Advancementof- Proprotorechnology
Total Page:16
File Type:pdf, Size:1020Kb
..... _:'_;''' ' 00000001 ADVANCEMENTOF- PROPROTORTECHNOLOGY ,. TASK[ - DESIGNSTUDYSUMMARY , (NASACONTRACTNAS2-5386) (N.kSA-CR-1111682) ADVkliCBBENT OF PE_ROTOE NTq-11833 TECUNOLOG¥. TASK I- DESIGN STUDY SUNM_R¥ (Bell--HelicopteE Co,) 209 p HC $12,50 CSCL 01C Unclas G3/02 23270 REPORT 300,099"003 ; _'.' ',' ._ :_-)1 _I"1 i|,_ COMPANY POST OFFICE _OX 482 f-ORT WORTH TEXAS 76101 _ _ COMPANY 00000001-TSA03 13FL.L HELICOPTEI_ (:OMI-'ANY-- CoNT._NtS ," I • SUMMARY I-l II. INTRODUCTION II-I A. The Need for VTOL B. The Failure to Meet the VTOL Need II-2 C. The NASA Proof-Of-Concept Program II-2 D. The Tilt-E_oprotor Aircraft - A Promising VTOL Concept II-4 E. The Tilt-Proprotor Proof-Of-Concept Aircraft Evaluation Program II-6 ..;; III. DESIGN DESCRIPTION IIl-1 7_i A. General iII-i .....I B. Design Criteria III-9 _'_t. C. Proprotor 111-10 _" i. Blades 111-10 2. Hub III-i0 D. Drive System 111-11 E. Powerplant 111-12 I. Engine 111-12 2. Induction System 111-12 3. Oil System 111-13 4. Fuel System III-13 F. Airframe III-14 i. Wing III-14 2. Fuselage 111-15 3. Empennage 111-15 4. Landing Gear 111-16 G. Aircraft Systems 111-16 i. Conversion System 111-16 2. Hydraulic System 111-17 3. Electrical System 111-17 H. Aircraft Controls 111-18 I. Proprotor Controls 111-18 2. Flight Control Tli-19 3. Stability and Control Augmentation System 111-19 4. Proprotor Governor System III-20 5. Power Management 111-20 300-C99-O03 i O00000Ol-T.qAn4 J (_ BELL HELICOPTER C_O_IPAN_' CONTENTS - Continued IV. WEI_{T ANALYSIS IV-I A. Rotor Group IV-3 B. Wing Group IV-3 C.- Tail Group IV-4 D. Body Group IV-4 E. Alighting Gear Group IV-7 F. Controls Group IV-8 G.___Eng[ne Section and Nacelle Group IV-8 H. Propulsion Group IV-9 i. General Description IV-9 2. Engine Installation IV-9 _<_, 3. Conversion System IV-9 4. A_r Induction System IV-9 _'- 5. Exhaust System IV-9 _, 76.. LFubricatiel Systemon System Engine IV-IOIV-9 8. Engine Controls IV-IO 9, Startin$ System IV-lO IO. Rotor Pltch Governor Control IV-10 ii. Drive System IV-10 I. Instrument Group IV-12 J_Hydrauiics Group IV-14 K. Electrical Group IV-14 L. Electronics Group IV-14 M. Furnishings and Equipment Group IV-15 N. Air-Conditioning Equipment Group IV-15 V. APERFORMANCE. Summary V-iV-I B. Airframe Aerodynamics V-i I. Lift Analysis V-3 2. Drag Analysis V-3 I C. Proprotor Performance V-4 i. Description V-4 2. Method and Correlation V-6 I 3. Isolated Proprotor Performance V-7 D. Powerplant Performance V-7 ! I 300-099-003 it 00000001-TSA05 I i_ B FILH__.E _LI COPT£R C:O_rAN v ! CONTENTS ,ontlnued V-8 E. IIelicopter PerformaDce i, Hovering PerformaDce V-8 i 2. HelicopterRequired Level Flight Power V-8 3. Rate of Cli_b V-9 F. Airplane Performance V-9 i. Thrust Horsepower Required V-9 2. Flisht Envelope and Maximum Speed V-9 3. Maxlmum Rate of Climb V-10 4. Specific Range V-IO 5. Single Englne Performance V-10 i 6. Mission Profiles V-lO ,_ 7. STOL Performance V_ll VI. DYNAMIC STUDIES VI-I ':''Lk=-_._" A. Proprotor Dynamics VI-I ,_r'_; I. Natural Frequencies Vl-i _"_-- 2.- Loads VI-2 _':" 3. Blade Flapping VI-4 B. Airframe Dynamics Vl-4 i. Natural Frequencies VI-4 2. Vibration Levels VI-5 C. Stability Vl-6 1. Proprotor VI-6 2. Flight Mode Stability Vl-7 VII. NOISE Vll-i VIII. RECOMMENDED PROOF-OF-CONCEPT PROGRAM VIII-I A. Objective and Purpose VIII-I B. Program Plan VIII-I i. Phase I - Design and Fabrication VIII-2 2. Phase II - Flightworthiness Tests VIII-2 3. Phase III- Proof-of-Concept Flight Research VIII-5 C. Program Schedule VIII-6 IX. REFERENCES IX-I X. DESIGN LAYO_ffS x-l 300-099-003 iii 00000001-TSA06 BIEI .I 14El .ICOPTER Cn_I',_,N'," LIST OF FIGURES N__oo. T_tl______e Page I-1 Bell Model 300 Proof-Of-Concept Tilt- Proprotor Aircraft 1-3 II-i XV=/._Convertiplane 11-8 Version 266 I 11-2 Operational of Model Composite Aircraft 11-9 ] II-3 NASA-Ames_40-by--_0-Fo25-Foot Proprotor Performanceo_t Full-ScaleTest Tinunnelthe If-10 II-_ 25-Foot Proprotor Dynamic Test on Simulated Wing in the NASA 40-by-S0-Foot Full-Scale Tunnel ll-ll !_._ ,_ 11-5 Folding Proprotor VTOL Aircraft 11-12 4 ]_"" II-6 Mockup of Representative Civil Tilt- Proprotor Aircraft 11-13 11-7 Civil VTOL Aircraft Mission 11-14 11-8 Military VTOL Aircraft Mission II-15 IIl-i 25-Foot Proprotor Parameters III-22 111-2 Proprotor Stiffness and Mass Distribution 111-23 111-3 Wing Stiffness arid Panel Point Weight III-24 111-4 Fuselage Stiffness and Panel Point Weight 111-25 III-5 Vertical Tail Stiffness and Weight Distribution III-26 III-6 Horizontal Tail StlffnesE and Weight Distribution III-27 III-7 Collective Pitch Versus Conversion Angle 111-28 III-8 Differential Collect_ve Pitch Versus Conversion Angle 111-29 I 111-9 Fore and Aft Cyclic Pitch Versus Conversion Angle 111-30 I III-i0 Differential Cyclic Pitch Versus Conversion Angle 111-31 I !II-ii Differential Cyclic P_tch Versus Airspeed 111-32 I 300-099-003 {v 00000001.T_An7 BEL_! HELICOPTER _;r_._t'AN_" LIST OF FIGURES - Continued IV-I Wing Weight IV-16 IV-2 Fuselage Weight gstimation Parameters IV-I7 IV-3 Fuel System Weight IV-18 IV-4 Gear Stage Weight IV-19 IV-5 Main Transmission Schematic and Weight Data IV-20 V-I Mode[ S00 Aerodynamic Model in 7-by-lO-Foot Tunnel V-12 V-2 Airframe Lift Coefficient Versus Fuselage ,: Angle of Attac_ V-13 V-3 Airframe Drag Coefficient Versus Fuselage _?_[ Angle of Attack V-14 _ _i. ' V-4 Airframe Drag Coefficient Versus Lift _i. :. Coefficient V-15 _ V-5 Comparison of Full-Scale Aircraft Drag, Based on Tunnel Results and Calculated Data V-16 : V-6 Proprotor Blade Station Data, Radial Station 0.075 to 0.45 V-17 V=7 Proprotor Blade Section Data Blade • Station 0.45 to 0.70 V-18 V-8 Proprotor Blade Station Data, Radial I Station 0.70 to 0.90 - V-19 V-9 Proprotor Blade Section Data, Radial Station 0.90 to 1.00 q-20 I V-10 Proprotor Performance Correlation V-21 I V-If Boeing-VertBlade Parameolters[3-F(Bladeoot Diameter"E") Proprotor V-22 Versun Thrust V-23 i V-12 Proprotor Hovering Power Required V-13 Proprotor Efficie_icy Versus Shaft I Horsepower Sea Level V-24 V-if+ Proprotor Efficiency Versus Shaft I Horsepower i0,000 Feet V-25 I 300-099-003 v 00000001-TSA08 O 131::I I HEI-ICOPTElY (:C'IMI_ANY LIST OF FIGURES - Continued ¢. V-15 Proprotor Efficiency Versus Snaft V-26 Horsepower 20,000 Feet V-16 Twin Engine Proprotor Shaft Horsepower Available, Helicepter Mode V-27 V-17 Fuel Flow, Helicopter Mode V-28 V-18 Proprotor Shaft Horsepower Available Takeoff and 30-Minute Power V-29 V-19 Proprotor Shaft Horsepower Available, Normal Rated Power V-30 V-20 Fuel Flow, Airplane Mode V-31 : ,- V-21 Hover Ceilings_ V-32 j# _/ V-22 Hovering Figure of Merit V-33 :_ V-23 Proprotor Shaft Horsepower Required Versus .... ' True Airspeed, Helicopter Mode V-34 V-2q Lift Distribution Between Proprotor and Airframe in Helicopter Level Flight V-35 V-25 Rate of Climb, Helicopter Mode V-36 V-26 Thrust Horsepower Required Versus True Airspeed, Sea Level V-37 V-27 Thrust Horsepower Required Versus True Airspeed, i0,000 Feet V-38 V-28 Thrust Horsepower Required Versus True Airspeed, 20,000 Feet V-39 V-29 Proprotor Shaft Horsepower Required Versus True Airspeed, Airplane Mode, Sea Level V-40 V-30 Propro£or Shaft Horsepower Required Versus True A_rspeed, Airplane Mode, i0,000 Feet V-41 V-31 Proprotor Shaft Horsepower Required Versus True Airspeed, Airplane Mode, 20,000 Feet V-42 i V-32 AirplaneFlight EnvelopeMode and Maximum Speed, V-43 V-33 Maximum Rate of Climb, Airplane Mode V-44 I 300-099-003 vi m, E 00000001-TSA09 II_ I]I-:I .I H-FI .ICOPTER _:c,.,_,^'_v LIST OF FIGURES - Continued r, V-34 Nautical Miles Per Pound of Fuel Versus True Airspeed, Airplane Mode, Sea Level V-45 V-35 Nautlcal' Miles Per Pound of Fuel Versus True Airspeed, Airplane Mode, 10,000 Feet V-46 V-36 Nautical Miles Per Pound of Fuel Versus - True Airspeed, Airplane Mode, 20,000 Feet V-47 V-37 Single Engine Performance V-48 _: V-38 - Research Mission V-49 V-39 Civil Mission_ V-50 % V-40 Military Mission V-50 _'_!: ._I V-41 Ferry Mission V-51 ,_ " " V-42 STOL Takeoff Performance V-52 VI-l Proprotor Collective Mode Natural Frequencies VI-10 VI-2 Proprotor Cyclic Mode Natural Frequencies VI-ll Vl-3 Blade Oscillatory Stress at VH, Helicopter Mode VI-12 VI-4 Blade Limit Stress at VH, Airplane Mode VI-13 VI-5 Flapping Envelope in Airplane Mode VI-14 Vl-6 Airframe Symmetric Mode Natural Frequencies_ VI-15 VI-7 Airframe Asymmetric Mode Natural ) Frequeneies VI-16 VI-8 Pylon and Crew Station Vibration VI-17 VI-9 HelicopterPylon and CreModew Station Frequency Response, VI-18 I VI-lO PylonAirplaneand ModeCrew Station Frequency Response, Vl-19 i VI-II Mode].