Strings Steven Skiena
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
C Strings and Pointers
Software Design Lecture Notes Prof. Stewart Weiss C Strings and Pointers C Strings and Pointers Motivation The C++ string class makes it easy to create and manipulate string data, and is a good thing to learn when rst starting to program in C++ because it allows you to work with string data without understanding much about why it works or what goes on behind the scenes. You can declare and initialize strings, read data into them, append to them, get their size, and do other kinds of useful things with them. However, it is at least as important to know how to work with another type of string, the C string. The C string has its detractors, some of whom have well-founded criticism of it. But much of the negative image of the maligned C string comes from its abuse by lazy programmers and hackers. Because C strings are found in so much legacy code, you cannot call yourself a C++ programmer unless you understand them. Even more important, C++'s input/output library is harder to use when it comes to input validation, whereas the C input/output library, which works entirely with C strings, is easy to use, robust, and powerful. In addition, the C++ main() function has, in addition to the prototype int main() the more important prototype int main ( int argc, char* argv[] ) and this latter form is in fact, a prototype whose second argument is an array of C strings. If you ever want to write a program that obtains the command line arguments entered by its user, you need to know how to use C strings. -
Customizing and Extending Powerdesigner SAP Powerdesigner Documentation Collection Content
User Guide PUBLIC SAP PowerDesigner Document Version: 16.6.2 – 2017-01-05 Customizing and Extending PowerDesigner SAP PowerDesigner Documentation Collection Content 1 PowerDesigner Resource Files.................................................... 9 1.1 Opening Resource Files in the Editor.................................................10 1.2 Navigating and Searching in Resource Files............................................ 11 1.3 Editing Resource Files........................................................... 13 1.4 Saving Changes................................................................13 1.5 Sharing and Embedding Resource Files...............................................13 1.6 Creating and Copying Resource Files.................................................14 1.7 Specifying Directories to Search for Resource Files.......................................15 1.8 Comparing Resource Files........................................................ 15 1.9 Merging Resource Files.......................................................... 16 2 Extension Files................................................................18 2.1 Creating an Extension File.........................................................19 2.2 Attaching Extensions to a Model....................................................20 2.3 Exporting an Embedded Extension File for Sharing.......................................21 2.4 Extension File Properties......................................................... 21 2.5 Example: Adding a New Attribute from a Property -
IPBES Workshop on Biodiversity and Pandemics Report
IPBES Workshop on Biodiversity and Pandemics WORKSHOP REPORT *** Strictly Confidential and Embargoed until 3 p.m. CET on 29 October 2020 *** Please note: This workshop report is provided to you on condition of strictest confidentiality. It must not be shared, cited, referenced, summarized, published or commented on, in whole or in part, until the embargo is lifted at 3 p.m. CET/2 p.m. GMT/10 a.m. EDT on Thursday, 29 October 2020 This workshop report is released in a non-laid out format. It will undergo minor editing before being released in a laid-out format. Intergovernmental Platform on Biodiversity and Ecosystem Services 1 The IPBES Bureau and Multidisciplinary Expert Panel (MEP) authorized a workshop on biodiversity and pandemics that was held virtually on 27-31 July 2020 in accordance with the provisions on “Platform workshops” in support of Plenary- approved activities, set out in section 6.1 of the procedures for the preparation of Platform deliverables (IPBES-3/3, annex I). This workshop report and any recommendations or conclusions contained therein have not been reviewed, endorsed or approved by the IPBES Plenary. The workshop report is considered supporting material available to authors in the preparation of ongoing or future IPBES assessments. While undergoing a scientific peer-review, this material has not been subjected to formal IPBES review processes. 2 Contents 4 Preamble 5 Executive Summary 12 Sections 1 to 5 14 Section 1: The relationship between people and biodiversity underpins disease emergence and provides opportunities -
Writing Mathematical Expressions in Plain Text – Examples and Cautions Copyright © 2009 Sally J
Writing Mathematical Expressions in Plain Text – Examples and Cautions Copyright © 2009 Sally J. Keely. All Rights Reserved. Mathematical expressions can be typed online in a number of ways including plain text, ASCII codes, HTML tags, or using an equation editor (see Writing Mathematical Notation Online for overview). If the application in which you are working does not have an equation editor built in, then a common option is to write expressions horizontally in plain text. In doing so you have to format the expressions very carefully using appropriately placed parentheses and accurate notation. This document provides examples and important cautions for writing mathematical expressions in plain text. Section 1. How to Write Exponents Just as on a graphing calculator, when writing in plain text the caret key ^ (above the 6 on a qwerty keyboard) means that an exponent follows. For example x2 would be written as x^2. Example 1a. 4xy23 would be written as 4 x^2 y^3 or with the multiplication mark as 4*x^2*y^3. Example 1b. With more than one item in the exponent you must enclose the entire exponent in parentheses to indicate exactly what is in the power. x2n must be written as x^(2n) and NOT as x^2n. Writing x^2n means xn2 . Example 1c. When using the quotient rule of exponents you often have to perform subtraction within an exponent. In such cases you must enclose the entire exponent in parentheses to indicate exactly what is in the power. x5 The middle step of ==xx52− 3 must be written as x^(5-2) and NOT as x^5-2 which means x5 − 2 . -
Technical Study Desktop Internationalization
Technical Study Desktop Internationalization NIC CH A E L T S T U D Y [This page intentionally left blank] X/Open Technical Study Desktop Internationalisation X/Open Company Ltd. December 1995, X/Open Company Limited All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owners. X/Open Technical Study Desktop Internationalisation X/Open Document Number: E501 Published by X/Open Company Ltd., U.K. Any comments relating to the material contained in this document may be submitted to X/Open at: X/Open Company Limited Apex Plaza Forbury Road Reading Berkshire, RG1 1AX United Kingdom or by Electronic Mail to: [email protected] ii X/Open Technical Study (1995) Contents Chapter 1 Internationalisation.............................................................................. 1 1.1 Introduction ................................................................................................. 1 1.2 Character Sets and Encodings.................................................................. 2 1.3 The C Programming Language................................................................ 5 1.4 Internationalisation Support in POSIX .................................................. 6 1.5 Internationalisation Support in the X/Open CAE............................... 7 1.5.1 XPG4 Facilities......................................................................................... -
How Many Bits Are in a Byte in Computer Terms
How Many Bits Are In A Byte In Computer Terms Periosteal and aluminum Dario memorizes her pigeonhole collieshangie count and nagging seductively. measurably.Auriculated and Pyromaniacal ferrous Gunter Jessie addict intersperse her glockenspiels nutritiously. glimpse rough-dries and outreddens Featured or two nibbles, gigabytes and videos, are the terms bits are in many byte computer, browse to gain comfort with a kilobyte est une unité de armazenamento de armazenamento de almacenamiento de dados digitais. Large denominations of computer memory are composed of bits, Terabyte, then a larger amount of nightmare can be accessed using an address of had given size at sensible cost of added complexity to access individual characters. The binary arithmetic with two sets render everything into one digit, in many bits are a byte computer, not used in detail. Supercomputers are its back and are in foreign languages are brainwashed into plain text. Understanding the Difference Between Bits and Bytes Lifewire. RAM, any sixteen distinct values can be represented with a nibble, I already love a Papst fan since my hybrid head amp. So in ham of transmitting or storing bits and bytes it takes times as much. Bytes and bits are the starting point hospital the computer world Find arrogant about the Base-2 and bit bytes the ASCII character set byte prefixes and binary math. Its size can vary depending on spark machine itself the computing language In most contexts a byte is futile to bits or 1 octet In 1956 this leaf was named by. Pages Bytes and Other Units of Measure Robelle. This function is used in conversion forms where we are one series two inputs. -
Automatically Adapting Programs for Mixed-Precision Floating-Point Computation
Automatically Adapting Programs for Mixed-Precision Floating-Point Computation Michael O. Lam and Bronis R. de Supinski and Jeffrey K. Hollingsworth Matthew P. LeGendre Dept. of Computer Science Center for Applied Scientific Computing University of Maryland Lawrence Livermore National Laboratory College Park, MD, USA Livermore, CA, USA [email protected], [email protected] [email protected], [email protected] ABSTRACT IEEE standard provides for different levels of precision by As scientific computation continues to scale, efficient use of varying the field width, with the most common widths being floating-point arithmetic processors is critical. Lower preci- 32 bits (\single" precision) and 64 bits (\double" precision). sion allows streaming architectures to perform more opera- Figure 1 graphically represents these formats. tions per second and can reduce memory bandwidth pressure Double-precision arithmetic generally results in more ac- on all architectures. However, using a precision that is too curate computations, but with several costs. The main cost low for a given algorithm and data set leads to inaccurate re- is the higher memory bandwidth and storage requirement, sults. In this paper, we present a framework that uses binary which are twice that of single precision. Another cost is instrumentation and modification to build mixed-precision the reduced opportunity for parallelization, such as on the configurations of existing binaries that were originally devel- x86 architecture, where packed 128-bit XMM registers can oped to use only double-precision. This framework allows only hold and operate on two double-precision numbers si- developers to explore mixed-precision configurations with- multaneously compared to four numbers with single preci- out modifying their source code, and it enables automatic sion. -
Programming Curriculum
PARC VLP PROGRAMMING CURRICULUM WWW.PARCROBOTICS.ORG Overview Study of programming languages, paradigms and data structures. Chapter 1: Programming Basics Sections A. What is programming? B. What is a programming language? C. Writing source code D. Running your code E. Using IDE Chapter 2: Programming Syntax Sections A. Why Python?A. Why Python? B. Basic statementsB. Basic statements and expressions and expressions C. Troubleshooting issues C. Troubleshooting issues Chapter 3: Variables and Data Types Sections A. IntroductionA. to Introductionvariables and to data variables types and data types B. WorkingB.W withorking variables with variables across Languages across Languages C. Working with numbers C. Working with numbers D. Working with strings E. WorkingD. with commentsWorking with strings E. Working with comments Chapter 4: Conditional Code Sections: A. Making decisions in code B. Exploring conditional code C. Working with simple conditions D. Conditionals across languages PAN-AFRICAN ROBOTICS COMPETITION 1 Chapter 1 SECTION A What is programming? Programming is the process of converting ideas into instructions that a computer can understand and execute. These instructions are specific and sequential. You can think of it as a recipe. Let's you want to prepare your favorite food; you would need first a list of ingredients and then a set of instructions as to which ingredients go in first. If you have ever cooked before or watched someone cook before you will know that the amount of each ingredient can dramatically affect the outcome. Computers are very literal. They try to execute our commands exactly. When we give them bad instructions, we might introduce bugs or even make the computer crash. -
Text File Text File Example Text Reading Overview
CS106A, Stanford Handout #53 Fall, 2003-04 Nick Parlante Files Text File The simple "text file" is one of the oldest and simplest types of file. For that reason, text files are one of the most universally standard ways to store information. A text file is something you could type up in a word processor, and save with the "plain text" option. A text file is made of a sequence of characters, organized as a series of horizontal lines of text. There is no notion of bold or italic or color applied to the characters; they are just plain text characters, as we would store in a String. Historically, text files have been made of the familiar roman keyboard alphabet – abcdef..xyz012..89!@#$.. – with the extremely standard ASCII encoding (American Standard Code for Information Interchange). More recently, text has grown to include the idea of unicode characters like ø and !, but the encodings for those are not yet as standard as ASCII. The .java files where we write our Java code are examples of text files. The text file is such a simple, flexible way to store information, it will be with us for a long time to come. If you want to store information in a simple, non-proprietary way, the text file is a great choice. XML files, which are a very modern way to store information, are a type of text file. Text File Example This is the first line of my 4 line text file, and this here is the 2nd. The above line is blank! The above example text file is 4 lines long. -
Plain Text & Character Encoding
Journal of eScience Librarianship Volume 10 Issue 3 Data Curation in Practice Article 12 2021-08-11 Plain Text & Character Encoding: A Primer for Data Curators Seth Erickson Pennsylvania State University Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/jeslib Part of the Scholarly Communication Commons, and the Scholarly Publishing Commons Repository Citation Erickson S. Plain Text & Character Encoding: A Primer for Data Curators. Journal of eScience Librarianship 2021;10(3): e1211. https://doi.org/10.7191/jeslib.2021.1211. Retrieved from https://escholarship.umassmed.edu/jeslib/vol10/iss3/12 Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 License. This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in Journal of eScience Librarianship by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. ISSN 2161-3974 JeSLIB 2021; 10(3): e1211 https://doi.org/10.7191/jeslib.2021.1211 Full-Length Paper Plain Text & Character Encoding: A Primer for Data Curators Seth Erickson The Pennsylvania State University, University Park, PA, USA Abstract Plain text data consists of a sequence of encoded characters or “code points” from a given standard such as the Unicode Standard. Some of the most common file formats for digital data used in eScience (CSV, XML, and JSON, for example) are built atop plain text standards. Plain text representations of digital data are often preferred because plain text formats are relatively stable, and they facilitate reuse and interoperability. -
Data Types in C
Princeton University Computer Science 217: Introduction to Programming Systems Data Types in C 1 Goals of C Designers wanted C to: But also: Support system programming Support application programming Be low-level Be portable Be easy for people to handle Be easy for computers to handle • Conflicting goals on multiple dimensions! • Result: different design decisions than Java 2 Primitive Data Types • integer data types • floating-point data types • pointer data types • no character data type (use small integer types instead) • no character string data type (use arrays of small ints instead) • no logical or boolean data types (use integers instead) For “under the hood” details, look back at the “number systems” lecture from last week 3 Integer Data Types Integer types of various sizes: signed char, short, int, long • char is 1 byte • Number of bits per byte is unspecified! (but in the 21st century, pretty safe to assume it’s 8) • Sizes of other integer types not fully specified but constrained: • int was intended to be “natural word size” • 2 ≤ sizeof(short) ≤ sizeof(int) ≤ sizeof(long) On ArmLab: • Natural word size: 8 bytes (“64-bit machine”) • char: 1 byte • short: 2 bytes • int: 4 bytes (compatibility with widespread 32-bit code) • long: 8 bytes What decisions did the designers of Java make? 4 Integer Literals • Decimal: 123 • Octal: 0173 = 123 • Hexadecimal: 0x7B = 123 • Use "L" suffix to indicate long literal • No suffix to indicate short literal; instead must use cast Examples • int: 123, 0173, 0x7B • long: 123L, 0173L, 0x7BL • short: -
Wording Improvements for Encodings and Character Sets
Wording improvements for encodings and character sets Document #: P2297R0 Date: 2021-02-19 Project: Programming Language C++ Audience: SG-16 Reply-to: Corentin Jabot <[email protected]> Abstract Summary of behavior changes Alert & backspace The wording mandated that the executions encoding be able to encode ”alert, backspace, and carriage return”. This requirement is not used in the core wording (Tweaks of [5.13.3.3.1] may be needed), nor in the library wording, and therefore does not seem useful, so it was not added in the new wording. This will not have any impact on existing implementations. Unicode in raw string delimiters Falls out of the wording change. should we? New terminology Basic character set Formerly basic source character set. Represent the set of abstract (non-coded) characters in the graphic subset of the ASCII character set. The term ”source” has been dropped because the source code encoding is not observable nor relevant past phase 1. The basic character set is used: • As a subset of other encodings • To restric accepted characters in grammar elements • To restrict values in library literal character set, literal character encoding, wide literal character set, wide lit- eral character encoding Encodings and associated character sets of narrow and wide character and string literals. implementation-defined, and locale agnostic. 1 execution character set, execution character encoding, wide execution character set, wide execution character encoding Encodings and associated character sets of the encoding used by the library. isomorphic or supersets of their literal counterparts. Separating literal encodings from libraries encoding allows: • To make a distinction that exists in practice and which was not previously admitted by the standard previous.