An Explosion Based Algorithm to Solve the Optimization Problem in Quadcopter Control

Total Page:16

File Type:pdf, Size:1020Kb

An Explosion Based Algorithm to Solve the Optimization Problem in Quadcopter Control aerospace Article An Explosion Based Algorithm to Solve the Optimization Problem in Quadcopter Control Mohamad Norherman Shauqee 1, Parvathy Rajendran 1,2,* and Nurulasikin Mohd Suhadis 1 1 School of Aerospace Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal 14300, Pulau Pinang, Malaysia; [email protected] (M.N.S.); [email protected] (N.M.S.) 2 Faculty of Engineering & Computing, First City University College, Bandar Utama, Petaling Jaya 47800, Selangor, Malaysia * Correspondence: [email protected] Abstract: This paper presents an optimization algorithm named Random Explosion Algorithm (REA). The fundamental idea of this algorithm is based on a simple concept of the explosion of an object. This object is commonly known as a particle: when exploded, it will randomly disperse fragments around the particle within the explosion radius. The fragment that will be considered as a search agent will fill the local space and search that particular region for the best fitness solution. The proposed algorithm was tested on 23 benchmark test functions, and the results are validated by a comparative study with eight well-known algorithms, which are Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), Genetic Algorithm (GA), Differential Evolution (DE), Multi-Verse Optimizer (MVO), Moth Flame Optimizer (MFO), Firefly Algorithm (FA), and Sooty Tern Optimization Algorithm (STOA). After that, the algorithm was implemented and analyzed for a quadrotor control application. Similarly, a comparative study with the other algorithms stated was done. The findings reveal that Citation: Shauqee, M.N.; Rajendran, the REA can yield very competitive results. It also shows that the convergence analysis has proved P.; Suhadis, N.M. An Explosion Based that the REA can converge more quickly toward the global optimum than the other metaheuristic Algorithm to Solve the Optimization algorithms. For the control application result, the REA controller can better track the desired reference Problem in Quadcopter Control. input with shorter rise time and settling time, lower percentage overshoot, and minimal steady-state Aerospace 2021, 8, 125. https://doi. error and root mean square error (RMSE). org/10.3390/aerospace8050125 Keywords: random explosion; metaheuristic optimization; artificial intelligence; controller design; Academic Editors: David Anderson unimodal benchmark; multimodal benchmark and Gokhan Inalhan Received: 18 February 2021 Accepted: 21 April 2021 1. Introduction Published: 27 April 2021 Over the past few years, the popularity of metaheuristic optimization techniques Publisher’s Note: MDPI stays neutral to solve complex real-life problems has grown among researchers. The main reason for with regard to jurisdictional claims in using metaheuristic optimization techniques is that they are relatively simple, flexible, published maps and institutional affil- non-transferable, and can avoid local stagnation [1]. The simplicity of the metaheuristic iations. algorithms is derived from straightforward concepts that are typically inspired by physical phenomena, animal behavior, or evolutionary ideas. Flexibility refers to applying meta- heuristic algorithms to different problems without any specific structural changes in its algorithm. Metaheuristic algorithms are easily applied to a variety of issues since they usually assume problems as black boxes. Most metaheuristic algorithms have mechanisms Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. that are free of derivation. This article is an open access article In contrast to gradient-based optimization approaches, these algorithms stochastically distributed under the terms and optimize the problems. This optimization process begins with a random solution(s), and conditions of the Creative Commons there is no need to calculate the derivative of the search spaces to find the optimum value. Attribution (CC BY) license (https:// This makes metaheuristic algorithms highly suitable for real problems with expensive or creativecommons.org/licenses/by/ unknown information on derivatives. 4.0/). Aerospace 2021, 8, 125. https://doi.org/10.3390/aerospace8050125 https://www.mdpi.com/journal/aerospace Aerospace 2021, 8, x 28 of 31 Aerospace 2021, 8, 125 2 of 30 Compared to conventional optimization techniques, metaheuristic algorithms have a superior capability in avoiding local optima. Due to these algorithms’ stochastic nature, it is possibleCompared to prevent to conventional stagnation optimization in local optima techniques, and search metaheuristic extensively algorithms throughout have the a searchsuperior space. capability The real in avoidingproblem localarea optima.is usually Due unknown to these and algorithms’ complicated stochastic with nature,many local it is optima,possible so to preventmetaheuristic stagnation algorithms in local are optima excellent and search for optimizing extensively these throughout challenging the searchprob- lems.space. The real problem area is usually unknown and complicated with many local optima, so metaheuristicGenerally, metaheuristic algorithms are algorithms excellent forcan optimizingbe divided theseinto two challenging categories problems.: single-solu- tion andGenerally, multi-solution metaheuristic based. algorithms On a single can-solution be divided basis, into the two search categories: process single-solution begins with oneand multi-solutioncandidate solution based. improved On a single-solution throughout basis,the iterations. the search Whereas process beginsmulti- withsolution one- basedcandidate optimization solution was improved carried throughout out using an the initially iterations. random Whereas set of multi-solution-basedpopulation solutions, theseoptimization populations was carriedwill be enhanced out using during an initially the iterations. random set Multiple of population solutions solutions, (population) these populations will be enhanced during the iterations. Multiple solutions (population) based based optimization has some advantages over single-solution-based optimization [2]: optimization has some advantages over single-solution-based optimization [2]: • There are multiple possible best solutions. • There are multiple possible best solutions. • There is information sharing between the multiple solutions that can assist each other • There is information sharing between the multiple solutions that can assist each other to avoid local optima. to avoid local optima. • Exploration in the search space of multiple solutions is more significant than a single • Exploration in the search space of multiple solutions is more significant than a sin- solution. gle solution. Furthermore, these metaheuristic algorithms can be classified further into three clas- Furthermore, these metaheuristic algorithms can be classified further into three classes ses which are evolutionary-based, physical-based, and swarm-based methods [3], as which are evolutionary-based, physical-based, and swarm-based methods [3], as shown shown in Figure 1. The first class is a generic population-based algorithm based on bio- in Figure1. The first class is a generic population-based algorithm based on biological logicalevolution, evolution, such as such reproduction, as reprodu mutation,ction, mutation, recombination, recombination, and selection. and selection. This method This methodoften provides often provides close-to-optimal close-to-optimal solutions solutions to all types to all of types problems of problems as it does as it not does make not makeany assumptions any assumptions about about the basic the basic fitness fitness landscape. landscape. Some Some of the of popularthe popular metaheuristic metaheu- risticalgorithms algorithms based based on the on concept the concept of evolution of evolution (EA) in (EA) nature in are nature Genetic are AlgorithmGenetic Algorithm (GA) [4], (GA)Differential [4], Differential Evolution Evolution (DE) [5], Evolution (DE) [5], StrategyEvolution (ES) Strategy [6,7], Genetic (ES) [6 Programming,7], Genetic Program- (GP) [8], mingand Biogeography-Based (GP) [8], and Biogeography Optimizer-Based (BBO) Optimi [9]. zer (BBO) [9]. Figure 1. ClassificationClassification of metaheuristic algorithms.algorithms. The second class of metaheuristic optimization is is an algorithm based on physics. Such an optimization algorithm communicates with each search agent.agent. The search agent moves acrossacross thethe search search space space according according to theto the laws laws of physics, of physics such, assuch gravitational as gravitational forces, forces,electromagnetic electromagnetic forces, inertia,forces, inertia, etc. These etc. metaheuristic These metaheuristic algorithms algorithms are Simulated are Simulated Anneal- Annealinging (SA) [10 (SA)], Gravitational [10], Gravitational Search AlgorithmSearch Algorithm (GSA) [11 (GSA)], Black [11] Hole, Black (BH) Hole algorithm (BH) algo- [12], rithmRay Optimization [12], Ray Optimization (RO) algorithm (RO) algorithm [13], Big-Bang [13], Big Big-Crunch-Bang Big (BBBC)-Crunch [14 (BBBC)], Central [14], Force Cen- tralOptimization Force Optimization (CFO) [15 ],(CFO) Charge [15] System, Charge Search System (CSS) Search [16], (CSS) Small [16] World, Small Optimization World Opti- Al- mizationgorithm (SWOA) Algorithm [17 ],(SWOA) Artificial [17] Chemical, Artificial Reaction Chemical Optimization Reaction AlgorithmOptimization (ACROA) Algorithm [18], (ACROA)Galaxy-based [18] Search, Galaxy Algorithm-based Search (GbSA) Algorithm [19], and
Recommended publications
  • Application of the Firefly Algorithm for Optimal Production and Demand Forecasting at Selected Industrial Plant
    Open Journal of Business and Management, 2020, 8, 2451-2459 https://www.scirp.org/journal/ojbm ISSN Online: 2329-3292 ISSN Print: 2329-3284 Application of the Firefly Algorithm for Optimal Production and Demand Forecasting at Selected Industrial Plant Abdulhadi Altherwi Industrial and Systems Engineering Department, Oakland University, Rochester, MI, USA How to cite this paper: Altherwi, A. (2020). Abstract Application of the Firefly Algorithm for Optimal Production and Demand Fore- Many production companies continue to face financial difficulties. The main casting at Selected Industrial Plant. Open purpose of this paper is to present an effective method for these companies to Journal of Business and Management, 8, maximize profits and minimize production costs. The problem presented 2451-2459. https://doi.org/10.4236/ojbm.2020.86151 here is initially developed as a linear programming model. To achieve the best results, the firefly algorithm (FA) is applied to solve the model and obtain an Received: October 15, 2020 optimum solution. In order to test the efficiency of the algorithm, Lindo Accepted: November 13, 2020 software is used, and the results of both algorithms are compared. A sensitiv- Published: November 16, 2020 ity analysis is applied to determine which products a company should pro- Copyright © 2020 by author(s) and duce in order to maximize profits. The result reveals that the FA, when com- Scientific Research Publishing Inc. pared with Lindo, can help achieve maximum profits by producing only one This work is licensed under the Creative product, thus minimizing production costs. For demand forecasting, the Commons Attribution International License (CC BY 4.0).
    [Show full text]
  • Hybridizations of Metaheuristics with Branch & Bound Derivates
    Hybridizations of Metaheuristics With Branch & Bound Derivates Christian Blum1, Carlos Cotta2, Antonio J. Fern´andez2,Jos´e E. Gallardo2, and Monaldo Mastrolilli3 1 ALBCOM research group Universitat Polit`ecnica de Catalunya [email protected] 2 Dept. Lenguajes y Ciencias de la Computaci´on Universidad de M´alaga {ccottap,afdez,pepeg}@lcc.uma.es 3 Istituto Dalle Molle di Studi sull’Intelligenza Artificiale (IDSIA) [email protected] Summary. An important branch of hybrid metaheuristics concerns the hybridiza- tion with branch & bound derivatives. In this chapter we present examples for two different types of hybridization. The first one concerns the use of branch & bound fea- tures within construction-based metaheuristics in order to increase their efficiancy. The second example deals with the use of a metaheuristic, in our case a memetic algorithm, in order to increase the efficiancy of branch & bound, respectively branch & bound derivatives such as beam search. The quality of the resulting hybrid tech- niques is demonstrated by means of the application to classical string problems: the longest common subsequence problem and the shortest common supersequence problem. 1 Introduction One of the basic ingredients of an optimization technique is a mechanism for exploring the search space, that is, the space of valid solutions to the con- sidered optimization problem. Algorithms belonging to the important class of constructive optimization techniques tackle an optimization problem by ex- ploring the search space in form of a tree, a so-called search tree.Thesearch tree is generally defined by an underlying solution construction mechanism. Each path from the root node of the search tree to one of the leaves corre- sponds to the process of constructing a candidate solution.
    [Show full text]
  • Metaheuristics1
    METAHEURISTICS1 Kenneth Sörensen University of Antwerp, Belgium Fred Glover University of Colorado and OptTek Systems, Inc., USA 1 Definition A metaheuristic is a high-level problem-independent algorithmic framework that provides a set of guidelines or strategies to develop heuristic optimization algorithms (Sörensen and Glover, To appear). Notable examples of metaheuristics include genetic/evolutionary algorithms, tabu search, simulated annealing, and ant colony optimization, although many more exist. A problem-specific implementation of a heuristic optimization algorithm according to the guidelines expressed in a metaheuristic framework is also referred to as a metaheuristic. The term was coined by Glover (1986) and combines the Greek prefix meta- (metá, beyond in the sense of high-level) with heuristic (from the Greek heuriskein or euriskein, to search). Metaheuristic algorithms, i.e., optimization methods designed according to the strategies laid out in a metaheuristic framework, are — as the name suggests — always heuristic in nature. This fact distinguishes them from exact methods, that do come with a proof that the optimal solution will be found in a finite (although often prohibitively large) amount of time. Metaheuristics are therefore developed specifically to find a solution that is “good enough” in a computing time that is “small enough”. As a result, they are not subject to combinatorial explosion – the phenomenon where the computing time required to find the optimal solution of NP- hard problems increases as an exponential function of the problem size. Metaheuristics have been demonstrated by the scientific community to be a viable, and often superior, alternative to more traditional (exact) methods of mixed- integer optimization such as branch and bound and dynamic programming.
    [Show full text]
  • Distributed Cognition As the Basis for Adaptation and Homeostasis In
    DISTRIBUTEDCOGNITIONASTHEBASISFORADAPTATION ANDHOMEOSTASISINROBOTS james henry stovold Doctor of Philosophy University of York Computer Science July 2016 ABSTRACT Many researchers approach the problem of building autonomous systems by looking to biology for inspiration. This has given rise to a wide-range of artificial systems mimicking their biological counterparts—artificial neural networks, artificial endocrine systems, and artificial musculoskeletal systems are prime examples. While these systems are succinct and work well in isolation, they can become cumbersome and complicated when combined to perform more complex tasks. Autonomous behaviour is one such complex task. This thesis considers autonomy as the complex behaviour it is, and proposes a bottom-up approach to developing autonomous beha- viour from cognition. This consists of investigating how cognition can provide new approaches to the current limitations of swarm systems, and using this as the basis for one type of autonomous behaviour: artificial homeostasis. Distributed cognition, a form of emergent cognition, is most often described in terms of the immune system and social insects. By taking inspiration from distributed cognition, this thesis details the development of novel algorithms for cognitive decision-making and emergent identity in leaderless, homogenous swarms. Artificial homeostasis is provided to a robot through an architecture that combines the cognitive decision-making algorithm with a simple associative memory. This architecture is used to demonstrate how a simple architecture can endow a robot with the capacity to adapt to an unseen environment, and use that information to proactively seek out what it needs from the environment in order to maintain its internal state. iii CONTENTS Abstract iii Table of Contents v List of Figures viii List of Tables xi List of Code Listings xii Acknowledgements xiii Declaration xv 1 introduction 1 1.1 Motivation .
    [Show full text]
  • An Improved Bees Algorithm Local Search Mechanism for Numerical Dataset
    An Improved Bees Algorithm Local Search Mechanism for Numerical dataset Prepared By: Aras Ghazi Mohammed Al-dawoodi Supervisor: Dr. Massudi bin Mahmuddin DISSERTATION SUBMITTED TO THE AWANG HAD SALLEH GRADUATE SCHOOL OF COMPUTING UUM COLLEGE OF ARTS AND SCIENCES UNIVERSITI UTARA MALAYSIA IN PARITIAL FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER IN (INFORMATION TECHNOLOGY) 2014 - 2015 Permission to Use In presenting this dissertation report in partial fulfilment of the requirements for a postgraduate degree from University Utara Malaysia, I agree that the University Library may make it freely available for inspection. I further agree that permission for the copying of this report in any manner, in whole or in part, for scholarly purpose may be granted by my supervisor(s) or, in their absence, by the Dean of Awang Had Salleh Graduate School of Arts and Sciences. It is understood that any copying or publication or use of this report or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to University Utara Malaysia for any scholarly use which may be made of any material from my report. Requests for permission to copy or to make other use of materials in this project report, in whole or in part, should be addressed to: Dean of Awang Had Salleh Graduate School of Arts and Sciences UUM College of Arts and Sciences University Utara Malaysia 06010 UUM Sintok i Abstrak Bees Algorithm (BA), satu prosedur pengoptimuman heuristik, merupakan salah satu teknik carian asas yang berdasarkan kepada aktiviti pencarian makanan lebah.
    [Show full text]
  • Application of the Firefly Algorithm for Solving the Economic Emissions
    Hindawi Publishing Corporation International Journal of Combinatorics Volume 2011, Article ID 523806, 23 pages doi:10.1155/2011/523806 Research Article Application of the Firefly Algorithm for Solving the Economic Emissions Load Dispatch Problem Theofanis Apostolopoulos and Aristidis Vlachos Department of Informatics, University of Piraeus, 80 Karaoli and Dimitriou Street, 18534 Piraeus, Greece Correspondence should be addressed to Aristidis Vlachos, [email protected] Received 30 August 2010; Accepted 14 November 2010 Academic Editor: Hajo Broersma Copyright q 2011 T. Apostolopoulos and A. Vlachos. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Efficient and reliable power production is necessary to meet both the profitability of power systems operations and the electricity demand, taking also into account the environmental concerns about the emissions produced by fossil-fuelled power plants. The economic emission load dispatch problem has been defined and applied in order to deal with the optimization of these two conflicting objectives, that is, the minimization of both fuel cost and emission of generating units. This paper introduces and describes a solution to this famous problem using a new metaheuristic nature-inspired algorithm, called firefly algorithm, which was developed by Dr. Xin-She Yang at Cambridge University in 2007. A general formulation of this algorithm is presented together with an analytical mathematical modeling to solve this problem by a single equivalent objective function. The results are compared with those obtained by alternative techniques proposed by the literature in order to show that it is capable of yielding good optimal solutions with proper selection of control parameters.
    [Show full text]
  • Evaluation of Emerging Metaheuristic Strategies on Opimal Transmission Pricing
    Evaluation of Emerging Metaheuristic Strategies on Opimal Transmission Pricing José L. Rueda, Senior Member, IEEE István Erlich, Senior Member, IEEE Institute of Electrical Power Systems Institute of Electrical Power Systems University Duisburg-Essen University Duisburg-Essen Duisburg, Germany Duisburg, Germany [email protected] [email protected] Abstract--This paper provides a comparative assessment of the In practice, there are several factors that can influence the capabilities of three metaheuristic algorithms for solving the adoption of a particular scheme of transmission pricing. Thus, problem of optimal transmission pricing, whose formulation is existing literature on definition of pricing mechanisms is vast. based on principle of equivalent bilateral exchanges. Among the Particularly, the principle of Equivalent Bilateral Exchange selected algorithms are Covariance Matrix Adaptation (EBE), which was originally proposed in [5], has proven to be Evolution Strategy (CMA-ES), Linearized Biogeography-based useful for pool system by providing suitable price signals Optimization (LBBO), and a novel swarm variant of the Mean- reflecting variability in the usage rates and charges across Variance Mapping Optimization (MVMO-SM). The IEEE 30 transmission network. In [6], an optimization problem was bus system is used to perform numerical comparisons on devised based on EBE in order enable exploration of multiple convergence speed, achieved optimum solutions, and computing solutions in deciding equivalent bilateral exchanges. In the effort. 2011 competition on testing evolutionary algorithms for real- Index Terms--Equivalent bilateral exchanges, evolutionary world optimization problems (CEC11), this problem was mechanism, metaheuristics, transmission pricing. solved by different metaheuristic algorithms, most of them constituting extended or hybridized variants of genetic I.
    [Show full text]
  • Firefly Algorithm Applied to Integer Programming Problems
    Recent Advances in Mathematics Firefly Algorithm Applied to Integer Programming Problems Nebojsa BACANIN, Ivona BRAJEVIC, Milan TUBA Faculty of Computer Science Megatrend University Belgrade Bulevar umetnosti 29, N. Belgrade SERBIA [email protected], [email protected], [email protected], Abstract: - Firefly algorithm is a recently added member of the swarm intelligence heuristics family. In this paper the firefly algorithm is adjusted and applied to integer programming problems. In order to deal with integer programming problems, firefly algorithm rounds the parameter values to the closest integer after producing new solutions. The performance of firefly algorithm is tested on seven problems widely used in the literature. Artificial bee colony algorithm is also implemented for comparison with the results of the firefly algorithm. Experimental results show that the firefly algorithm proved to be superior in almost all tested problems. Key-Words: - Firefly algorithm, Optimization metaheuristics, Integer programming, Swarm intelligence 1 Introduction Delaunay triangulation of the free configuration Linear programming optimization can find optimal space [3] are also solvable by integer programming solution to problems with hundreds of thousands of method. The entire class of problems referred to as constraints and variables. Modeling strength and sequencing, scheduling and routing is inherently solvability makes linear programming technique integer programs. This class of problems might for applicable in real life problems. Integer example deal with the scheduling of students and programming is a form of mathematical classrooms in such a way that the number of optimization program where some or all employed students who cannot take their first choice of classes variables are required to have integer values.
    [Show full text]
  • Comparison of Hybrid Firefly Algorithms for Power Allocation in a TV White Space Network
    International Journal of Computer Applications (0975 – 8887) Volume 178 – No. 38, August 2019 Comparison of Hybrid Firefly Algorithms for Power Allocation in a TV White Space Network Kennedy K. Ronoh George Kamucha Tonny K. Omwansa School of Computing and Department of Electrical and School of Computing and Informatics Information Engineering Informatics University of Nairobi University of Nairobi University of Nairobi Nairobi, Kenya Nairobi, Kenya Nairobi, Kenya ABSTRACT 1GHz spectrum. TV white spaces (TVWS) can be used by Secondary Users Regulatory authorities worldwide have mandated the use of (SUs) through Dynamic Spectrum Access (DSA) as long as geo-location database (GLDB) for protection of incumbent they do not cause harmful interference to Primary Users users in TVWS network. GLDB is used by a SU or White (PUs). Due spectrum scarcity, there is increasing demand for Space Device (WSD) to find the set of frequency channels DSA. When there is a high density of SUs in a TVWS that can be used on a secondary basis at a given area and at network such as cellular access to TVWS, problem of any given time [5], [6], [7]. GLDB is populated through the interference among SUs will arise. Possibility of harmful use of a propagation model. The database contains estimated interference to PUs may also arise. Optimization of power power levels of PUs for any point in a particular region of allocation is therefore necessary to reduce the level of interest. The WSD, which has a Cognitive Radio System interference among SUs and to protect PUs against harmful (CRS), queries a central database.
    [Show full text]
  • Global Optimisation Through Hyper-Heuristics: Unfolding Population-Based Metaheuristics
    applied sciences Article Global Optimisation through Hyper-Heuristics: Unfolding Population-Based Metaheuristics Jorge M. Cruz-Duarte 1,† , José C. Ortiz-Bayliss 1,† , Ivan Amaya 1,*,† and Nelishia Pillay 2,† 1 School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, NL, Mexico; [email protected] (J.M.C.-D.); [email protected] (J.C.O.-B.) 2 Department of Computer Science, University of Pretoria, Lynnwood Rd, Hatfield, Pretoria 0083, South Africa; [email protected] * Correspondence: [email protected]; Tel.: +52-(81)-8358-2000 † These authors contributed equally to this work. Abstract: Optimisation has been with us since before the first humans opened their eyes to natural phenomena that inspire technological progress. Nowadays, it is quite hard to find a solver from the overpopulation of metaheuristics that properly deals with a given problem. This is even considered an additional problem. In this work, we propose a heuristic-based solver model for continuous optimisation problems by extending the existing concepts present in the literature. We name such solvers ‘unfolded’ metaheuristics (uMHs) since they comprise a heterogeneous sequence of simple heuristics obtained from delegating the control operator in the standard metaheuristic scheme to a high-level strategy. Therefore, we tackle the Metaheuristic Composition Optimisation Problem by tailoring a particular uMH that deals with a specific application. We prove the feasibility of this model via a two-fold experiment employing several continuous optimisation problems and a collection of Citation: Cruz-Duarte, J.M.; diverse population-based operators with fixed dimensions from ten well-known metaheuristics in Ortiz-Bayliss, J.C.; Amaya, I.; Pillay, the literature.
    [Show full text]
  • A Multi-Objective Hyper-Heuristic Based on Choice Function
    A Multi-objective Hyper-heuristic based on Choice Function Mashael Maashi1, Ender Ozcan¨ 2, Graham Kendall3 1 2 3Automated Scheduling, Optimisation and Planning Research Group, University of Nottingham, Department of Computer Science, Jubilee Campus,Wollaton Road, Nottingham, NG8 1BB ,UK. 1email: [email protected] 2email: [email protected] 3The University of Nottingham Malaysia Campus email:[email protected] Abstract Hyper-heuristics are emerging methodologies that perform a search over the space of heuristics in an attempt to solve difficult computational opti- mization problems. We present a learning selection choice function based hyper-heuristic to solve multi-objective optimization problems. This high level approach controls and combines the strengths of three well-known multi-objective evolutionary algorithms (i.e. NSGAII, SPEA2 and MOGA), utilizing them as the low level heuristics. The performance of the pro- posed learning hyper-heuristic is investigated on the Walking Fish Group test suite which is a common benchmark for multi-objective optimization. Additionally, the proposed hyper-heuristic is applied to the vehicle crash- worthiness design problem as a real-world multi-objective problem. The experimental results demonstrate the effectiveness of the hyper-heuristic approach when compared to the performance of each low level heuristic run on its own, as well as being compared to other approaches including an adaptive multi-method search, namely AMALGAM. Keywords: Hyper-heuristic, metaheuristic, evolutionary algorithm, multi-objective optimization. 1. Introduction Most real-world problems are complex. Due to their (often) NP-hard nature, researchers and practitioners frequently resort to problem tailored heuristics to obtain a reasonable solution in a reasonable time.
    [Show full text]
  • On Metaheuristic Optimization Motivated by the Immune System
    Applied Mathematics, 2014, 5, 318-326 Published Online January 2014 (http://www.scirp.org/journal/am) http://dx.doi.org/10.4236/am.2014.52032 On Metaheuristic Optimization Motivated by the Immune System Mohammed Fathy Elettreby1,2*, Elsayd Ahmed2, Houari Boumedien Khenous1 1Department of Mathematics, Faculty of Science, King Khalid University, Abha, KSA 2Department of Mathematics, Faculty of Science, Mansoura University, Mansoura, Egypt Email: *[email protected] Received November 16, 2013; revised December 16, 2013; accepted December 23, 2013 Copyright © 2014 Mohammed Fathy Elettreby et al. This is an open access article distributed under the Creative Commons Attribu- tion License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. In accordance of the Creative Commons Attribution License all Copyrights © 2014 are reserved for SCIRP and the owner of the intellectual property Mohammed Fathy Elettreby et al. All Copyright © 2014 are guarded by law and by SCIRP as a guardian. ABSTRACT In this paper, we modify the general-purpose heuristic method called extremal optimization. We compare our results with the results of Boettcher and Percus [1]. Then, some multiobjective optimization problems are solved by using methods motivated by the immune system. KEYWORDS Multiobjective Optimization; Extremal Optimization; Immunememory and Metaheuristic 1. Introduction Multiobjective optimization problems (MOPs) [2] are existing in many situations in nature. Most realistic opti- mization problems require the simultaneous optimization of more than one objective function. In this case, it is unlikely that the different objectives would be optimized by the same alternative parameter choices. Hence, some trade-off between the criteria is needed to ensure a satisfactory problem.
    [Show full text]