231, 234, 259, 264, 275, Adria, 249, 250 277, 286, 288–290, 292, 296, 300, 301, 311, 321, Afar Triangle and triple junction, 226, 227, 231–233, 328, 334, 339, 341, 352, 353 237 Ammon, C. J., 464 Afghan (Helmand) block, 318 Amuri, New Zealand, earthquake of 1888 Mw 7–7.3, 486 Agadir, Morocco, earthquake of 1960 Ms 5.9, 243 Amurian Plate, 389, 399 Age of Enlightenment, 239 Anatolia Plate, 263, 268, 292, 293 Agua Blanca fault, Baja California, 107 Ancash, Peru, earthquake of 1946 M 6.3 to 6.9, 201 Aguilera, J., vii, 79, 138, 189 Ancón fault, Venezuela, 166 Airy, G. -
Title On-Land Active Thrust Faults of the Nankai‒Suruga Subduction Zone
CORE Metadata, citation and similar papers at core.ac.uk Provided by Kyoto University Research Information Repository On-land active thrust faults of the Nankai‒Suruga subduction Title zone: The Fujikawa-kako Fault Zone, central Japan Author(s) Lin, Aiming; Iida, Kenta; Tanaka, Hideto Citation Tectonophysics (2013), 601: 1-19 Issue Date 2013-08 URL http://hdl.handle.net/2433/176993 Right © 2013 Elsevier B.V. Type Journal Article Textversion author Kyoto University *Manuscript Click here to download Manuscript: 4..Lin_Tectono_text-R1.doc Click here to view linked References 1 2 On-land active thrust faults of the Nankai-Suruga subduction 3 4 zone: the Fujikawa–kako Fault Zone, central Japan 5 6 7 8 Aiming Lin1*, Kenta Iida2, and Hideto Tanaka2 9 10 11 12 1 13 Department of Geophysics, Graduate School of Science 14 15 Kyoto University, Kyoto 606-8502, Japan 16 17 2Graduate School of Science and Technology, Shizuoka Univ., 18 19 Ohya 836, Shizuoka 422-8529, Japan 20 21 22 23 24 25 26 27 28 29 30 *Corresponding author 31 32 Dr. Aiming Lin 33 34 Department of Geophysics 35 36 Graduate School of Science 37 38 39 Kyoto University 40 41 Kyoto 606-8502, Japan 42 43 Email: [email protected] 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 1 2 Abstract 3 4 5 This paper describes the tectonic topography that characterizes recent thrusting 6 7 8 9 10 along, the on-land active fault zone of the Nankai-Suruga subduction zone, called the 11 12 13 14 Fujikawa–kako Fault Zone, located near the triple junction of the Eurasian (EUR), 15 16 17 18 Philippine Sea (PHS), and North American (NA) plates, in the western side of Mt. -
Curriculum Vitae: Michael J. Mottl
CURRICULUM VITAE: MICHAEL J. MOTTL Professor Home Address: Department of Oceanography 44-291E Kaneohe Bay Drive University of Hawaii Kaneohe, HI 96744-2607 1000 Pope Road, Honolulu HI 96822 Telephone: (808) 956-7006 (808) 254-6360 FAX: (808) 956-9225 email: [email protected] Born: August 11, 1948, St. Paul, Minnesota. Married with two daughters. Education B.S. (Geology), Michigan State University, 1970 M.A. (Geology), Princeton University, 1972 Ph.D. (Geology), Harvard University, 1976 Thesis: Chemical exchange between seawater and basalt during hydrothermal alteration of the oceanic crust (188 pp.; H.D. Holland, advisor) Post-Doctoral Fellow, Stanford University, 1975-77 Positions Held Oceanographic Asst., School of Oceanography, Oregon State University, 1968. Exploration Geologist, Offshore Division, Shell Oil Company, 1970. Teaching Assistant, Princeton University, 1971-1972. Research Assistant, Harvard University, 1973-1975. Research Associate, Stanford University, 1975-1977. Assistant Scientist, Woods Hole Oceanographic Institution, 1977-1981. Associate Scientist, Woods Hole Oceanographic Institution, 1981-1986. Associate Geochemist, Hawaii Institute of Geophysics, 1986-1988. Associate Professor, Dept. of Oceanography, University of Hawaii, 1988-1993. Chairman, Department of Oceanography, 1996-1999 and 2013-2016. Professor, Department of Oceanography, University of Hawaii, 1993-present. Memberships Geochemical Society American Geophysical Union Geological Society of America Fellowships National Merit Scholarship, 1966-1970. -
38. Structural and Stratigraphic Evolution of the Sumisu Rift, Izu-Bonin Arc1
Taylor, B., Fujioka, K., et al., 1992 Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 126 38. STRUCTURAL AND STRATIGRAPHIC EVOLUTION OF THE SUMISU RIFT, IZU-BONIN ARC1 Adam Klaus,2,3 Brian Taylor,2 Gregory F. Moore,2 Mary E. MacKay,2 Glenn R. Brown,4 Yukinobu Okamura,5 and Fumitoshi Murakami5 ABSTRACT The Sumisu Rift, which is ~ 120 km long and 30-50 km wide, is bounded to the north and south by structural and volcanic highs west of the Sumisu and Torishima calderas and longitudinally by curvilinear border fault zones with both convex and concave dips. The zigzag pattern of normal faults (average strikes N23°W and N5°W) indicates fault formation in orthorhombic symmetry in response to N76° ± 10°E extension, orthogonal to the volcanic arc. Three oblique transfer zones divide the rift along strike into four segments with different fault trends and uplift/subsidence patterns. Differential strain across the transfer zones is accommodated by interdigitating, rift-parallel faults and some cross-rift volcanism, rather than by strike- or oblique-slip faults. From estimates of extension (2-5 km), the age of the rift (~2 Ma), and the accelerating subsidence, we infer that the Sumisu Rift is in the early syn-rift stage of backarc basin formation. Following an early sag phase, a half graben formed with a synthetically faulted, structural rollover facing large-offset border fault zones. In the three northern rift segments, the largest faults are on the arc side and dip 60°-75°W, whereas in the southern segment they are on the west side and dip 25°-50°E. -
Tracking Past Earthquakes in the Sediment Record Testing and Developing Submarine Paleoseismology in the Deep Sea (JTRACK‐Paleoseismology)
IODP Expedition 386: Japan Trench Paleoseismology TRACKing past earthquakes in the sediment record Testing and developing submarine Paleoseismology in the deep sea (JTRACK‐Paleoseismology) IODP Expedition 386: Japan Trench Paleoseismology Co‐Chief Scientists: Michael Strasser (University of Innsbruck, Austria) Ken Ikehara (Geological Survey of Japan, AIST) Expedition Project Manager: Jez Everest, British Geological Survey Lena Maeda, JAMSTEC (MarE3 Liasion) JpGU 2020 2020-07-12 Michi Strasser IODP Expedition 386: Japan Trench Paleoseismology Short historical and even shorter instrumental records limit our perspective of earthquake maximum magnitude and recurrence Examining prehistoric events preserved in the geological record is essential to understand long‐term history of giant earthquakes JpGU 2020 2020-07-12 Michi Strasser IODP Expedition 386: Japan Trench Paleoseismology “Submarine paleoseismology” is a promising approach to investigate deposits from the deep sea, where earthquakes leave traces preserved in stratigraphic succession. Submarine paleoseismology study sites (numbers) compiled during Magellan Plus Workshop in Zürich 2015 (McHugh et al., 2016; Strasser et al., 2016) JpGU 2020 2020-07-12 Michi Strasser IODP Expedition 386: Japan Trench Paleoseismology Challenges in Submarine Paleoseismology Can we distinguish different earthquake events and types from the sedimentary records? Is there an earthquake magnitude threshold for a given signal/pattern in the geological record? Does record sensitivity change by margin segmentation, sedimentation and/or through time? Can we link the sedimentary signal to the earthquake rupture characteristics? McHugh et al., 2016; Strasser et al., 2016) JpGU 2020 2020-07-12 Michi Strasser IODP Expedition 386: Japan Trench Paleoseismology IODP is uniquely positioned to provide data by coring sequences comprising continuous depositional conditions and records of earthquakes occurrence over longer time periods. -
Seismic Activities Along the Nankai Trough
ΐῑῐῒ Bull. Earthq. Res. Inst. Univ. Tokyo Vol. 12 ῍,**-῎ pp. +2/ῌ+3/ Seismic Activities along the Nankai Trough Kimihiro Mochizuki+῎* and Koichiro Obana,῎ +) Earthquake Research Institute, University of Tokyo ,) Japan Marine Science and Technology Center Abstrcat Occurrences of large earthquakes with estimated magnitudes as large as 2 along the Nankai Trough have been well documented in historical materials, and the oldest documented earthquake dates back to A.D. 02.. The recurrence periods are fairly constant, and are approximately ,** years for the earthquakes occurring before +-0+, and about +** years for those after +-0+. However, the number of smaller earthquakes observed by the on-land seismic stations is very small. Both seismic and tectonic couplings along the interface between the overriding and subducting plates are estimated to be nearly +**ῌ from seismic and geodetic data. Therefore, it has been considered that relatively simple physics govern the generation of the historical large earthquakes along the Nankai Trough. With the availability of abundant information on large earthquakes and modern data sets from dense seismic and geodetic networks, the Nankai Trough is one of the best-studied seismo- genic zones. Although improvements have been seen in estimating the fault-plane parameters for the historical earthquakes, there still remain important unanswered questions, such as if there have been unidentified earthquakes that fill in the ,**-year recurrence period. Estimates of precise fault-plane parameters are being demanded to have a better understanding of earthquake genera- tion. One of the most important topics is where the updip limit of the seismogenic zone is located. The location had not been resolved by on-land seismic observations. -
Contrasting Volcano Spacing Along SW Japan Arc Caused by Difference
www.nature.com/scientificreports OPEN Contrasting volcano spacing along SW Japan arc caused by diference in age of subducting lithosphere Yoshiyuki Tatsumi1,2*, Nobuaki Suenaga3, Shoichi Yoshioka2,3, Katsuya Kaneko 1,2 & Takumi Matsumoto4 The SW Japan arc built by subduction of the Philippine Sea (PHS) plate exhibits uneven distribution of volcanoes: thirteen Quaternary composite volcanoes form in the western half of this arc, Kyushu Island, while only two in the eastern half, Chugoku district. Reconstruction of the PHS plate back to 14 Ma, together with examinations based on thermal structure models constrained by high- density heat fow data and a petrological model for dehydration reactions suggest that fuids are discharged actively at depths of 90–100 km in the hydrous layer at the top of the old (> 50 Ma), hence, cold lithosphere sinking beneath Kyushu Island. In contrast, the young (15–25 Ma) oceanic crust downgoing beneath Chugoku district releases fuids largely at shallower depths, i.e. beneath the non- volcanic forearc, to cause characteristic tectonic tremors and low-frequency earthquakes (LFEs) and be the source of specifc brine springs. Much larger amounts of fuids supplied to the magma source region in the western SW Japan arc could build more densely-distributed volcanoes. Subduction zone volcanoes tend to exhibit regular spacing along a volcanic arc, although the spacing of volcanoes within individual arcs is ofen variable from arc to arc1, 2. A broad positive correlation between the linear density of active volcanoes and the rate of plate convergence suggests that the faster subduction contributes to greater melt production in the mantle wedge3–5. -
Constraints on the Moho in Japan and Kamchatka
Tectonophysics 609 (2013) 184–201 Contents lists available at ScienceDirect Tectonophysics journal homepage: www.elsevier.com/locate/tecto Review Article Constraints on the Moho in Japan and Kamchatka Takaya Iwasaki a, Vadim Levin b,⁎, Alex Nikulin b, Takashi Iidaka a a Earthquake Research Institute, University of Tokyo, Japan b Rutgers University, NJ, USA article info abstract Article history: This review collects and systematizes in one place a variety of results which offer constraints on the depth Received 1 July 2012 and the nature of the Moho beneath the Kamchatka peninsula and the islands of Japan. We also include stud- Received in revised form 12 November 2012 ies of the Izu–Bonin volcanic arc. All results have already been published separately in a variety of venues, and Accepted 22 November 2012 the primary goal of the present review is to describe them in the same language and in comparable terms. Available online 3 December 2012 For both regions we include studies using artificial and natural seismic sources, such as refraction and reflec- tion profiling, detection and interpretation of converted-mode body waves (receiver functions), surface wave Keywords: Kamchatka dispersion studies (in Kamchatka) and tomographic imaging (in Japan). The amount of work done in Japan is Japan significantly larger than in Kamchatka, and resulting constraints on the properties of the crust and the upper- Crustal structure most mantle are more detailed. Upper-mantle structure Japan and Kamchatka display a number of similarities in their crustal structure, most notably the average Moho crustal thickness in excess of 30 km (typical of continental regions), and the generally gradational nature of the crust–mantle transition where volcanic arcs are presently active. -
Large and Repeating Slow Slip Events in the Izu-Bonin Arc from Space
LARGE AND REPEATING SLOW SLIP EVENTS IN THE IZU-BONIN ARC FROM SPACE GEODETIC DATA (伊豆小笠原弧における巨大スロー地震および繰り返し スロー地震の宇宙測地学的研究) by Deasy Arisa Department of Natural History Sciences Graduate School of Science, Hokkaido University September, 2016 Abstract The Izu-Bonin arc lies along the convergent boundary where the Pacific Plate subducts beneath the Philippine Sea Plate. In the first half of my three-year doctoral course, I focused on the slow deformation on the Izu Islands, and later in the second half, I focused on the slow deformation on the Bonin Islands. The first half of the study, described in Chapter V, is published as a paper, "Transient crustal movement in the northern Izu–Bonin arc starting in 2004: A large slow slip event or a slow back-arc rifting event?". Horizontal velocities of continuous Global Navigation Satellite System (GNSS) stations on the Izu Islands move eastward by up to ~1 cm/year relative to the stable part of the Philippine Sea Plate suggesting active back-arc rifting behind the northern part of the arc. We confirmed the eastward movement of the Izu Islands explained by Nishimura (2011), and later discussed the sudden accelerated movement in the Izu Islands detected to have occurred in the middle of 2004. I mainly discussed this acceleration and make further analysis to find out the possible cause of this acceleration. Here I report that such transient eastward acceleration, starting in the middle of 2004, resulted in ~3 cm extra movements in three years. I compare three different mechanisms possibly responsible for this transient movement, i.e. (1) postseismic movement of the 2004 September earthquake sequence off the Kii Peninsula far to the west, (2) a temporary activation of the back-arc rifting to the west dynamically triggered by seismic waves from a nearby earthquake, and (3) a large slow slip event in the Izu-Bonin Trench to the east. -
Fully-Coupled Simulations of Megathrust Earthquakes and Tsunamis in the Japan Trench, Nankai Trough, and Cascadia Subduction Zone
Noname manuscript No. (will be inserted by the editor) Fully-coupled simulations of megathrust earthquakes and tsunamis in the Japan Trench, Nankai Trough, and Cascadia Subduction Zone Gabriel C. Lotto · Tamara N. Jeppson · Eric M. Dunham Abstract Subduction zone earthquakes can pro- strate that horizontal seafloor displacement is a duce significant seafloor deformation and devas- major contributor to tsunami generation in all sub- tating tsunamis. Real subduction zones display re- duction zones studied. We document how the non- markable diversity in fault geometry and struc- hydrostatic response of the ocean at short wave- ture, and accordingly exhibit a variety of styles lengths smooths the initial tsunami source relative of earthquake rupture and tsunamigenic behavior. to commonly used approach for setting tsunami We perform fully-coupled earthquake and tsunami initial conditions. Finally, we determine self-consistent simulations for three subduction zones: the Japan tsunami initial conditions by isolating tsunami waves Trench, the Nankai Trough, and the Cascadia Sub- from seismic and acoustic waves at a final sim- duction Zone. We use data from seismic surveys, ulation time and backpropagating them to their drilling expeditions, and laboratory experiments initial state using an adjoint method. We find no to construct detailed 2D models of the subduc- evidence to support claims that horizontal momen- tion zones with realistic geometry, structure, fric- tum transfer from the solid Earth to the ocean is tion, and prestress. Greater prestress and rate-and- important in tsunami generation. state friction parameters that are more velocity- weakening generally lead to enhanced slip, seafloor Keywords tsunami; megathrust earthquake; deformation, and tsunami amplitude. -
Philippine Sea Plate Inception, Evolution, and Consumption with Special Emphasis on the Early Stages of Izu-Bonin-Mariana Subduction Lallemand
Progress in Earth and Planetary Science Philippine Sea Plate inception, evolution, and consumption with special emphasis on the early stages of Izu-Bonin-Mariana subduction Lallemand Lallemand Progress in Earth and Planetary Science (2016) 3:15 DOI 10.1186/s40645-016-0085-6 Lallemand Progress in Earth and Planetary Science (2016) 3:15 Progress in Earth and DOI 10.1186/s40645-016-0085-6 Planetary Science REVIEW Open Access Philippine Sea Plate inception, evolution, and consumption with special emphasis on the early stages of Izu-Bonin-Mariana subduction Serge Lallemand1,2 Abstract We compiled the most relevant data acquired throughout the Philippine Sea Plate (PSP) from the early expeditions to the most recent. We also analyzed the various explanatory models in light of this updated dataset. The following main conclusions are discussed in this study. (1) The Izanagi slab detachment beneath the East Asia margin around 60–55 Ma likely triggered the Oki-Daito plume occurrence, Mesozoic proto-PSP splitting, shortening and then failure across the paleo-transform boundary between the proto-PSP and the Pacific Plate, Izu-Bonin-Mariana subduction initiation and ultimately PSP inception. (2) The initial splitting phase of the composite proto-PSP under the plume influence at ∼54–48 Ma led to the formation of the long-lived West Philippine Basin and short-lived oceanic basins, part of whose crust has been ambiguously called “fore-arc basalts” (FABs). (3) Shortening across the paleo-transform boundary evolved into thrusting within the Pacific Plate at ∼52–50 Ma, allowing it to subduct beneath the newly formed PSP, which was composed of an alternance of thick Mesozoic terranes and thin oceanic lithosphere. -
Ishikukaepsl10.Pdf
Earth and Planetary Science Letters 294 (2010) 111–122 Contents lists available at ScienceDirect Earth and Planetary Science Letters journal homepage: www.elsevier.com/locate/epsl Migrating shoshonitic magmatism tracks Izu–Bonin–Mariana intra-oceanic arc rift propagation O. Ishizuka a,b,⁎, M. Yuasa a, Y. Tamura b, H. Shukuno b, R.J. Stern c, J. Naka b, M. Joshima a, R.N. Taylor d a Institute of Geology and Geoinformation, Geological Survey of Japan/AIST, Central 7, 1-1-1, Higashi, Tsukuba, Ibaraki, 305-8567, Japan b IFREE, JAMSTEC, 2-15 Natsushima, Yokosuka, Kanagawa, 237-0061, Japan c Dept. of Geosciences, University of Texas at Dallas, Richardson TX 75083-0688, USA d National Oceanography Centre, Southampton, European Way, Southampton, SO14 3ZH, UK article info abstract Article history: The southernmost Izu–Bonin arc and northernmost Mariana arc are characterized by K-rich and shoshonitic Received 22 November 2009 lavas, referred to as the alkalic volcano province (AVP). These compositions are unusual for intra-oceanic arcs Received in revised form 6 March 2010 and the interpretation of the AVP is controversial. Rifting to form the Mariana Trough back-arc basin occurs Accepted 12 March 2010 just south of the AVP although back-arc seafloor spreading has not begun. Here we report the results of Available online 9 April 2010 dredge sampling of the West Mariana Ridge (WMR) in the region of rift propagation; this recovered Editor: R.W. Carlson exclusively medium K to shoshonitic basalts that show clear arc-like geochemical signatures. Ar–Ar ages of WMR shoshonitics systematically young northward.