bioRxiv preprint doi: https://doi.org/10.1101/2020.12.03.409573; this version posted December 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Induced Arp2/3 complex depletion increases FMNL2/3 formin expression and filopodia formation Vanessa Dimchev1,2, Ines Lahmann1,3, Stefan A. Koestler2,4, Frieda Kage1,2,5, Georgi Dimchev1,2,6, Anika Steffen2, Theresia E.B. Stradal2, Franz Vauti1, Hans-Henning Arnold1*, and Klemens Rottner1,2,7* 1Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany 2Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffen Strasse 7, 38124 Braunschweig, Germany 3Present address: Developmental Biology, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany 4Present address: Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK 5Present address: Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA 6Present address: Institute of Science and Technology Austria (IST Austria). Am Campus 1, 3400 Klosterneuburg, Austria 7Braunschweig Integrated Centre of Systems Biology (BRICS), Rebenring 56, 38106 Braunschweig, Germany *Correspondence: Klemens Rottner
[email protected] or Hans-Henning Arnold
[email protected] Keywords: F-actin branching, lamellipodium, filopodium, migration, chemotaxis, F-actin turnover, cell division, nuclear envelope breakdown Running title: Actr3 gene deletion induces filopodia 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.12.03.409573; this version posted December 3, 2020.