On the Ecology of Rorqual Whales (Balaenopteridae) in Irish Waters Using Intrinsic Markers

Total Page:16

File Type:pdf, Size:1020Kb

On the Ecology of Rorqual Whales (Balaenopteridae) in Irish Waters Using Intrinsic Markers On the Ecology of Rorqual Whales (Balaenopteridae) in Irish Waters using Intrinsic Markers PhD Thesis Conor Gerard Ryan BSc. (jiQll£lZoology Submitted for fulfillment of Doctorate of Philosophy Galway-Mayo Institute of Technology Supervised by: Dr Ian O'Connor, Dr Simon Berrow, Dr David McGrath (Galway-Mayo Institute of Technology] and Dr Brendan McHugh (Marine Institute] Submitted to the Higher Education and Training Awards Council October 2012 An Leabharlann GMIT J151728 b l W W X J151728 © Inter-Research (Chapters 2 and 6, pending acceptance) © Wiley-Blackwell (Chapter 3) © Society for Marine Mammalogy (Chapter 4 pending acceptance) © Society for Marine Mammalogy (Chapter 5) No Copyright on Chapters 1 and 7 Author: Conor Gerard Ryan Title: On the Ecology of Rorqual Whales (Balaenopteridae) in Irish Waters using Intrinsic M arkers Abstract: Despite repeated calls for an ecosystem-based approach to the management of marine resources, little information exists on the ecosystem role and requirements of top predators such as baleen whales in Irish waters. Considering that they are long-lived and highly migratory, baleen whales such as rorquals (Family Balaenopteridae] are potentially useful bio-monitors of anthropogenic environmental change. However, their use as environmental indicators is precluded by an insufficient understanding of their basic ecology. Following centuries of whaling and other emerging threats to their survival including pollution, bycatch and ship-strikes, the conservation status of most rorqual species is difficult to assess due to a shortfall in our knowledge. This thesis aims to facilitate more informed management decision-making and the implementation of more effective conservation measures by bridging key gaps in our knowledge. Pertinent questions on feeding and migration ecology are addressed using intrinsic m arkers, i.e. chemicals whose stable properties ensure they move through biotic systems and are detectable in tissues. Intrinsic markers include naturally occurring [e.g. stable isotopes, DNA, trace elements] and anthropogenic compounds (e.g persistent organic pollutants or POPs]. In Chapter 1, current knowledge on the ecology of blue [Balaenoptera musculus], fin (R physalus), humpback (Megaptera novaengliae] and minke whales (R acutorostrata] in Irish waters is reviewed. In chapter 2, stable isotope analysis of baleen from these four species is used to approximate the ecological niche and thus to examine resource partitioning. Chapter 3 is a methodological precursor to Chapter 4 where stable isotope Bayesian mixing models are used to investigate the preferred diet of fin and humpback whales in the Celtic Sea. In Chapter 3, unpredictable effects of pre- analytical lipid-extraction of skin and blubber biopsies were found for both 513C and <515N values. Chapter 5 is a methodological chapter, concluding that the amount of lipid remaining in blubber biopsies is not representative of blubber in situ. This finding was relevant to Chapter 6 which used POP concentrations to investigate elements of population structure of humpback whales in the North Atlantic. Chapter 7 discusses how the key findings such as the diet preferences of Celtic Sea fin whales (Euphausiids such as Meganyctiphanes norvegica and Nyctiphanes couchii, and year-0 sprat [Sprattus sprattus] and herring (Clupea harengusj) and humpback whales (chiefly sprat and herring) may be used to facilitate an informed ecosystem-based approach to fisheries management. GMIT i wrrrraigi n n w ninnm w> «>■ i w m-writi so MUHfir-iimiNsnTVfEWirafio^niinMrr M gnninw nifttw r«yniiw I hereby certify that this material, which I now submit for assessment on the programme of study leading to the award of PhD is entirely my own work and has not been taken from the work of others save and to the extent that such work has been cited and acknowledged within the text of my work. Signed: ID No. G00267618 iv Acknowledgements To Simon Berrow, Brendan McHugh, Ian O'Connor and David McGrath, thanks for having the faith in me to carry out this thoroughly rewarding work. Without your faith in my ability, this thesis would not have been achievable. To Brendan in particular, your encouragement and guidance was beyond the call of duty, for which I am very thankful. I am very grateful for the opportunity to pursue what truly has been my passion since I was a young child. Thanks to my parents Liz and Richie, brothers Cian and John and my sister Amy who nurtured this passion - they are responsible for my first ever encounter with a whale - a fin whale that stranded at Ballyheigue, Co. Kerry in 1994 (IRBp94001, Table 1, Chapter 2!). The floods of curious questions that entered my mind that day, as I rested my two hands on such a giant animal that once roamed the cold rough seas, continue to challenge me. Thanks to my examiners, Florence Caurant and Deirdre Brophy, for their constructive suggestions which helped to improve the final draft. Thanks to my partner Vivi, who had to put up with frustration, distant haziness and constant change of plans throughout the toil. She continues to be an endless source of encouragement and support, and I'm so glad we got to share such memorable days together in the field. Thanks to Jim Wilson, from whom I contracted a highly infectious love of wildlife and passion for conserving what ought to be enJoyed by generations to come. To his son Peter, equally afflicted by this condition, I am also very grateful - he taught me never to underestimate the inspirational power of conversation over a few pints, whether on Cape Clear or in the Donk’ at home in Cobh. I am indebted to Clive Trueman and Chris Harrod for helping me to take a look from another angle and for helpful discussions about stable isotopes in ecology. To those friendly faces in the Marine Institute, especially Brian O’Boyle, Poppy and Philip - I am grateful for your patience and unending help in the chemistry lab. Thanks to Joanne O'Brien who helped me see the wood from the trees, and for always being available for a chat any hour of the day. Joanne and Simon have v taught me to always to raise the bar higher and Jump at every opportunity. To Per Palsb0ll, Martine Berube and everyone at the conservation genetics labs in Stockholm and Groningen, I am very grateful for the opportunity to work with such great scientists. Obrigado to the Cape Verde humpback research community, namely Pedro Lopez Suarez, Fred Wenzel and Beatrice Jann for welcoming a stranger with open arms, into what is normally a 'competitive field'. It is so refreshing to find like-minded people whose mutual passion for understanding and conserving whales is not blemished by ego or competition. For the encouragement and samples I received from UK-based cetacean community (Rob Deaville, Nick Davison, Collin MacLeod, James Barnett and Paul Jepson), many thanks. Thanks to Richard Sabin for one of the most memorable days of my life, not because I travelled the London Underground with a box of blubber samples at rush hour, but because I was privileged enough to drill baleen samples for a whole day inside the London Natural History Museum cetacean collection in Wimbledon. To Padraig Whooley, Nick Massett, Andrew Malcolm, Mick O'Connell, Paddy Roche, Deirdre Slevin and all those involved in the IWDG sightings and strandings schemes - I am indebted to you for being so generous with your time. Thanks to Ronan Cosgrove, Padraig Whooley and John Coveney for permission to use their photographs. To Commodore Mark Mellett, the Commanding Officers and crews of L.E. Orla and the R.V. Celtic Explorer, to Darren Craig, Colin Barnes, Mick Sheeran, Martin Colfer, Alessandro Pierini and Fien deRaedemaeker: thanks for your skilled navigation and for keeping a cool head during those close approaches to the whales! To my drinking and surfing buddies in Galway (Alessandro Pierini, Bernie O’Neill, Clementine Harma, Fien deRaedemaeker, Paula Haynes, Stephen Comerford, Weibke Schmidt and Marieke Volkenandt)- your companionship through tough times was a saving grace ... the shneaky pints and mid-week surf sessions kept despair at bay! vi Contents Abstract:.......................................................................................................................................ii Declaration...................................................................................................................................iv Acknowledgements.................................................................................................................... v List of Figures..............................................................................................................................xi List of Tables............................................................................................................................. xiv Chapter 1........................................................................................................................................1 General Introduction...................................................................................................................1 1.1. Ecology of Rorquals.........................................................................................................1 1.1.1 Systematics.................................................................................................................1 1.1.2 Life History, Reproduction and Migration..........................................................1 1.1.3 Feeding.........................................................................................................................4
Recommended publications
  • Toothed Vs. Baleen Whales Monday
    SPOT THE DIFFERENCE: TOOTHED VS. BALEEN WHALES MONDAY Their classifications help to give you the answer, so what do you think the most obvious difference is in a toothed whale versus a baleen whale? Your clues are in the close-up photos, below! PHOTO: TASLI SHAW PHOTO: CINDY HANSEN Answer: The most obvious difference between a toothed whale and a baleen whale is the way that they feed and what’s inside their mouth. Toothed whales (including all dolphins and porpoises) have teeth, like we do, and they actively hunt fish, squid, and other sea creatures. Their teeth help them capture, bite, and tear their food into smaller pieces before swallowing. Baleen whales have several hundred plates that hang from their upper jaw, instead of teeth. These plates are made of keratin, the same substance as our hair and fingernails, and are used to filter food from the water or the sediment. Once the food has been trapped in the baleen plates, the whales will use their massive tongues to scrape the food off and swallow it. SPOT THE DIFFERENCE: TOOTHED VS. BALEEN WHALES TUESDAY The photos provided show specific prey types for resident orcas and for the gray whales that stop to feed in Saratoga Passage in the spring. Besides being two different species, what is another difference between these prey types? Who eats what and what makes you think that? Answer: The photos show Chinook salmon and ghost shrimp. Other than being two different species, their main difference is size! A toothed whale, like a resident orca, uses their teeth to capture, bite, and tear Chinook salmon into smaller pieces to be shared with other orcas in their family.
    [Show full text]
  • Is Harbor Porpoise (Phocoena Phocoena) Exhaled Breath Sampling Suitable for Hormonal Assessments?
    animals Article Is Harbor Porpoise (Phocoena phocoena) Exhaled Breath Sampling Suitable for Hormonal Assessments? Anja Reckendorf 1,2 , Marion Schmicke 3 , Paulien Bunskoek 4, Kirstin Anderson Hansen 1,5, Mette Thybo 5, Christina Strube 2 and Ursula Siebert 1,* 1 Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Werftstrasse 6, 25761 Buesum, Germany; [email protected] (A.R.); [email protected] (K.A.H.) 2 Centre for Infection Medicine, Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany; [email protected] 3 Clinic for Cattle, Working Group Endocrinology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany; [email protected] 4 Dolfinarium, Zuiderzeeboulevard 22, 3841 WB Harderwijk, The Netherlands; paulien.bunskoek@dolfinarium.nl 5 Fjord & Bælt, Margrethes Pl. 1, 5300 Kerteminde, Denmark; [email protected] * Correspondence: [email protected]; Tel.: +49-511-856-8158 Simple Summary: The progress of animal welfare in wildlife conservation and research calls for more non-invasive sampling techniques. In cetaceans, exhaled breath condensate (blow)—a mixture of cells, mucus and fluids expelled through the force of a whale’s exhale—is a unique sampling matrix for hormones, bacteria and genetic material, among others. Especially the detection of steroid hormones, such as cortisol, is being investigated as stress indicators in several species. As the only Citation: Reckendorf, A.; Schmicke, native cetacean in Germany, harbor porpoises (Phocoena phocoena) are of special conservation concern M.; Bunskoek, P.; Anderson Hansen, and research interest. So far, strandings and live captures have been the only method to obtain K.; Thybo, M.; Strube, C.; Siebert, U.
    [Show full text]
  • Blue Whale (Balaenoptera Musculus) Sightings Off the Coast of Virginia Dan T
    Engelhaupt et al. Marine Biodiversity Records (2020) 13:6 https://doi.org/10.1186/s41200-020-00189-y MARINE RECORD Open Access Blue whale (Balaenoptera musculus) sightings off the coast of Virginia Dan T. Engelhaupt1*, Todd Pusser2, Jessica M. Aschettino1, Amy G. Engelhaupt3, Mark P. Cotter1, Michael F. Richlen1 and Joel T. Bell4 Abstract We report on two sightings of individual blue whales (Balaenoptera musculus) off the coast of Virginia during marine mammal surveys. On 11 April 2018, during a vessel survey off the coast of Virginia, a single blue whale was observed approximately 100 km east-northeast of Virginia Beach. On 10 February 2019, another single blue whale was recorded during an aerial survey approximately 135 km east-southeast of Virginia Beach. These observations mark the first time this endangered species has been documented with photographs off the coast of Virginia, and represent the southernmost confirmed sightings in waters of the United States Atlantic Exclusive Economic Zone (EEZ). At the time of the vessel observation, numerous fin whales (Balaenoptera physalus), humpback whales (Megaptera novaeangliae), and North Atlantic right whales (Eubalaena glacialis), were observed within the same approximately 8 km2 area as the blue whale. For the aerial sighting, the blue whale was seen feeding among at least 15 fin whales in an area approximately 4 km2. These sightings contribute to the small body of information existing for the late winter/early spring distribution of blue whales in waters of the western North Atlantic. Keywords: Blue whale, Balaenoptera musculus, Virginia, Mid-Atlantic, Western North Atlantic, U.S. Navy, Cetacean Introduction Blue whales are considered to be occasional visitors to The blue whale (Balaenoptera musculus) is the largest United States (U.S.) Atlantic Exclusive Economic Zone baleen whale, and the largest creature ever to inhabit the (EEZ) waters; however, reports of the species from this earth (Jefferson et al.
    [Show full text]
  • Balaenoptera Bonaerensis – Antarctic Minke Whale
    Balaenoptera bonaerensis – Antarctic Minke Whale compared to B. bonaerensis. This smaller form, termed the “Dwarf” Minke Whale, may be genetically different from B. bonaerensis, and more closely related to the North Pacific Minke Whales, and thus has been classified B. acutorostrata (Wada et al. 1991; IWC 2001). This taxonomic position, although somewhat controversial, has been accepted by the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES), and the Convention on Migratory Species (CMS). Assessment Rationale The current IWC global estimate of abundance of Antarctic Dr. Meike Scheidat Minke Whales is about 500,000 individuals. The abundance estimates declined from about 700,000 for the second circumpolar set of abundance survey cruises Regional Red List status (2016) Least Concern* (1985/86 to 1990/91) to about 500,000 for the third National Red List status (2004) Least Concern (1991/92 to 2003/04). Although this decline was not statistically significant, the IWC Scientific Committee does Reasons for change No change consider these results to reflect a change. However, Global Red List status (2008) Data Deficient whether this change is genuine or attributed to greater proportions of pack ice limiting the survey extent, has not TOPS listing (NEMBA) (2007) None yet been determined. More detailed results from an CITES listing (1986) Appendix I assessment model are available for the mid-Indian to the mid-Pacific region, and suggest that the population Endemic No increased to a peak in 1970 and then declined, with it *Watch-list Data being unclear whether this decline has levelled off or is still continuing past 2000.
    [Show full text]
  • Understanding Harbour Porpoise (Phocoena Phocoena) and Fisheries Interactions in the North-West Iberian Peninsula
    20th ASCOBANS Advisory Committee Meeting AC20/Doc.6.1.b (S) Warsaw, Poland, 27-29 August 2013 Dist. 11 July 2013 Agenda Item 6.1 Project Funding through ASCOBANS Progress of Supported Projects Document 6.1.b Project Report: Understanding harbour porpoise (Phocoena phocoena) and fisheries interactions in the north-west Iberian Peninsula Action Requested Take note Submitted by Secretariat / University of Aberdeen NOTE: DELEGATES ARE KINDLY REMINDED TO BRING THEIR OWN COPIES OF DOCUMENTS TO THE MEETING Final report to ASCOBANS (SSFA/ASCOBANS/2010/4) Understanding harbour porpoise (Phocoena phocoena) and fishery interactions in the north-west Iberian Peninsula Fiona L. Read1,2, M. Begoña Santos2,3, Ángel F. González1, Alfredo López4, Marisa Ferreira5, José Vingada5,6 and Graham J. Pierce2,3,6 1) Instituto de Investigaciones Marinas (C.S.I.C), Eduardo Cabello 6, 36208 Vigo, Spain 2) School of Biological Sciences (Zoology), University of Aberdeen, Tillydrone Avenue, Aberdeen, AB24 2TZ, Aberdeen, United Kingdom 3) Instituto Español de Oceanografía, Centro Oceanográfico de Vigo, PO Box 1552, 36200, Vigo, Spain 4) CEMMA, Apdo. 15, 36380, Gondomar, Spain 5) CBMA/SPVS, Departamento de Biologia, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal 6) CESAM, Departamento de Biologia, Universidade do Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal Coordinated by: In collaboration with: 1 Final report to ASCOBANS (SSFA/ASCOBANS/2010/4) Introduction The North West Iberian Peninsula (NWIP), as defined for the present project, consists of Galicia (north-west Spain), and north-central Portugal as far south as Peniche (Figure 1). Due to seasonal upwelling (Fraga, 1981), the NWIP sustains high productivity and high biodiversity, including almost 300 species of fish (Solørzano et al., 1988) and over 75 species of cephalopods (Guerra, 1992).
    [Show full text]
  • Mammal Species Native to the USA and Canada for Which the MIL Has an Image (296) 31 July 2021
    Mammal species native to the USA and Canada for which the MIL has an image (296) 31 July 2021 ARTIODACTYLA (includes CETACEA) (38) ANTILOCAPRIDAE - pronghorns Antilocapra americana - Pronghorn BALAENIDAE - bowheads and right whales 1. Balaena mysticetus – Bowhead Whale BALAENOPTERIDAE -rorqual whales 1. Balaenoptera acutorostrata – Common Minke Whale 2. Balaenoptera borealis - Sei Whale 3. Balaenoptera brydei - Bryde’s Whale 4. Balaenoptera musculus - Blue Whale 5. Balaenoptera physalus - Fin Whale 6. Eschrichtius robustus - Gray Whale 7. Megaptera novaeangliae - Humpback Whale BOVIDAE - cattle, sheep, goats, and antelopes 1. Bos bison - American Bison 2. Oreamnos americanus - Mountain Goat 3. Ovibos moschatus - Muskox 4. Ovis canadensis - Bighorn Sheep 5. Ovis dalli - Thinhorn Sheep CERVIDAE - deer 1. Alces alces - Moose 2. Cervus canadensis - Wapiti (Elk) 3. Odocoileus hemionus - Mule Deer 4. Odocoileus virginianus - White-tailed Deer 5. Rangifer tarandus -Caribou DELPHINIDAE - ocean dolphins 1. Delphinus delphis - Common Dolphin 2. Globicephala macrorhynchus - Short-finned Pilot Whale 3. Grampus griseus - Risso's Dolphin 4. Lagenorhynchus albirostris - White-beaked Dolphin 5. Lissodelphis borealis - Northern Right-whale Dolphin 6. Orcinus orca - Killer Whale 7. Peponocephala electra - Melon-headed Whale 8. Pseudorca crassidens - False Killer Whale 9. Sagmatias obliquidens - Pacific White-sided Dolphin 10. Stenella coeruleoalba - Striped Dolphin 11. Stenella frontalis – Atlantic Spotted Dolphin 12. Steno bredanensis - Rough-toothed Dolphin 13. Tursiops truncatus - Common Bottlenose Dolphin MONODONTIDAE - narwhals, belugas 1. Delphinapterus leucas - Beluga 2. Monodon monoceros - Narwhal PHOCOENIDAE - porpoises 1. Phocoena phocoena - Harbor Porpoise 2. Phocoenoides dalli - Dall’s Porpoise PHYSETERIDAE - sperm whales Physeter macrocephalus – Sperm Whale TAYASSUIDAE - peccaries Dicotyles tajacu - Collared Peccary CARNIVORA (48) CANIDAE - dogs 1. Canis latrans - Coyote 2.
    [Show full text]
  • Order CETACEA Suborder MYSTICETI BALAENIDAE Eubalaena Glacialis (Müller, 1776) EUG En - Northern Right Whale; Fr - Baleine De Biscaye; Sp - Ballena Franca
    click for previous page Cetacea 2041 Order CETACEA Suborder MYSTICETI BALAENIDAE Eubalaena glacialis (Müller, 1776) EUG En - Northern right whale; Fr - Baleine de Biscaye; Sp - Ballena franca. Adults common to 17 m, maximum to 18 m long.Body rotund with head to 1/3 of total length;no pleats in throat; dorsal fin absent. Mostly black or dark brown, may have white splotches on chin and belly.Commonly travel in groups of less than 12 in shallow water regions. IUCN Status: Endangered. BALAENOPTERIDAE Balaenoptera acutorostrata Lacepède, 1804 MIW En - Minke whale; Fr - Petit rorqual; Sp - Rorcual enano. Adult males maximum to slightly over 9 m long, females to 10.7 m.Head extremely pointed with prominent me- dian ridge. Body dark grey to black dorsally and white ventrally with streaks and lobes of intermediate shades along sides.Commonly travel singly or in groups of 2 or 3 in coastal and shore areas;may be found in groups of several hundred on feeding grounds. IUCN Status: Lower risk, near threatened. Balaenoptera borealis Lesson, 1828 SIW En - Sei whale; Fr - Rorqual de Rudolphi; Sp - Rorcual del norte. Adults to 18 m long. Typical rorqual body shape; dorsal fin tall and strongly curved, rises at a steep angle from back.Colour of body is mostly dark grey or blue-grey with a whitish area on belly and ventral pleats.Commonly travel in groups of 2 to 5 in open ocean waters. IUCN Status: Endangered. 2042 Marine Mammals Balaenoptera edeni Anderson, 1878 BRW En - Bryde’s whale; Fr - Rorqual de Bryde; Sp - Rorcual tropical.
    [Show full text]
  • FC Inshore Cetacean Species Identification
    Falklands Conservation PO BOX 26, Falkland Islands, FIQQ 1ZZ +500 22247 [email protected] www.falklandsconservation.com FC Inshore Cetacean Species Identification Introduction This guide outlines the key features that can be used to distinguish between the six most common cetacean species that inhabit Falklands' waters. A number of additional cetacean species may occasionally be seen in coastal waters, for example the fin whale (Balaenoptera physalus), the humpback whale (Megaptera novaeangliae), the long-finned pilot whale (Globicephala melas) and the dusky dolphin (Lagenorhynchus obscurus). A full list of the species that have been documented to date around the Falklands can be found in Appendix 1. Note that many of these are typical of deeper, oceanic waters, and are unlikely to be encountered along the coast. The six species (or seven species, including two species of minke whale) described in this document are observed regularly in shallow, nearshore waters, and are the focus of this identification guide. Questions and further information For any questions about species identification then please contact the Cetaceans Project Officer Caroline Weir who will be happy to help you try and identify your sighting: Tel: 22247 Email: [email protected] Useful identification guides If you wish to learn more about the identification features of various species, some comprehensive field guides (which include all cetacean species globally) include: Handbook of Whales, Dolphins and Porpoises by Mark Carwardine. 2019. Marine Mammals of the World: A Comprehensive Guide to Their Identification by Thomas A. Jefferson, Marc A. Webber, and Robert L. Pitman. 2015. Whales, Dolphins and Seals: A Field Guide to the Marine Mammals of the World by Hadoram Shirihai and Brett Jarrett.
    [Show full text]
  • Lunge Filter Feeding Biomechanics Constrain Rorqual Foraging Ecology Across Scale S
    © 2020. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2020) 223, jeb224196. doi:10.1242/jeb.224196 RESEARCH ARTICLE Lunge filter feeding biomechanics constrain rorqual foraging ecology across scale S. R. Kahane-Rapport1,*, M. S. Savoca1, D. E. Cade1,2, P. S. Segre1, K. C. Bierlich3, J. Calambokidis4, J. Dale3, J. A. Fahlbusch1, A. S. Friedlaender2, D. W. Johnston3, A. J. Werth5 and J. A. Goldbogen1 ABSTRACT morphological scaling (Haldane, 1926), resulting in functional Fundamental scaling relationships influence the physiology of vital trade-offs that ultimately impact evolution and ecology. rates, which in turn shape the ecology and evolution of organisms. For The physiological advantages and disadvantages associated with diving mammals, benefits conferred by large body size include different body sizes have wide-ranging effects, from behavior to life reduced transport costs and enhanced breath-holding capacity, history. For example, the smallest animals have the lowest absolute thereby increasing overall foraging efficiency. Rorqual whales feed energetic demands (Kelt and Van Vuren, 1999), yet they may also by engulfing a large mass of prey-laden water at high speed and struggle with thermoregulation and be forced to compensate by filtering it through baleen plates. However, as engulfment capacity increasing their metabolism (Scholander et al., 1950; Taylor et al., increases with body length (engulfment volume∝body length3.57), the 1980). Small size enables high performance maneuverability and surface area of the baleen filter does not increase proportionally agility (Domenici, 2001), but may limit maximum attainable speeds (baleen area∝body length1.82), and thus the filtration time of larger (Carrier, 1994; Hirt et al., 2017).
    [Show full text]
  • Mandible Allometry in Extant and Fossil Balaenopteridae (Cetacea: Mammalia): the Largest Vertebrate Skeletal Element and Its Role in Rorqual Lunge Feeding
    bs_bs_banner Biological Journal of the Linnean Society, 2013, 108, 586–599. With 6 figures Mandible allometry in extant and fossil Balaenopteridae (Cetacea: Mammalia): the largest vertebrate skeletal element and its role in rorqual lunge feeding NICHOLAS D. PYENSON1,2*, JEREMY A. GOLDBOGEN3 and ROBERT E. SHADWICK4 1Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, Washington, DC, 20013-7013, USA 2Departments of Mammalogy and Paleontology, Burke Museum of Natural History and Culture, Seattle, WA 98195, USA 3Cascadia Research Collective, 218½ West 4th Avenue, Olympia, WA, USA 4Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, BC, Canada V6T 1Z4 Received 4 July 2012; revised 10 September 2012; accepted for publication 10 September 2012 Rorqual whales (crown Balaenopteridae) are unique among aquatic vertebrates in their ability to lunge feed. During a single lunge, rorquals rapidly engulf a large volume of prey-laden water at high speed, which they then filter to capture suspended prey. Engulfment biomechanics are mostly governed by the coordinated opening and closing of the mandibles at large gape angles, which differentially exposes the floor of the oral cavity to oncoming flow. The mouth area in rorquals is delimited by unfused bony mandibles that form kinetic linkages to each other and with the skull. The relative scale and morphology of these skeletal elements have profound consequences for the energetic efficiency of foraging in these gigantic predators. Here, we performed a morphometric study of rorqual mandibles using a data set derived from a survey of museum specimens. Across adult specimens of extant balaenopterids, mandibles range in size from ~1–6 m in length, and at their upper limit they represent the single largest osteological element of any vertebrate, living or extinct.
    [Show full text]
  • Diet of English Channel Cetaceans Stranded on the Coast of Normandy
    International Council for the CM 2003/N:03 Exploration of the Sea Theme Session on Size-Dependency in Marine and freshwater Ecosystems (Session N) Diet of English Channel cetaceans stranded on the coast of Normandy by de Pierrepont J. F.1, Dubois B.1, Desormonts S.1, Santos M. B.2 and Robin J.P.1 1 Laboratoire de Biologie et Biotechnologies Marines, I.B.F.A., Université de Caen, Esplanade de la Paix, 14032 Caen Cedex France ([email protected]) 2 Department of Zoology, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, UK Abstract: During 1998-2003 stomach contents of 47 cetacean were obtained from strandings on the coast of Normandy. These animals were examined by a veterinary network an stomach contents were analysed at the University of Caen: 26 common dolphins (Delphinus delphis), 4 bottlenose dolphins (Tursiops truncatus) 7 harbour porpoises (Phocoena phoecoena) and 5 grey seals (Halichoerus grypus) 2 long-finned pilot whale (Globicephala melas) 1 white beaked dolphin (Lagenorhynchus albirostris) 1 minke whale (Balaenoptera acurostrata) 1 Stenella coeruleoalba. Food items determination was based on hard parts (i.e. fish otoliths and cephalopod beaks). Diet indices were computed including prey frequency and percentage by number. Common dolphins eat mainly gadoid fish (Trisopterus sp), gobies and mackerel. Cephalpods occur in small numbers and fished Cephalopod species (cuttlefish and common squid) are scarce. The results are analysed in the light of previously published data and the food regime of English Channel top predators is compared to the one of other populations. Keywords: Stomach contents, cetaceans, trophic relationships. Résumé: De 1998 à 2003 les contenus stomacaux de 47 cétacés échoués sur les côtes de Normandie ont été récoltés.
    [Show full text]
  • Atlantic Spotted Dolphin (Stenella Frontalis) and Bottlenose Dolphin (Tursiops Truncatus) Nearshore Distribution, Bimini, the Bahamas
    Nova Southeastern University NSUWorks HCNSO Student Theses and Dissertations HCNSO Student Work 4-29-2020 Atlantic Spotted Dolphin (Stenella frontalis) and Bottlenose Dolphin (Tursiops truncatus) Nearshore Distribution, Bimini, The Bahamas Skylar L. Muller Nova Southeastern University Follow this and additional works at: https://nsuworks.nova.edu/occ_stuetd Part of the Marine Biology Commons, and the Oceanography and Atmospheric Sciences and Meteorology Commons Share Feedback About This Item NSUWorks Citation Skylar L. Muller. 2020. Atlantic Spotted Dolphin (Stenella frontalis) and Bottlenose Dolphin (Tursiops truncatus) Nearshore Distribution, Bimini, The Bahamas. Master's thesis. Nova Southeastern University. Retrieved from NSUWorks, . (530) https://nsuworks.nova.edu/occ_stuetd/530. This Thesis is brought to you by the HCNSO Student Work at NSUWorks. It has been accepted for inclusion in HCNSO Student Theses and Dissertations by an authorized administrator of NSUWorks. For more information, please contact [email protected]. Thesis of Skylar L. Muller Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science M.S. Marine Biology Nova Southeastern University Halmos College of Natural Sciences and Oceanography April 2020 Approved: Thesis Committee Major Professor: Amy C. Hirons, Ph.D. Committee Member: Kathleen M. Dudzinski, Ph.D. Committee Member: Bernhard Riegl, Ph.D. This thesis is available at NSUWorks: https://nsuworks.nova.edu/occ_stuetd/530 NOVA SOUTHEASTERN UNIVERSITY HALMOS COLLEGE OF NATURAL SCIENCES
    [Show full text]