Forum Forma, 35, 1–2, 2020 The Kepler Triangle and Its Kin Takeshi Sugimoto Kanagawa University, Kanagawa Ward, Yokohama 221-8686, Japan E-mail address:
[email protected] (Received July 29, 2019; Accepted September 30, 2019) The Kepler triangle, also known as the golden right triangle, is the right triangle with its sides of ratios ‘1 : φ1/2 : φ,’ where φ denotes the golden ratio. Also known are the silver right triangle and the square-root- three φ right triangle. This study introduces the generalised golden right triangle, which have sides of lengths 1/2 n/2 1/2 closely related to φ and the Fibonacci numbers, Fn:‘(Fn−2) : φ : (Fn) φ’ for any natural number n. This formalism covers all the known φ-related right triangle, i.e., the Kepler triangle and its kin. As n tends to infinity, the ratios of the sides go to ‘φ−1 :51/4 : φ.’ Our model plays an important role in the classroom to study the golden ratio, the Fibonacci numbers and the Pythagorean theorem. Keywords: Golden Ratio, Fibonacci Sequence, Pythagorean Theorem 1. Introduction as unity. Hence the above-mentioned relation is rewritten The point that Herodotus (485–425BCE) writes about as follows. King Khufu’s pyramid in his Histories, vol. II, article 124 1 + φ : φ = φ :1, (Lohmer,¨ 2006), is ‘... For the making of the pyramid it- or self there passed a period of twenty years; and the pyramid φ2 = φ + 1. is square, each side measuring eight hundred feet, and the The solution is given by height of it is the same.