The West Math Collection
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Short CV For: Alexander Lubotzky
Short CV for: Alexander Lubotzky Personal: • born 28/6/56 in Israel. • Married to Yardenna Lubotzky (+ six children) Studies: • B. Sc., Mathematics, Bar-Ilan University, 1975. • Ph.D., Mathematics, Bar-Ilan University, 1979. (Supervisor: H. Fussten- berg, Thesis: Profinite groups and the congruence subgroup problem.) Employment: • 1982 - current: Institute of Mathematics, Hebrew University of Jerusalem; Professor - Holding the Maurice and Clara Weil Chair in Mathematics • 1999-current: Adjunct Professor at Yale University • Academic Year 2005-2006: Leading a year long research program at the Institute for Advanced Study in Princeton on \Lie Groups, Repre- sentations and Discrete Mathematics." Previous Employment: • Bar-Ilan University, 1976-1982 • Israeli Defense Forces, 1977-1982 • Member of the Israeli Parliament (Knesset), 1996-1999 Visiting Positions: • Yale University (several times for semesters or years) • Stanford University (84/5) • University of Chicago (92/3) • Columbia University (Elenberg visiting Professor Fall 2000) 1 • Institute for Advanced Study, Princeton (2005/6) Main prizes and Academic Honors: • Elected as Foreign Honorary member of the American Academy of Arts and Sciences • Ferran Sunyer i Balaguer Prize twice: 1993 for the book: \Discrete Groups, Expanding Groups and Invariant Measures", Prog. in math 125, Birkhauser 1994, and in 2002 joint with Professor Dan Segal from Oxford for the book \Subgroup Growth", Prog. in Math. 212, Birkhauser 2003. • The Rothschild Prize 2002. • The Erdos Prize in 1991. Editorial work: • Israel Journal of Mathematics (1990-now) • Journal of Algebra (1990-2005) • GAFA (1990-2000) • European Journal of Combinatorics • Geometric Dedicata • Journal of the Glasgow Mathematical Scientists Books and papers: • Author of 3 books and over 90 papers. -
University of North Carolina at Charlotte Belk College of Business
University of North Carolina at Charlotte Belk College of Business BPHD 8220 Financial Bayesian Analysis Fall 2019 Course Time: Tuesday 12:20 - 3:05 pm Location: Friday Building 207 Professor: Dr. Yufeng Han Office Location: Friday Building 340A Telephone: (704) 687-8773 E-mail: [email protected] Office Hours: by appointment Textbook: Introduction to Bayesian Econometrics, 2nd Edition, by Edward Greenberg (required) An Introduction to Bayesian Inference in Econometrics, 1st Edition, by Arnold Zellner Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan, 2nd Edition, by Joseph M. Hilbe, de Souza, Rafael S., Emille E. O. Ishida Bayesian Analysis with Python: Introduction to statistical modeling and probabilistic programming using PyMC3 and ArviZ, 2nd Edition, by Osvaldo Martin The Oxford Handbook of Bayesian Econometrics, 1st Edition, by John Geweke Topics: 1. Principles of Bayesian Analysis 2. Simulation 3. Linear Regression Models 4. Multivariate Regression Models 5. Time-Series Models 6. State-Space Models 7. Volatility Models Page | 1 8. Endogeneity Models Software: 1. Stan 2. Edward 3. JAGS 4. BUGS & MultiBUGS 5. Python Modules: PyMC & ArviZ 6. R, STATA, SAS, Matlab, etc. Course Assessment: Homework assignments, paper presentation, and replication (or project). Grading: Homework: 30% Paper presentation: 40% Replication (project): 30% Selected Papers: Vasicek, O. A. (1973), A Note on Using Cross-Sectional Information in Bayesian Estimation of Security Betas. Journal of Finance, 28: 1233-1239. doi:10.1111/j.1540- 6261.1973.tb01452.x Shanken, J. (1987). A Bayesian approach to testing portfolio efficiency. Journal of Financial Economics, 19(2), 195–215. https://doi.org/10.1016/0304-405X(87)90002-X Guofu, C., & Harvey, R. -
A Group Theoretic Characterization of Linear Groups
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF ALGEBRA 113, 207-214 (1988) A Group Theoretic Characterization of Linear Groups ALEXANDER LUBOTZKY Institute qf Mathematics, Hebrew University, Jerusalem, Israel 91904 Communicated by Jacques Tits Received May 12, 1986 Let r be a group. When is f linear? This is an old problem. The first to study this question systematically was Malcev in 1940 [M], who essen- tially reduced the problem to finitely generated groups. (Note that a finitely generated group is linear over some field of characteristic zero if and only if it can be embedded in CL,(C) for some n.) Very little progress was made since that paper of Malcev, although, as linear groups are a quite special type of group, many necessary conditions were obtained, e.g., r should be residually finite and even virtually residually-p for almost all primes p, f should be virtually torsion free, and if not solvable by finite it has a free non-abelian subgroup, etc. (cf. [Z]). Of course, none of these properties characterizes the finitely generated linear groups over @. In this paper we give such a characterization using the congruence structure of r. First some definitions: For a group H, d(H) denotes the minimal number of generators for H. DEFINITION. Let p be a prime and c an integer. A p-congruence structure (with a bound c) for a group r is a descending chain of finite index normal subgroups of r = N, 2 N, 2 N, z . -
A Unified Approach to Three Themes in Harmonic Analysis ($1^{St} $ Part)
A UNIFIED APPROACH TO THREE THEMES IN HARMONIC ANALYSIS (I & II) (I) THE LINEAR HILBERT TRANSFORM AND MAXIMAL OPERATOR ALONG VARIABLE CURVES (II) CARLESON TYPE OPERATORS IN THE PRESENCE OF CURVATURE (III) THE BILINEAR HILBERT TRANSFORM AND MAXIMAL OPERATOR ALONG VARIABLE CURVES VICTOR LIE In loving memory of Elias Stein, whose deep mathematical breadth and vision for unified theories and fundamental concepts have shaped the field of harmonic analysis for more than half a century. arXiv:1902.03807v2 [math.AP] 2 Oct 2020 Date: October 5, 2020. Key words and phrases. Wave-packet analysis, Hilbert transform and Maximal oper- ator along curves, Carleson-type operators in the presence of curvature, bilinear Hilbert transform and maximal operators along curves, Zygmund’s differentiation conjecture, Car- leson’s Theorem, shifted square functions, almost orthogonality. The author was supported by the National Science Foundation under Grant No. DMS- 1500958. The most recent revision of the paper was performed while the author was supported by the National Science Foundation under Grant No. DMS-1900801. 1 2 VICTOR LIE Abstract. In the present paper and its sequel [63], we address three rich historical themes in harmonic analysis that rely fundamentally on the concept of non-zero curvature. Namely, we focus on the boundedness properties of (I) the linear Hilbert transform and maximal operator along variable curves, (II) Carleson-type operators in the presence of curvature, and (III) the bilinear Hilbert transform and maximal operator along variable curves. Our Main Theorem states that, given a general variable curve γ(x,t) in the plane that is assumed only to be measurable in x and to satisfy suitable non-zero curvature (in t) and non-degeneracy conditions, all of the above itemized operators defined along the curve γ are Lp-bounded for 1 <p< ∞. -
Counting Arithmetic Lattices and Surfaces
ANNALS OF MATHEMATICS Counting arithmetic lattices and surfaces By Mikhail Belolipetsky, Tsachik Gelander, Alexander Lubotzky, and Aner Shalev SECOND SERIES, VOL. 172, NO. 3 November, 2010 anmaah Annals of Mathematics, 172 (2010), 2197–2221 Counting arithmetic lattices and surfaces By MIKHAIL BELOLIPETSKY, TSACHIK GELANDER, ALEXANDER LUBOTZKY, and ANER SHALEV Abstract We give estimates on the number ALH .x/ of conjugacy classes of arithmetic lattices of covolume at most x in a simple Lie group H . In particular, we obtain a first concrete estimate on the number of arithmetic 3-manifolds of volume at most x. Our main result is for the classical case H PSL.2; R/ where we show D that log AL .x/ 1 lim H : x x log x D 2 !1 The proofs use several different techniques: geometric (bounding the number of generators of as a function of its covolume), number theoretic (bounding the number of maximal such ) and sharp estimates on the character values of the symmetric groups (to bound the subgroup growth of ). 1. Introduction Let H be a noncompact simple Lie group with a fixed Haar measure .A discrete subgroup of H is called a lattice if . H / < . A classical theorem of n 1 Wang[Wan72] asserts that if H is not locally isomorphic to PSL2.R/ or PSL2.C/, then for every 0 < x R the number LH .x/ of conjugacy classes of lattices in H of 2 covolume at most x is finite. This result was greatly extended by Borel and Prasad [BP89]. In recent years there has been an attempt to quantify Wang’s theorem and to give some estimates on LH .x/ (see[BGLM02],[Gel04],[GLNP04],[Bel07] and[BL]). -
Easybuild Documentation Release 20210907.0
EasyBuild Documentation Release 20210907.0 Ghent University Tue, 07 Sep 2021 08:55:41 Contents 1 What is EasyBuild? 3 2 Concepts and terminology 5 2.1 EasyBuild framework..........................................5 2.2 Easyblocks................................................6 2.3 Toolchains................................................7 2.3.1 system toolchain.......................................7 2.3.2 dummy toolchain (DEPRECATED) ..............................7 2.3.3 Common toolchains.......................................7 2.4 Easyconfig files..............................................7 2.5 Extensions................................................8 3 Typical workflow example: building and installing WRF9 3.1 Searching for available easyconfigs files.................................9 3.2 Getting an overview of planned installations.............................. 10 3.3 Installing a software stack........................................ 11 4 Getting started 13 4.1 Installing EasyBuild........................................... 13 4.1.1 Requirements.......................................... 14 4.1.2 Using pip to Install EasyBuild................................. 14 4.1.3 Installing EasyBuild with EasyBuild.............................. 17 4.1.4 Dependencies.......................................... 19 4.1.5 Sources............................................. 21 4.1.6 In case of installation issues. .................................. 22 4.2 Configuring EasyBuild.......................................... 22 4.2.1 Supported configuration -
Ergodic Theory Plays a Key Role in Multiple Fields Steven Ashley Science Writer
CORE CONCEPTS Core Concept: Ergodic theory plays a key role in multiple fields Steven Ashley Science Writer Statistical mechanics is a powerful set of professor Tom Ward, reached a key milestone mathematical tools that uses probability the- in the early 1930s when American mathema- ory to bridge the enormous gap between the tician George D. Birkhoff and Austrian-Hun- unknowable behaviors of individual atoms garian (and later, American) mathematician and molecules and those of large aggregate sys- and physicist John von Neumann separately tems of them—a volume of gas, for example. reconsidered and reformulated Boltzmann’ser- Fundamental to statistical mechanics is godic hypothesis, leading to the pointwise and ergodic theory, which offers a mathematical mean ergodic theories, respectively (see ref. 1). means to study the long-term average behavior These results consider a dynamical sys- of complex systems, such as the behavior of tem—whetheranidealgasorothercomplex molecules in a gas or the interactions of vi- systems—in which some transformation func- brating atoms in a crystal. The landmark con- tion maps the phase state of the system into cepts and methods of ergodic theory continue its state one unit of time later. “Given a mea- to play an important role in statistical mechan- sure-preserving system, a probability space ics, physics, mathematics, and other fields. that is acted on by the transformation in Ergodicity was first introduced by the a way that models physical conservation laws, Austrian physicist Ludwig Boltzmann laid Austrian physicist Ludwig Boltzmann in the what properties might it have?” asks Ward, 1870s, following on the originator of statisti- who is managing editor of the journal Ergodic the foundation for modern-day ergodic the- cal mechanics, physicist James Clark Max- Theory and Dynamical Systems.Themeasure ory. -
The Bibliography
Referenced Books [Ach92] N. I. Achieser. Theory of Approximation. Dover Publications Inc., New York, 1992. Reprint of the 1956 English translation of the 1st Rus- sian edition; the 2nd augmented Russian edition is available, Moscow, Nauka, 1965. [AH05] Kendall Atkinson and Weimin Han. Theoretical Numerical Analysis: A Functional Analysis Framework, volume 39 of Texts in Applied Mathe- matics. Springer, New York, second edition, 2005. [Atk89] Kendall E. Atkinson. An Introduction to Numerical Analysis. John Wiley & Sons Inc., New York, second edition, 1989. [Axe94] Owe Axelsson. Iterative Solution Methods. Cambridge University Press, Cambridge, 1994. [Bab86] K. I. Babenko. Foundations of Numerical Analysis [Osnovy chislennogo analiza]. Nauka, Moscow, 1986. [Russian]. [BD92] C. A. Brebbia and J. Dominguez. Boundary Elements: An Introductory Course. Computational Mechanics Publications, Southampton, second edition, 1992. [Ber52] S. N. Bernstein. Collected Works. Vol. I. The Constructive Theory of Functions [1905–1930]. Izdat. Akad. Nauk SSSR, Moscow, 1952. [Russian]. [Ber54] S. N. Bernstein. Collected Works. Vol. II. The Constructive Theory of Functions [1931–1953]. Izdat. Akad. Nauk SSSR, Moscow, 1954. [Russian]. [BH02] K. Binder and D. W. Heermann. Monte Carlo Simulation in Statistical Physics: An Introduction, volume 80 of Springer Series in Solid-State Sciences. Springer-Verlag, Berlin, fourth edition, 2002. [BHM00] William L. Briggs, Van Emden Henson, and Steve F. McCormick. A Multigrid Tutorial. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, second edition, 2000. [Boy01] John P. Boyd. Chebyshev and Fourier Spectral Methods. Dover Publi- cations Inc., Mineola, NY, second edition, 2001. [Bra84] Achi Brandt. Multigrid Techniques: 1984 Guide with Applications to Fluid Dynamics, volume 85 of GMD-Studien [GMD Studies]. -
Winter 2013 Newsletter
Volume 10, No. 1 Newsletter The Courant Institute of Mathematical Sciences at New York University 2013 Winter 2 Jinyang Li: Building 5 How can the mysterious Distributed Systems that connection between Bridge Applications and nature and mathematics Hardware be explained? It can’t, says Henry McKean 3 New Faculty 6 Winter 2013 Puzzle How Fair is a Fair Coin? 4 In the accounting software 7 The Generosity of Friends field, Anne-Claire McAllister’s Courant degree has made all the difference In this Issue: Jinyang Li: Building Distributed Systems That Bridge Applications and Hardware by M.L. Ball the hardware. When new hardware is built, without good systems Piccolo: Distributed Computation software it’s very clumsy to use and won’t reach the majority of using Shared In-memory State application programmers. It’s a careful balance between making your system very usable and maintaining extremely high performance,” Node-1 said Jinyang. Get, Put, Update (commutative) Jinyang’s Project Piccolo: Faster, more robust, and getting lots of notice When approaching a new project, Jinyang prefers a bottom-up PageRank Accumulate=sum Distrubuted in-memory state approach. “I like to take a very concrete piece of application that A: 1.35 B: 5.44 I really care about – like machine learning or processing a lot of C: 2.01 … text – and then look at the existing hardware and say, ‘We have lots of machines and they’re connected by a fast network and each of them has a lot of memory and a lot of disks,’” she said. “‘How can I enable that application to utilize this array of hardware? What is the Node-2 Node-3 glue, what is the infrastructure that’s needed? To make the challenges concrete, let me start by building this infrastructure that specifically can process a large amount of text really quickly. -
Vorticity and Incompressible Flow - Andrew J
Cambridge University Press 0521630576 - Vorticity and Incompressible Flow - Andrew J. Majda and Andrea L. Bertozzi Frontmatter More information Vorticity and Incompressible Flow This book is a comprehensive introduction to the mathematical theory of vorticity and incompressible flow ranging from elementary introductory material to current research topics. Although the contents center on mathematical theory, many parts of the book showcase the interactions among rigorous mathematical theory, numerical, asymptotic, and qualitative simplified modeling, and physical phenomena. The first half forms an introductory graduate course on vorticity and incompressible flow. The second half comprises a modern applied mathematics graduate course on the weak solution theory for incompressible flow. Andrew J. Majda is the Samuel Morse Professor of Arts and Sciences at the Courant Institute of Mathematical Sciences of New York University. He is a member of the National Academy of Sciences and has received numerous honors and awards includ- ing the National Academy of Science Prize in Applied Mathematics, the John von Neumann Prize of the American Mathematical Society and an honorary Ph.D. degree from Purdue University. Majda is well known for both his theoretical contributions to partial differential equations and his applied contributions to diverse areas besides in- compressible flow such as scattering theory, shock waves, combustion, vortex motion and turbulent diffusion. His current applied research interests are centered around Atmosphere/Ocean science. Andrea L. Bertozzi is Professor of Mathematics and Physics at Duke University. She has received several honors including a Sloan Research Fellowship (1995) and the Presidential Early Career Award for Scientists and Engineers (PECASE). Her research accomplishments in addition to incompressible flow include both theoretical and applied contributions to the understanding of thin liquid films and moving contact lines. -
Institute for Pure and Applied Mathematics, UCLA Award/Institution #0439872-013151000 Annual Progress Report for 2009-2010 August 1, 2011
Institute for Pure and Applied Mathematics, UCLA Award/Institution #0439872-013151000 Annual Progress Report for 2009-2010 August 1, 2011 TABLE OF CONTENTS EXECUTIVE SUMMARY 2 A. PARTICIPANT LIST 3 B. FINANCIAL SUPPORT LIST 4 C. INCOME AND EXPENDITURE REPORT 4 D. POSTDOCTORAL PLACEMENT LIST 5 E. INSTITUTE DIRECTORS‘ MEETING REPORT 6 F. PARTICIPANT SUMMARY 12 G. POSTDOCTORAL PROGRAM SUMMARY 13 H. GRADUATE STUDENT PROGRAM SUMMARY 14 I. UNDERGRADUATE STUDENT PROGRAM SUMMARY 15 J. PROGRAM DESCRIPTION 15 K. PROGRAM CONSULTANT LIST 38 L. PUBLICATIONS LIST 50 M. INDUSTRIAL AND GOVERNMENTAL INVOLVEMENT 51 N. EXTERNAL SUPPORT 52 O. COMMITTEE MEMBERSHIP 53 P. CONTINUING IMPACT OF PAST IPAM PROGRAMS 54 APPENDIX 1: PUBLICATIONS (SELF-REPORTED) 2009-2010 58 Institute for Pure and Applied Mathematics, UCLA Award/Institution #0439872-013151000 Annual Progress Report for 2009-2010 August 1, 2011 EXECUTIVE SUMMARY Highlights of IPAM‘s accomplishments and activities of the fiscal year 2009-2010 include: IPAM held two long programs during 2009-2010: o Combinatorics (fall 2009) o Climate Modeling (spring 2010) IPAM‘s 2010 winter workshops continued the tradition of focusing on emerging topics where Mathematics plays an important role: o New Directions in Financial Mathematics o Metamaterials: Applications, Analysis and Modeling o Mathematical Problems, Models and Methods in Biomedical Imaging o Statistical and Learning-Theoretic Challenges in Data Privacy IPAM sponsored reunion conferences for four long programs: Optimal Transport, Random Shapes, Search Engines and Internet MRA IPAM sponsored three public lectures since August. Noga Alon presented ―The Combinatorics of Voting Paradoxes‖ on October 5, 2009. Pierre-Louis Lions presented ―On Mean Field Games‖ on January 5, 2010. -
Volume 28 Contemporary Mathematics
Fluids and Plasmas: Geometry and Dynamics AMERICAII MATHEMATICAL SOCIETY VOLUME 28 http://dx.doi.org/10.1090/conm/028 CONTEMPORARY MATHEMATICS Titles in this Series Volume 1 Markov random fields and their applications, Ross Kindermann and J. Laurie Snell 2 Proceedings of the conference on integration, topology, and geometry in linear spaces, William H. Graves. Editor 3 The closed graph and P-closed graph properties in general topology, T. R. Hamlett and L. L. Herrington 4 Problems of elastic stability and vibrations, Vadim Komkov. Editor 5 Rational constructions of modules for simple Lie algebras, George B. Seligman 6 Umbral calculus and Hopf algebras, Robert Morris. Editor 7 Complex contour integral representation of cardinal spline functions, Walter Schempp 8 Ordered fields and real algebraic geometry, D. W. Dubois and T. Recio. Editors 9 Papers in algebra, analysis and statistics, R. Lidl. Editor 10 Operator algebras and K-theory, Ronald G. Douglas and Claude Schochet. Editors 11 Plane ellipticity and related problems, Robert P. Gilbert. Editor 12 Symposium on algebraic topology in honor of Jose Adem, Samuel Gitler. Editor 1l Algebraists' homage: Papers in ring theory and related topics, S. A. Amitsur. D. J. Saltman and G. B. Seligman. Editors 14 Lectures on Nielsen fixed point theory, Boju Jiang 15 Advanced analytic number theory. Part 1: Ramification theoretic methods, Carlos J. Moreno 16 Complex representations of GL(2, K) for finite fields K, llya Piatetski-Shapiro 17 Nonlinear partial differential equations, Joel A. Smoller. Editor 18 Fix~t' points and nonexpansive mappings, Robert C. Sine. Editor 19 Proceedings of the Northwestern homotopy theory conference, Haynes R.