Assessing Model-Based Inferences in Decision Making with Single-Trial Response Time Decomposition

Total Page:16

File Type:pdf, Size:1020Kb

Assessing Model-Based Inferences in Decision Making with Single-Trial Response Time Decomposition Assessing model-based inferences in decision making with single-trial response time decomposition Gabriel Weindel1;2, Royce Anders1;3, F.-Xavier Alario1;4, Boris Burle2 1Laboratoire de Psychologie Cognitive, Aix Marseille Univ., CNRS, LPC, Marseille, France 2Laboratoire de Neurosciences Cognitives, Aix Marseille Univ., CNRS, LNC, Marseille, France 3Laboratoire d’Étude des Mécanismes Cognitifs, Univ. Lumière Lyon 2, EMC, Lyon, France 4Department of Neurological Surgery, University of Pittsburgh, PA 15213, USA Decision-making models based on evidence accumulation processes (the most prolific one being the drift-diffusion model – DDM) are widely used to draw inferences about latent psy- chological processes from chronometric data. While the observed goodness of fit in a wide range of tasks supports the model’s validity, the derived interpretations have yet to be suffi- ciently cross-validated with other measures that also reflect cognitive processing. To do so, we recorded electromyographic (EMG) activity along with response times (RT), and used it to decompose every RT into two components: a pre-motor (PMT) and motor time (MT). These measures were mapped to the DDM’s parameters, thus allowing a test, beyond quality of fit, of the validity of the model’s assumptions and their usual interpretation. In two perceptual decision tasks, performed within a canonical task setting, we manipulated stimulus contrast, speed-accuracy trade-off, and response force, and assessed their effects on PMT, MT, and RT. Contrary to common assumptions, these three factors consistently affected MT. DDM parameter estimates of non-decision processes are thought to include motor execu- tion processes, and they were globally linked to the recorded response execution MT. However, when the assumption of independence between decision and non-decision processes was not met, in the fastest trials, the link was weaker. Overall, the results show a fair concordance between model-based and EMG-based decompositions of RTs, but also establish some limits on the interpretability of decision model parameters linked to response execution. Introduction the different alternatives until one of them reaches a thresh- old that triggers the execution of the corresponding response Understanding how decisions are made is an important en- (Ratcliff, Smith, Brown, & McKoon, 2016; Stone, 1960). deavor at the crossroads of many research programs in cog- Typically, this theoretical framework is implemented quanti- nitive psychology. According to one prevalent theoretical tatively as a continuous diffusion process. These models are framework, decisions are driven by a cognitive mechanism applied empirically to fit response accuracy and latency mea- that sequentially samples goal-relevant information from the sures along different alternative-choice tasks and experimen- environment. Contextual evidence is accumulated in favor of tal manipulations. Such quantitative modeling procedures yield data-derived process parameters that are used to infer the cognitive dynamics underlying decision-making, which are otherwise not directly observable. We thank Thibault Gajdos for an early review of the manuscript, and Thierry Hasbroucq, Mathieu Servant and Michael Nunez for There are multiple variants of these quantitative models, valuable comments. We thank the four reviewers for their thor- which specify the dynamics of evidence accumulation dif- ough and helpful comments and suggestions on earlier versions of ferently (e.g., Anders, Alario, & van Maanen, 2016; Brown the manuscript. This work, carried out within the Labex BLRI & Heathcote, 2008; Heathcote & Love, 2012; Palmer, Huk, (ANR-11-LABX-0036) and the Institut Convergence ILCB (ANR- & Shadlen, 2005; Ratcliff, 1978; Ratcliff & McKoon, 2008; 16-CONV-0002), has benefited from support from the French gov- ernment, managed by the French National Agency for Research Tillman, 2017; Usher & McClelland, 2001, among many oth- (ANR) and the Excellence Initiative of Aix-Marseille University ers). All of these variants share the hypothesis that each (A*MIDEX). response time (RT) is the sum of three major terms (Equa- All data and code used in this study are available at https:// tion 1; see Luce, 1986): the time needed for stimulus en- osf.io/frhj9/. coding (Te), the time needed for the accumulated evidence The manuscript is currently (as of the 1st July 2020) under revi- to reach a threshold once accumulation has started (“deci- sion at Journal of Experimental Psychology : General sion time”: DT), and the time needed for response execution 2 GABRIEL WEINDEL1;2, ROYCE ANDERS1;3, F.-XAVIER ALARIO1;4, BORIS BURLE2 pression (Lawlor et al., 2019; Pe, Vandekerckhove, & Kup- pens, 2013), schizophrenia (Moustafa et al., 2015), Parkin- son’s disease (Herz, Bogacz, & Brown, 2016), language im- pairments (Anders, Riès, van Maanen, & Alario, 2017), and so on (see Ratcliff et al., 2016, for a review). This brief overview demonstrates the instrumental power of evidence accumulation as a cognitive process model of many diverse tasks, and its endorsement by the scientific community to characterize the latent processing dynamics of decision-making. While cognitive dynamics (in decision- making, or elsewhere) are not directly observable, the infer- ences made from these process models are expected to be Figure 1. Processing account of a single decision in a diffu- much more powerful than those derived from more generic sion model implementing evidence accumulation. statistic models (e.g. regression) intended to describe the The stochastic path represents the stimulus evidence being data at various depths of analysis (Anders, Oravecz, & accumulated over time through a noisy channel, modeled as Alario, 2018; Anders, Van Maanen, & Alario, 2019). This a diffusion process with a drift (i.e., rate of accumulation). is because cognitive dynamics are directly modeled from the Accumulation stops once a threshold boundary is reached, observed data. It is important to note, however, that this link- and the corresponding alternative is chosen. ing advantage may only hold if the modeling assumptions can be shown to be cognitively appropriate. We will now discuss these assumptions more extensively. (Tr). If the decision-relevant information encoding reaches First, in using this framework, one has to assume that the the same level of completeness on each trial, Te does not af- postulated model indeed reflects the process generating the fect the decision-making process of evidence accumulation behavior. This assumption is often considered to be sup- (DT). It is also usually assumed that the way the response is ported by the quality of the data fit diagnostics (e.g. by RT executed does not depend on how the decision was reached. quantile residuals Ratcliff & McKoon, 2008), which is gen- In other words, Tr is assumed to be independent from DT. erally very satisfactory in most published applications. For these reasons, presumably, the terms T and T are most e r However, it has often been reported that a given behav- often pooled into a single parameter T (Equation 2). er ioral data-set can be fitted equally well with different models, that differ substantially in their architectures (e.g. Donkin, RT = T + DT + T (1) e r Brown, Heathcote, & Wagenmakers, 2011; Servant, White, Ter = Te + Tr (2) Montagnini, & Burle, 2016). Therefore, although a good fit In the minimal form of the model, the decision time is a necessary criteria, it might not be sufficient to single out DT is derived from two parameters: the accumulation rate a particular model (Roberts & Pashler, 2000). In addition, (i.e., amount of evidence accumulated per time unit) and the while generally robust, model fitting procedures are complex decision threshold (i.e., the amount of accumulated evidence operations that may suffer from problems such as parameter needed for a response to be triggered; Figure 1). The best trade-off, sensitivity to trials generated from another genera- fitting parameters are directly estimated from the measured tive model (e.g. guessed responses), or other biases that can RT and the corresponding response accuracy. impact the estimated parameters, and hence notably affect These models provide a framework to determine the cog- the validity of the inferences made upon them (Ratcliff & nitive locus of specific experimental observations (e.g., as- Childers, 2015). sociative vs. categorical priming: Voss, Rothermund, Gast, Secondly, one has to assume that the manipulations that & Wentura, 2013; masked vs. unmasked priming: Gomez, modulate the estimated parameters can indeed be attributed Perea, & Ratcliff, 2013; among many others). They have to modulations of the presumed cognitive process. The ma- also been used to assess populations differences. For exam- jor diagnostic to ascertain this mapping is known as the “Se- ple, general slowing associated with aging has been linked lective Influence Test” (Heathcote, Brown, & Wagenmakers, to a higher evidence threshold and a longer Ter, rather than 2015). This approach probes whether a given experimental lower evidence accumulation rate (Ratcliff, Thapar, & McK- manipulation, presumed to selectively-affect a given psycho- oon, 2001). The same rationale for group analyses is increas- logical process, only affects the corresponding parameter of ingly used in psychopathology research to characterize infor- the model. For example, manipulations of stimulus informa- mation processing alterations in a variety of pathologies such tion quality are expected to selectively affect the accumu- as anxiety (linked
Recommended publications
  • University of North Carolina at Charlotte Belk College of Business
    University of North Carolina at Charlotte Belk College of Business BPHD 8220 Financial Bayesian Analysis Fall 2019 Course Time: Tuesday 12:20 - 3:05 pm Location: Friday Building 207 Professor: Dr. Yufeng Han Office Location: Friday Building 340A Telephone: (704) 687-8773 E-mail: [email protected] Office Hours: by appointment Textbook: Introduction to Bayesian Econometrics, 2nd Edition, by Edward Greenberg (required) An Introduction to Bayesian Inference in Econometrics, 1st Edition, by Arnold Zellner Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan, 2nd Edition, by Joseph M. Hilbe, de Souza, Rafael S., Emille E. O. Ishida Bayesian Analysis with Python: Introduction to statistical modeling and probabilistic programming using PyMC3 and ArviZ, 2nd Edition, by Osvaldo Martin The Oxford Handbook of Bayesian Econometrics, 1st Edition, by John Geweke Topics: 1. Principles of Bayesian Analysis 2. Simulation 3. Linear Regression Models 4. Multivariate Regression Models 5. Time-Series Models 6. State-Space Models 7. Volatility Models Page | 1 8. Endogeneity Models Software: 1. Stan 2. Edward 3. JAGS 4. BUGS & MultiBUGS 5. Python Modules: PyMC & ArviZ 6. R, STATA, SAS, Matlab, etc. Course Assessment: Homework assignments, paper presentation, and replication (or project). Grading: Homework: 30% Paper presentation: 40% Replication (project): 30% Selected Papers: Vasicek, O. A. (1973), A Note on Using Cross-Sectional Information in Bayesian Estimation of Security Betas. Journal of Finance, 28: 1233-1239. doi:10.1111/j.1540- 6261.1973.tb01452.x Shanken, J. (1987). A Bayesian approach to testing portfolio efficiency. Journal of Financial Economics, 19(2), 195–215. https://doi.org/10.1016/0304-405X(87)90002-X Guofu, C., & Harvey, R.
    [Show full text]
  • Stan: a Probabilistic Programming Language
    JSS Journal of Statistical Software January 2017, Volume 76, Issue 1. doi: 10.18637/jss.v076.i01 Stan: A Probabilistic Programming Language Bob Carpenter Andrew Gelman Matthew D. Hoffman Columbia University Columbia University Adobe Creative Technologies Lab Daniel Lee Ben Goodrich Michael Betancourt Columbia University Columbia University Columbia University Marcus A. Brubaker Jiqiang Guo Peter Li York University NPD Group Columbia University Allen Riddell Indiana University Abstract Stan is a probabilistic programming language for specifying statistical models. A Stan program imperatively defines a log probability function over parameters conditioned on specified data and constants. As of version 2.14.0, Stan provides full Bayesian inference for continuous-variable models through Markov chain Monte Carlo methods such as the No-U-Turn sampler, an adaptive form of Hamiltonian Monte Carlo sampling. Penalized maximum likelihood estimates are calculated using optimization methods such as the limited memory Broyden-Fletcher-Goldfarb-Shanno algorithm. Stan is also a platform for computing log densities and their gradients and Hessians, which can be used in alternative algorithms such as variational Bayes, expectation propa- gation, and marginal inference using approximate integration. To this end, Stan is set up so that the densities, gradients, and Hessians, along with intermediate quantities of the algorithm such as acceptance probabilities, are easily accessible. Stan can be called from the command line using the cmdstan package, through R using the rstan package, and through Python using the pystan package. All three interfaces sup- port sampling and optimization-based inference with diagnostics and posterior analysis. rstan and pystan also provide access to log probabilities, gradients, Hessians, parameter transforms, and specialized plotting.
    [Show full text]
  • Stan: a Probabilistic Programming Language
    JSS Journal of Statistical Software MMMMMM YYYY, Volume VV, Issue II. http://www.jstatsoft.org/ Stan: A Probabilistic Programming Language Bob Carpenter Andrew Gelman Matt Hoffman Columbia University Columbia University Adobe Research Daniel Lee Ben Goodrich Michael Betancourt Columbia University Columbia University University of Warwick Marcus A. Brubaker Jiqiang Guo Peter Li University of Toronto, NPD Group Columbia University Scarborough Allen Riddell Dartmouth College Abstract Stan is a probabilistic programming language for specifying statistical models. A Stan program imperatively defines a log probability function over parameters conditioned on specified data and constants. As of version 2.2.0, Stan provides full Bayesian inference for continuous-variable models through Markov chain Monte Carlo methods such as the No-U-Turn sampler, an adaptive form of Hamiltonian Monte Carlo sampling. Penalized maximum likelihood estimates are calculated using optimization methods such as the Broyden-Fletcher-Goldfarb-Shanno algorithm. Stan is also a platform for computing log densities and their gradients and Hessians, which can be used in alternative algorithms such as variational Bayes, expectation propa- gation, and marginal inference using approximate integration. To this end, Stan is set up so that the densities, gradients, and Hessians, along with intermediate quantities of the algorithm such as acceptance probabilities, are easily accessible. Stan can be called from the command line, through R using the RStan package, or through Python using the PyStan package. All three interfaces support sampling and optimization-based inference. RStan and PyStan also provide access to log probabilities, gradients, Hessians, and data I/O. Keywords: probabilistic program, Bayesian inference, algorithmic differentiation, Stan.
    [Show full text]
  • Easybuild Documentation Release 20210907.0
    EasyBuild Documentation Release 20210907.0 Ghent University Tue, 07 Sep 2021 08:55:41 Contents 1 What is EasyBuild? 3 2 Concepts and terminology 5 2.1 EasyBuild framework..........................................5 2.2 Easyblocks................................................6 2.3 Toolchains................................................7 2.3.1 system toolchain.......................................7 2.3.2 dummy toolchain (DEPRECATED) ..............................7 2.3.3 Common toolchains.......................................7 2.4 Easyconfig files..............................................7 2.5 Extensions................................................8 3 Typical workflow example: building and installing WRF9 3.1 Searching for available easyconfigs files.................................9 3.2 Getting an overview of planned installations.............................. 10 3.3 Installing a software stack........................................ 11 4 Getting started 13 4.1 Installing EasyBuild........................................... 13 4.1.1 Requirements.......................................... 14 4.1.2 Using pip to Install EasyBuild................................. 14 4.1.3 Installing EasyBuild with EasyBuild.............................. 17 4.1.4 Dependencies.......................................... 19 4.1.5 Sources............................................. 21 4.1.6 In case of installation issues. .................................. 22 4.2 Configuring EasyBuild.......................................... 22 4.2.1 Supported configuration
    [Show full text]
  • Advancedhmc.Jl: a Robust, Modular and Efficient Implementation of Advanced HMC Algorithms
    2nd Symposium on Advances in Approximate Bayesian Inference, 20191{10 AdvancedHMC.jl: A robust, modular and efficient implementation of advanced HMC algorithms Kai Xu [email protected] University of Edinburgh Hong Ge [email protected] University of Cambridge Will Tebbutt [email protected] University of Cambridge Mohamed Tarek [email protected] UNSW Canberra Martin Trapp [email protected] Graz University of Technology Zoubin Ghahramani [email protected] University of Cambridge & Uber AI Labs Abstract Stan's Hamilton Monte Carlo (HMC) has demonstrated remarkable sampling robustness and efficiency in a wide range of Bayesian inference problems through carefully crafted adaption schemes to the celebrated No-U-Turn sampler (NUTS) algorithm. It is challeng- ing to implement these adaption schemes robustly in practice, hindering wider adoption amongst practitioners who are not directly working with the Stan modelling language. AdvancedHMC.jl (AHMC) contributes a modular, well-tested, standalone implementation of NUTS that recovers and extends Stan's NUTS algorithm. AHMC is written in Julia, a modern high-level language for scientific computing, benefiting from optional hardware acceleration and interoperability with a wealth of existing software written in both Julia and other languages, such as Python. Efficacy is demonstrated empirically by comparison with Stan through a third-party Markov chain Monte Carlo benchmarking suite. 1. Introduction Hamiltonian Monte Carlo (HMC) is an efficient Markov chain Monte Carlo (MCMC) algo- rithm which avoids random walks by simulating Hamiltonian dynamics to make proposals (Duane et al., 1987; Neal et al., 2011). Due to the statistical efficiency of HMC, it has been widely applied to fields including physics (Duane et al., 1987), differential equations (Kramer et al., 2014), social science (Jackman, 2009) and Bayesian inference (e.g.
    [Show full text]
  • Maple Advanced Programming Guide
    Maple 9 Advanced Programming Guide M. B. Monagan K. O. Geddes K. M. Heal G. Labahn S. M. Vorkoetter J. McCarron P. DeMarco c Maplesoft, a division of Waterloo Maple Inc. 2003. ­ ii ¯ Maple, Maplesoft, Maplet, and OpenMaple are trademarks of Water- loo Maple Inc. c Maplesoft, a division of Waterloo Maple Inc. 2003. All rights re- ­ served. The electronic version (PDF) of this book may be downloaded and printed for personal use or stored as a copy on a personal machine. The electronic version (PDF) of this book may not be distributed. Information in this document is subject to change without notice and does not rep- resent a commitment on the part of the vendor. The software described in this document is furnished under a license agreement and may be used or copied only in accordance with the agreement. It is against the law to copy the software on any medium as specifically allowed in the agreement. Windows is a registered trademark of Microsoft Corporation. Java and all Java based marks are trademarks or registered trade- marks of Sun Microsystems, Inc. in the United States and other countries. Maplesoft is independent of Sun Microsystems, Inc. All other trademarks are the property of their respective owners. This document was produced using a special version of Maple that reads and updates LATEX files. Printed in Canada ISBN 1-894511-44-1 Contents Preface 1 Audience . 1 Worksheet Graphical Interface . 2 Manual Set . 2 Conventions . 3 Customer Feedback . 3 1 Procedures, Variables, and Extending Maple 5 Prerequisite Knowledge . 5 In This Chapter .
    [Show full text]
  • End-User Probabilistic Programming
    End-User Probabilistic Programming Judith Borghouts, Andrew D. Gordon, Advait Sarkar, and Neil Toronto Microsoft Research Abstract. Probabilistic programming aims to help users make deci- sions under uncertainty. The user writes code representing a probabilistic model, and receives outcomes as distributions or summary statistics. We consider probabilistic programming for end-users, in particular spread- sheet users, estimated to number in tens to hundreds of millions. We examine the sources of uncertainty actually encountered by spreadsheet users, and their coping mechanisms, via an interview study. We examine spreadsheet-based interfaces and technology to help reason under uncer- tainty, via probabilistic and other means. We show how uncertain values can propagate uncertainty through spreadsheets, and how sheet-defined functions can be applied to handle uncertainty. Hence, we draw conclu- sions about the promise and limitations of probabilistic programming for end-users. 1 Introduction In this paper, we discuss the potential of bringing together two rather distinct approaches to decision making under uncertainty: spreadsheets and probabilistic programming. We start by introducing these two approaches. 1.1 Background: Spreadsheets and End-User Programming The spreadsheet is the first \killer app" of the personal computer era, starting in 1979 with Dan Bricklin and Bob Frankston's VisiCalc for the Apple II [15]. The primary interface of a spreadsheet|then and now, four decades later|is the grid, a two-dimensional array of cells. Each cell may hold a literal data value, or a formula that computes a data value (and may depend on the data in other cells, which may themselves be computed by formulas).
    [Show full text]
  • An Introduction to Data Analysis Using the Pymc3 Probabilistic Programming Framework: a Case Study with Gaussian Mixture Modeling
    An introduction to data analysis using the PyMC3 probabilistic programming framework: A case study with Gaussian Mixture Modeling Shi Xian Liewa, Mohsen Afrasiabia, and Joseph L. Austerweila aDepartment of Psychology, University of Wisconsin-Madison, Madison, WI, USA August 28, 2019 Author Note Correspondence concerning this article should be addressed to: Shi Xian Liew, 1202 West Johnson Street, Madison, WI 53706. E-mail: [email protected]. This work was funded by a Vilas Life Cycle Professorship and the VCRGE at University of Wisconsin-Madison with funding from the WARF 1 RUNNING HEAD: Introduction to PyMC3 with Gaussian Mixture Models 2 Abstract Recent developments in modern probabilistic programming have offered users many practical tools of Bayesian data analysis. However, the adoption of such techniques by the general psychology community is still fairly limited. This tutorial aims to provide non-technicians with an accessible guide to PyMC3, a robust probabilistic programming language that allows for straightforward Bayesian data analysis. We focus on a series of increasingly complex Gaussian mixture models – building up from fitting basic univariate models to more complex multivariate models fit to real-world data. We also explore how PyMC3 can be configured to obtain significant increases in computational speed by taking advantage of a machine’s GPU, in addition to the conditions under which such acceleration can be expected. All example analyses are detailed with step-by-step instructions and corresponding Python code. Keywords: probabilistic programming; Bayesian data analysis; Markov chain Monte Carlo; computational modeling; Gaussian mixture modeling RUNNING HEAD: Introduction to PyMC3 with Gaussian Mixture Models 3 1 Introduction Over the last decade, there has been a shift in the norms of what counts as rigorous research in psychological science.
    [Show full text]
  • Applying Bayesian Growth Modeling in Machine Learning for Longitudinal Data
    University of Northern Colorado Scholarship & Creative Works @ Digital UNC Dissertations Student Research 5-2021 Applying Bayesian Growth Modeling In Machine Learning For Longitudinal Data Alisa Udomvisawakul Follow this and additional works at: https://digscholarship.unco.edu/dissertations © 2021 ALISA UDOMVISAWAKUL ALL RIGHTS RESERVED UNIVERSITY OF NORTHERN COLORADO Greeley, Colorado The Graduate School APPLYING BAYESIAN GROWTH MODELING IN MACHINE LEARNING FOR LONGITUDINAL DATA A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Alisa Udomvisawakul College of Education and Behavioral Sciences Department of Applied Statistics and Research Methods May, 2021 This Dissertation by: Alisa Udomvisawakul Entitled: Applying Bayesian Growth Modeling in Machine Learning for Longitudinal Data has been approved as meeting the requirement for the Degree of Doctor of Philosophy in College of Education and Behavioral Sciences in Department of Applied Statistics and Research Methods. Accepted by the Doctoral Committee ______________________________________________________ Susan R. Hutchinson, Ph.D., Research Advisor ______________________________________________________ Chia-Lin Tsai, Ph.D., Committee Member ______________________________________________________ Han Yu, Ph.D., Committee Member ______________________________________________________ James Reardon, Ph.D., Faculty Representative Date of Dissertation Defense 4/2/2021____________________________ Accepted by the Graduate School ______________________________________________________
    [Show full text]
  • 2019 Annual Report
    ANNUAL REPORT 2019 TABLE OF CONTENTS LETTER FROM THE BOARD CO-CHAIRPERSON ..............................................03 PROJECTS ....................................................................................................................... 04 New Sponsored Projects Project Highlights from 2019 Project Events Case Studies Affiliated Projects NumFOCUS Services to Projects PROGRAMS ..................................................................................................................... 16 PyData PyData Meetups PyData Conferences PyData Videos Small Development Grants to NumFOCUS Projects Inaugural Visiting Fellow Diversity and Inclusion in Scientific Computing (DISC) Google Season of Docs Google Summer of Code Sustainability Program GRANTS ........................................................................................................................... 25 Major Grants to Sponsored Projects through NumFOCUS SUPPORT ........................................................................................................................ 28 2019 NumFOCUS Corporate Sponsors Donor List FINANCIALS ................................................................................................................... 34 Revenue & Expenses Project Income Detail Project EOY Balance Detail PEOPLE ............................................................................................................................ 38 Staff Board of Directors Advisory Council LETTER FROM THE BOARD CO-CHAIRPERSON NumFOCUS was founded in
    [Show full text]
  • Download Preprint
    MECHANISMS OF MANY-ALTERNATIVE CHOICE 1 1 2 3 4 5 Uncovering the Computational Mechanisms Underlying Many-Alternative Choice 6 Armin W. Thomas 1,2,3,4, Felix Molter 3,4,5, Ian Krajbich 6* 7 8 9 10 1 Max Planck Institute for Human Development, Berlin, Germany 11 2 Technische Universität Berlin, Berlin, Germany 12 3 Freie Universität Berlin, Berlin, Germany 13 4 Center for Cognitive Neuroscience Berlin, Berlin, Germany 14 5 WZB Berlin Social Science Center, Berlin, Germany 15 6 The Ohio State University, Columbus, OH, USA 16 * Correspondence concerning this article should be addressed to Ian Krajbich ([email protected]) 17 18 19 20 21 22 23 Armin W. Thomas, Center for Lifespan Psychology, Max Planck Institute for Human 24 Development, Lentzeallee 94, 14195 Berlin, Germany; Felix Molter, School of Business & Economics, 25 Freie Universität Berlin, Garystr. 21, 14195 Berlin, Germany; Ian Krajbich, Department of Psychology, 26 Department of Economics, The Ohio State University, 1827 Neil Avenue, 200E Lazenby Hall, Columbus 27 Ohio 43210, USA. MECHANISMS OF MANY-ALTERNATIVE CHOICE 2 28 Abstract 29 How do we choose when confronted with many alternatives? There is surprisingly little decision 30 modeling work with large choice sets, despite their prevalence in everyday life. Even further, there is an 31 apparent disconnect between research in small choice sets, supporting a process of gaze-driven evidence 32 accumulation, and research in larger choice sets, arguing for models of optimal choice, satisficing, and 33 hybrids of the two. Here, we bridge this divide by developing and comparing different versions of these 34 models in a many-alternative value-based choice experiment with 9, 16, 25, or 36 alternatives.
    [Show full text]
  • GNU Octave a High-Level Interactive Language for Numerical Computations Edition 3 for Octave Version 2.0.13 February 1997
    GNU Octave A high-level interactive language for numerical computations Edition 3 for Octave version 2.0.13 February 1997 John W. Eaton Published by Network Theory Limited. 15 Royal Park Clifton Bristol BS8 3AL United Kingdom Email: [email protected] ISBN 0-9541617-2-6 Cover design by David Nicholls. Errata for this book will be available from http://www.network-theory.co.uk/octave/manual/ Copyright c 1996, 1997John W. Eaton. This is the third edition of the Octave documentation, and is consistent with version 2.0.13 of Octave. Permission is granted to make and distribute verbatim copies of this man- ual provided the copyright notice and this permission notice are preserved on all copies. Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided that the en- tire resulting derived work is distributed under the terms of a permission notice identical to this one. Permission is granted to copy and distribute translations of this manual into another language, under the same conditions as for modified versions. Portions of this document have been adapted from the gawk, readline, gcc, and C library manuals, published by the Free Software Foundation, 59 Temple Place—Suite 330, Boston, MA 02111–1307, USA. i Table of Contents Publisher’s Preface ...................... 1 Author’s Preface ........................ 3 Acknowledgements ........................................ 3 How You Can Contribute to Octave ........................ 5 Distribution .............................................. 6 1 A Brief Introduction to Octave ....... 7 1.1 Running Octave...................................... 7 1.2 Simple Examples ..................................... 7 Creating a Matrix ................................. 7 Matrix Arithmetic ................................. 8 Solving Linear Equations..........................
    [Show full text]