Feeding in Domestic Vertebrates
Total Page:16
File Type:pdf, Size:1020Kb
Feeding in Domestic Vertebrates From Structure to Behaviour This page intentionally left blank Feeding in Domestic Vertebrates From Structure to Behaviour Edited by V. Bels Professor Muséum National d’Histoire Naturelle Paris, France CABI Publishing is a division of CAB International CABI Publishing CABI Publishing CAB International 875 Massachusetts Avenue Wallingford 7th Floor Oxfordshire OX10 8DE Cambridge, MA 02139 UK USA Tel: +44 (0)1491 832111 Tel: +1 617 395 4056 Fax: +44 (0)1491 833508 Fax: +1 617 354 6875 E-mail: [email protected] E-mail: [email protected] Website: www.cabi-publishing.org ©CAB International 2006. All rights reserved. No part of this publication may be reproduced in any form or by any means, electronically, mechanically, by photocopying, recording or otherwise, without the prior permission of the copyright owners. A catalogue record for this book is available from the British Library, London, UK. A catalogue record for this book is available from the Library of Congress, Washington, DC. ISBN-10: 1-84593-063-0 ISBN-13: 978-1-84593-063-9 Typeset by SPi, Pondicherry, India. Printed and bound in the UK by Biddles Ltd, King’s Lynn. Contents Contributors vii Preface ix 1 Introduction 1 V. Bels 2 Feeding Structures in Birds 14 S.W.S. Gussekloo 3 Feeding Behaviour and Mechanisms in Domestic Birds 33 V. Bels and S. Baussart 4 Ontogeny of Feeding in Mammals 50 R.Z. German, A.W. Crompton and A.J. Thexton 5 Teeth, Jaws and Muscles in Mammalian Mastication 61 T.E. Popowics and S.W. Herring 6 Feeding and Welfare in Domestic Animals: A Darwinistic Framework 84 P. Koene 7 Food Choice and Intake in Chickens 108 J.M. Forbes 8 Feed Restriction and Welfare in Domestic Birds 120 I.C. de Jong and B. Jones 9 Feeding Ostriches 136 T.S. Brand and R.M. Gous 10 Feeding Behaviour in Pigs 156 B.L. Nielsen, K. Thodberg, L. Dybkjær and E.-M. Vestergaard 11 Feeding Behaviour in Rabbits 179 T. Gidenne and F. Lebas 12 Mastication and Feeding in Horses 195 K.A. Houpt 13 Foraging in Domestic Herbivores: Linking the Internal and External Milieux 210 F.D. Provenza and J.J. Villalba 14 Feeding and Mastication Behaviour in Ruminants 241 R. Baumont, M. Doreau, S. Ingrand and I. Veissier v vi Contents 15 Food in 3D: How Ruminant Livestock Interact with Sown Sward Architecture at the Bite Scale 263 I.J. Gordon and M. Benvenutti 16 Physiology and Models of Feeding Behaviour and Intake Regulation in Ruminants 278 W. Pittroff and P. Soca 17 Adjustment of Feeding Choices and Intake by a Ruminant Foraging in Varied and Variable Environments: New Insights from Continuous Bite Monitoring 302 C. Agreil, M. Meuret and H. Fritz 18 Feeding Free-range Poultry and Pigs 326 P.C. Glatz, Z.H. Miao and Y.J. Ru 19 Conclusion and Perspectives 349 J.M. Forbes Index 359 Contributors C. Agreil, INRA – Unité d’Ecodéveloppement, Site Agroparc – Domaine Saint Paul, 84914 Avignon Cedex 9, France. R. Baumont, INRA – Unité de Recherches sur les Herbivores – Centre de Clermont/ Ferrand-Theix, 63122 St-Genès-Champanelle, France. S. Baussart, Muséum Nationale d’Histoire Naturelle rue Paul Pastur 11, B – 7800 – Ath, France. V. Bels, FRE 2696/USM 302 – Adaptation et Évolution des Systèmes Ostéo-Musculaires, Département Écologie et Gestion de la Biodiversité, Muséum National d’Histoire Naturelle, 57, Pavillon d’Anatomie Comparée, BP 55, rue Buffon, 75005 Paris, France. M. Benvenutti, INTA EEA Cerro Azul, C.C. 6 (3313) Cerro Azul, Misiones, Argentina. T.S. Brand, Animal Production Institute: Elsenburg, Department of Agriculture: Western Cape, Private Bag X1, Elsenburg 7607, South Africa. A.W. Crompton, Museum of Comparative Zoology, Harvard University, 26 Oxford St, Cambridge, MA 02138, USA. I.C. de Jong, Animal Sciences Group of Wageningen UR, Division Animal Resources Development, Research Group Animal Welfare, PO Box 65, 8200 AB Lelystad, The Netherlands. M. Doreau, INRA – Unité de Recherches sur les Herbivores – Centre de Clermont/Ferrand- Theix, 63122 St-Genès-Champanelle, France. L. Dybkjær, Danish Institute of Agricultural Sciences, Department of Animal Health, Wel- fare and Nutrition Research Centre Foulum, PO Box 50, DK-8830 Tjele, Denmark. J.M. Forbes, School of Biology, University of Leeds, Leeds LS2 9JT, UK. H. Fritz, CNRS – Centre d’Etudes Biologiques de Chizé UPR 1934 du CNRS, 79360 Beau- voir-sur-Niort, France. R.Z. German, Department of Physical Medicine and Rehabilitation, Johns Hopkins Hos- pital, Phipps 174, 600 N Wolfe St, Baltimore, MD 21205, USA. T. Gidenne, INRA, Centre de Toulouse, Station de Recherches Cunicoles, BP 27, 31326 Castanet-Tolosan, France. P.C. Glatz, Livestock Systems, South Australian Research and Development Institute, Roseworthy Campus, Roseworthy, South Australia 5371, Australia. I.J. Gordon, CSIRO – Davies Laboratory, PMB PO Aitkenvale, Qld 4814, Australia. R.M. Gous, Animal and Poultry Science, University of KwaZulu-Natal, Pietermaritzburg 3200, South Africa. vii viii Contributors S.W.S. Gussekloo, Division of Anatomy and Physiology, Department of Pathobiology, Faculty of Veterinary Sciences, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands. S.W. Herring, Department of Orthodontics, Box 357446, University of Washington, Seat- tle, WA 98195, USA. K.A. Houpt, Cornell University, College of Veterinary Medicine, Ithaca, New York 14853- 6401, USA. S. Ingrand, INRA – Transformation des systèmes d’élevage – Centre de Clermont/ Ferrand-Theix, 63122 St-Genès-Champanelle, France. B. Jones, Roslin Institute, Roslin BioCentre, Midlothian EH25 9PS, Scotland, UK. P. Koene, Ethology Group, Department of Animal Science, Wageningen University, PO Box 338, 6700 AH Wageningen, The Netherlands. F. Lebas, Cuniculture, 87a Chemin de Lassère, 31450 Corronsac, France. M. Meuret, INRA – Unité d’Ecodéveloppement, Site Agroparc – Domaine Saint Paul, 84914 Avignon Cedex 9, France. Z.H. Miao, Livestock Systems, South Australian Research and Development Institute, Roseworthy Campus, Roseworthy, South Australia 5371, Australia. B.L. Nielsen, Danish Institute of Agricultural Sciences, Department of Animal Health, Welfare and Nutrition Research Centre Foulum, PO Box 50, DK-8830 Tjele, Denmark. W. Pittroff, Department of Animal Science, University of California, 1 Shields Ave, Davis, CA 95616, USA. T.E. Popowics, Department of Oral Biology, Box 357132, University of Washington, Seattle, WA 98195, USA. F.D. Provenza, Department of Forest, Range and Wildlife Sciences, Utah State University, Logan, UT 84318-5230, USA. Y.J. Ru, Danisco Animal Nutrition, 61 Science Park Road, The Galen #06-16 East Wing, Singapore Science Park III, Singapore 117525. P. Soca, Facultad de Agronomía, Universidad de la Republica, Ruta 3, km 363, CP 60000, Paysandú, Uruguay. A.J. Thexton, Division of Physiology, Biomedical Sciences, King’s College, Strand, London, UK. K. Thodberg, Danish Institute of Agricultural Sciences, Department of Animal Health, Welfare and Nutrition Research Centre Foulum, PO Box 50, DK-8830 Tjele, Denmark. I. Veissier, INRA – Unité de Recherches sur les Herbivores – Centre de Clermont/Ferrand- Theix, 63122 St-Genès-Champanelle, France. E.-M. Vestergaard, Danish Institute of Agricultural Sciences, Department of Animal Health, Welfare and Nutrition Research Centre Foulum, PO Box 50, DK-8830 Tjele, Denmark. J.J. Villalba, Department of Forest, Range and Wildlife Sciences, Utah State University, Logan, UT 84318-5230, USA. Preface Domestication of vertebrates has been based on the understanding of needs of animals in their natural environment and the success of this domestication throughout human history was mainly and is largely dependent on the knowledge of their feeding behaviour. The captive environment can be highly different from the natural habitat, and genetic selection has produced morpholog- ical, physiological and behavioural traits for improving all nutrition aspects playing a key role in animal maintenance, welfare, growth and reproduction. Since the early time of domestication, the control of animal nutrition is probably critical in the success of animal production, which can be described in terms of welfare of the animals, their speed to produce significant quantity of meat and their ability to have more offspring. This success cannot be effective without a com- plete understanding of the feeding behaviour that permits an animal to select and intake the food material providing responses to complex physiological demands. For feeding, animals must always control their movements and their postures. They have to respond to availability or dis- tribution of food in an artificial environment. This environment is often characterized by absence of predators, but also often by the presence of a large number of conspecifics. Food is provided at predictable, but relatively limited, locations, which can drastically increase the stress that must be managed by each individual for obtaining nutrients and water. This volume has been constructed around the complex relationships between structures per- mitting to produce a series of performances that shape a determined feeding behaviour. When I suggested compiling this volume with the primary help of a series of contributors, I emphasized that rather different approaches provide a lot of data that could be reviewed to open interesting perspectives in our knowledge of feeding behaviour in two main types of domestic vertebrates, birds and mammals. On the one hand, the feeding behaviour is deeply studied for quantifying, determining and simulating the feeding mechanisms involving not only the trophic structures such as jaws and tongue but also all other body structures such as limbs and neck. These mechanisms permit to understand the functional relationships between the properties of the structures and their performances. But we always have in mind that properties of these structures can be affected by other unknown selective forces. On the other hand, the feeding behaviour itself is deeply observed and quantified for understanding and modelling the complex relationships between the food and the behavioural and physiological responses of animals. These responses are strongly dependent on the sensory processes and their integration into the neural system.