Lumenal Disease
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
SI Gene Sucrase-Isomaltase
SI gene sucrase-isomaltase Normal Function The SI gene provides instructions for producing the enzyme sucrase-isomaltase. This enzyme is found in the intestinal tract, where it is involved in breaking down the sugars sucrose (a sugar found in fruits, and also known as table sugar) and maltose (the sugar found in grains). Sucrose and maltose are called disaccharides because they are each made up of two simple sugar molecules. Disaccharides must be broken down into simple sugar molecules to be digested properly. The sucrase-isomaltase enzyme is found on the surface of the intestinal epithelial cells, which are cells that line the walls of the intestine. These cells have fingerlike projections called microvilli that absorb nutrients from food as it passes through the intestine. Based on their appearance, groups of these microvilli are known collectively as the brush border. The role of the sucrase-isomaltase enzyme is to break down sucrose and maltose into simple sugars so that they can be absorbed by microvilli into intestinal epithelial cells. Health Conditions Related to Genetic Changes Congenital sucrase-isomaltase deficiency At least 10 mutations in the SI gene have been found to cause congenital sucrase- isomaltase deficiency. These mutations disrupt the folding and processing of the sucrose-isomaltase enzyme, transportation of the enzyme within the intestinal epithelial cells, the orientation of the enzyme to the cell surface, or its normal functioning. An impairment in any of these cell processes results in a sucrase-isomaltase enzyme that cannot effectively break down sucrose, maltose, or other compounds made from these sugar molecules (carbohydrates). -
Lactose Tolerance Blood Test
Lactose tolerance blood test Lactose tolerance tests measure the ability of your intestines to break down lactose, a type of sugar found in milk and other dairy products. How the test is performed The lactose tolerance blood test looks for glucose in your blood. Your body creates glucose when lactose breaks down. For this test, several blood samples will be taken before and after you drink the lactose solution described above. For information on how a blood sample is obtained, see venipuncture. How to prepare for the test You should not eat for 8 hours before the test. Avoid strenuous exercise for 8 hours before the test. How the test will feel There should not be any pain or discomfort when giving a breath sample. When the needle is inserted to draw blood, some people feel moderate pain, while others feel only a prick or stinging sensation. Afterward, there may be some throbbing. Why the test is performed Your doctor may order these tests if you have signs of lactose intolerance. Normal Values The breath test is considered normal if the increase in hydrogen is less than 12 parts per million over your fasting (pre-test) level. The blood test is considered normal if your glucose level rises more than 30 mg/dL within 2 hours of drinking the lactose solution. A rise of 20-30 mg/dL is inconclusive. Note: Normal value ranges may vary slightly among different laboratories. Talk to your doctor about the meaning of your specific test results. The examples above show the common measurements for results for these tests. -
LACTOSE & D-GALACTOSE (Rapid)
www.megazyme.com LACTOSE & D-GALACTOSE (Rapid) ASSAY PROCEDURE K-LACGAR 02/21 Incorporating A Procedure For The Analysis Of “Low- Lactose” Or “Lactose-Free” Samples Containing High Levels Of Monosaccharides (Improved Rapid Format) (*115 Assays per Kit) * The number of tests per kit can be doubled if all volumes are halved The reagents provided in this kit are also suitable for use with AOAC method 2006.06 – Lactose in milk. Patented: US 7,785,771 B2 and EP1 828 407 (GB, FR, IE, DE) © Megazyme 2021 INTRODUCTION: Lactose, or milk sugar, is a white crystalline disaccharide. It is formed in the mammary glands of all lactating animals and is present in their milk. Lactose yields D-galactose and D-glucose on hydrolysis by lactase (β-galactosidase), an enzyme found in gastric juice. People who lack this enzyme after childhood cannot digest milk and are said to be lactose intolerant. Common symptoms of lactose intolerance include nausea, cramps, gas and diarrhoea, which begin about 30 minutes to 2 hours after eating or drinking foods containing lactose. Between 30 and 50 million Americans are lactose intolerant, with certain ethnic and racial populations being more widely affected than others; as many as 75 percent of all African-Americans and Native Americans and 90 percent of Asian-Americans are lactose intolerant. The condition is least common among persons of northern European descent. Enzymic methods for the measurement of lactose are well known and are generally based on the hydrolysis of lactose to D-galactose and D-glucose with β-galactosidase, followed by determination of either D-galactose or D-glucose. -
Congenital Sucrase-Isomaltase Deficiency
Congenital sucrase-isomaltase deficiency Description Congenital sucrase-isomaltase deficiency is a disorder that affects a person's ability to digest certain sugars. People with this condition cannot break down the sugars sucrose and maltose. Sucrose (a sugar found in fruits, and also known as table sugar) and maltose (the sugar found in grains) are called disaccharides because they are made of two simple sugars. Disaccharides are broken down into simple sugars during digestion. Sucrose is broken down into glucose and another simple sugar called fructose, and maltose is broken down into two glucose molecules. People with congenital sucrase- isomaltase deficiency cannot break down the sugars sucrose and maltose, and other compounds made from these sugar molecules (carbohydrates). Congenital sucrase-isomaltase deficiency usually becomes apparent after an infant is weaned and starts to consume fruits, juices, and grains. After ingestion of sucrose or maltose, an affected child will typically experience stomach cramps, bloating, excess gas production, and diarrhea. These digestive problems can lead to failure to gain weight and grow at the expected rate (failure to thrive) and malnutrition. Most affected children are better able to tolerate sucrose and maltose as they get older. Frequency The prevalence of congenital sucrase-isomaltase deficiency is estimated to be 1 in 5, 000 people of European descent. This condition is much more prevalent in the native populations of Greenland, Alaska, and Canada, where as many as 1 in 20 people may be affected. Causes Mutations in the SI gene cause congenital sucrase-isomaltase deficiency. The SI gene provides instructions for producing the enzyme sucrase-isomaltase. -
Digestion of Carbohydrates
Digestion of carbohydrates Alongside fat and protein, carbohydrates are one of the three macronutrients in our diet with their main function being to provide energy to the body. They occur in many different forms, like sugars and dietary fibre, and in many different foods, such as whole grains, fruit and vegetables. Digesting or metabolizing carbohydrates breaks foods down into sugars, which are also called saccharides. These molecules begin digesting in the mouth and continue through the body to be used for anything from normal cell functioning to cell growth and repair. It is also directly used as energy source in muscle, brain and other cells. Dietary carbohydrate principally consists of …. Polysaccharides: - Starch, glycogen and cellulose Disaccharides: - Sucrose and maltose Monosaccharide:-Glucose and fructose Out of these three types of carbohydrates, monosaccharide does not need digestion. Digestion of carbohydrates During digestion, carbohydrates that consist of more than one sugar get broken down into their monosaccharides by digestive enzymes, and then get directly absorbed causing a glycaemic response. Some of the carbohydrates cannot be broken down and they get either fermented by our gut bacteria or they transit through the gut without being changed. Digestive enzymes and their source Mouth: - Salivary amylase (α-amylase, Ptyalin) Stomach: - No enzymes Pancreas: - Pancreatic α-amylase Intestine: - Dextrinase, Maltase, Isomaltase, Sucrase, Lactase Digestion in mouth Digestion of carbohydrates starts at the mouth. In mouth, -
Lactose Intolerance Brochure
Lactose Intolerance Albert F. Chiemprabha, M.D. Pierce D. Dotherow, M.D. Reed B. Hogan, M.D. James H. Johnston, III, M.D. Ronald P. Kotfila, M.D. Billy W. Long, M.D. J. Trippe McNeese, M.D. Paul B. Milner, M.D. Michelle A. Petro, M.D. Vonda Reeves-Darby, M.D. Sara Rippel, M.D., Pediatric GI Matt Runnels, M.D. Vishwanath N. Shenoy, M.D. James Q. Sones, II, M.D. April Ulmer, M.D., Pediatric GI James A. Underwood, Jr., M.D. Mark E. Wilson, M.D. Cindy Haden Wright, M.D. Keith Brown, M.D., Pathologist Samuel Hensley, M.D., Pathologist Jackson Madison Vicksburg 1421 N. State Street, Ste 203 106 Highland Way 1815 Mission 66 Jackson, MS 39202 Madison, MS 39110 Vicksburg, MS 39180 601/355-1234 601/355-1234 601/638-8801 Fax 601/352-4882 • 800/880-1231 www.msgastrodocs.com ©2011 GI Associates & Endoscopy Center. All rights reserved. Dairy Products Calcium Content Lactose Content Table of contents Ice cream/ice milk (8 oz.) 176 mg. 6-7g Milk 291-316 mg. 12-13g (whole, low-fat, skim, buttermilk, 8 oz.) Processed cheese (1 oz.) 159-215 mg. 12-13g Sour cream (4 oz.) 134 mg. 4-5g Yogurt (plain, 8 oz.) 274-415 mg. 12-13g Fish/Seafood Calcium Content Lactose Content Oysters (1 cup, raw) 226 mg. 0 Salmon with bones (canned, 3 oz.) 167 mg. 0 Sardines (3 oz.) 371 mg. 0 Shrimp (canned, 3 oz.) 98 mg. 0 Other Calcium Content Lactose Content Molasses (2 tbsp.) 274 mg. -
Glucose Syrup the Chef’S Magic Ingredient! CENTURIES of GASTRONOMIC TRADITION
Glucose syrup The chef’s magic ingredient! CENTURIES OF GASTRONOMIC TRADITION A product with a proud heritage which plays a significant role in European gastronomy, glucose syrup is used in gourmet foods by pâtissiers, confectioners and chefs alike. This high- quality, plant-based product has been produced in Europe for over a century. In the EU, with its grain-based agriculture, glucose syrup is derived from wheat and maize; EU starch manufacturers source their products exclusively from conventional (non-GMO) crops. Glucose syrup is a sugar made from the hydrolysis (breaking down) of starch. It is available in liquid, solid and transparent form (similar to honey). It was discovered in the 9th century in Japan, and originally derived from sweet potatoes; the glucose syrup manufacturing process was developed in the 19th century by the German scientist, Kirchhoff. A number of culinary specialities benefit from the unique qualities of this ingredient. Bakery products: e.g. pastries, macaroons, cakes etc. Confectionery products: e.g. sweets, lozenges, nougat etc. Glucose syrup plays a vital role in these delicacies... A delight to the eyes and taste buds alike. Still have questions about starch and starch-based ingredients in food? VISIT WWW.STARCHINFOOD.EU TO LEARN MORE. GLUCOSE SYRUP AND DIET EFSA (The European Food Safety Authority)) recommends that carbohydrates should form 45- 60% of our overall energy intake, stating that “enjoyed occasionally and in reasonable quantity, sweetened products are compatible with a balanced diet”. Glucose syrups are part of the simple carbohydrate family, with the same calorific value as all other sugars (sucrose or white sugar, lactose, etc.) i.e. -
Lactose Intolerance
Lactose Intolerance Enzyme Digestion Lab Activity SCIENTIFIC BIO AX! Introduction F Intestinal gas, bloating, and stomach cramps—oh my! This can be a common concern for a majority of the world’s population who lack the enzyme to digest certain foods. Milk and dairy products, for example, cause problems for many people who lack the enzyme required to digest lactose, the main carbohydrate found in milk. This lab activity illustrates the use of a commercial enzyme product called Lactaid™ as an aid in milk digestion. Concepts • Enzyme • Disaccharide • Metabolism Materials Galactose, 2 g Balloons, 4 Lactaid™, ½ tablet, Graduated cylinder, 10 mL Lactose, 4 g Mini soda bottles, 4 Sucrose, 2 g Resealable plastic bag Yeast, suspension, 40 mL Water bath, 35–40 °C Safety Precautions Wear chemical splash goggles, chemical-resistant gloves, and a chemical-resistant apron. Wash hands thoroughly with soap and water before leaving the laboratory. Follow all laboratory safety guidelines. Please review current Safety Data Sheets for additional safety, handling, and disposal information. Procedure 1. Obtain a warm water bath (35–40 °C) or an insulating block. Place the test Lactose tubes in the insulating block or test tube rack. plus Lactose Sucrose Galactose Lactaid 2. Weigh out the dry ingredients prior to the demonstration. 3. Review the summary diagram of the demonstration setup shown in Figure 1. 4. Clearly label each test tube as shown in Figure 1. 5. Place 2 g of the appropriate dry sugar into each test tube, as shown in Figure 1. 6. Add pre-ground Lactaid™ tablet to one flask containing 2 g lactose, as shown in Figure 1. -
What Is Lactose Intolerance? Lactose Intolerance Means You Have Symptoms Such As Bloating, Diarrhea, and Gas After You Have Milk Or Milk Products
What is lactose? Lactose* is a sugar found in milk and milk products. The small intestine produces lactase, an enzyme that breaks down lactose. The small intestine is an organ that breaks down the food you eat. Enzymes are proteins that help to cause chemical changes in the body. What is lactose intolerance? Lactose intolerance means you have symptoms such as bloating, diarrhea, and gas after you have milk or milk products. If your small intestine does not produce much lactase, you cannot break down much lactose. Lactose that does not break down goes to your colon. The colon is an organ that absorbs water from stool and changes it from a liquid to a solid form. In your colon, bacteria that normally live in the colon break down the lactose and create fluid and gas, causing you to have symptoms. *See the Pronunciation Guide for tips on how to say the words in bold type. What I need to know about Lactose Intolerance 1 The causes of low lactase in your small intestine can include the following: ● In some people, the small intestine makes less lactase starting at about age 2, which may lead to symptoms of lactose intolerance. Other people start to have symptoms later, when they are teenagers or adults. ● Infection, disease, or other problems that harm the small intestine can cause low lactase levels. Low lactase levels can cause you to become lactose intolerant until your small intestine heals. ● Being born early may cause babies to be lactose intolerant for a short time after they are born. -
Sucraid Review
TAB B United States CONSUMER PRODUCT SAFETY COMMISSION Washington, D.C. 20207 APR I 1998 MEMORAh?)UM TO: Mary Ann Danello, Ph.D., Associate Executive Director, Directorate for Epidemiology and Health Sciences THROUGH: Marilyn L. Wind, Ph.D., Director, Division of Health Sciences,w&; Directorate for Epidemiology and Health Sciences FROM: Jacqueline N. Ferrante, Ph.D., Pharmacologist, Division of Health Sciences, JF Directorate for Epidemiology and Health Sciences SUBJECT: Sucraid Review 1 Introduction Orphan Medical petitioned the Commission to exempt SucraidrM, an oral solution of the enzyme sacrosidase, from special packaging requirements for oral prescription drugs under the Poison Prevention Packaging Act (PPPA). This memorandum reviews scientific information related to Sucraidr”. Product Description and Use SucraidTM is the brand name for sacrosidase, a yeast-derived form of the sucrase enzyme. This enzyme is obtained from baker’s yeast which is also known as Saccharomyces cerevisiae. SucraidTM contains 1.5 milligrams (8,500 International Units) per milliliter (mg/ml) of the enzyme in a 5050 solution of glycerol and water at an unbuffered slightly acidic pH of 4.6. SucraidTM is the only available treatment for congenital sucrase-isomaltase deficiency (CSID). It is replacement therapy for sucrase, not isomaltase. The petitioner argues that the confectionery and baking industry has used this enzyme extensively and that under 21 CFR 170.30 it is a “Generally Recognized as Safe” (GRAS) food material because of its long history of safe use in humans. It is used as a flavoring agent and adjuvant at a level not to exceed five percent in food. The recommended dose of SucraidTM for patients with CSID is one ml per meal or snack for patients weighing up to 15 kilograms (kg) (33 pounds) and 2 ml for patients over 15 kg. -
CSID) Symptoms, Diagnosis, and Treatment
CONGENITAL SUCRASE-ISOMALTASE DEFICIENCY (CSID) Symptoms, Diagnosis, and Treatment FOR ADULT GASTROENTEROLOGISTS PMS 294 2020 QOL Medical, LLC 1 Financial Disclosures o [Disclose financial relationships with manufacturers and medical organizations here (e.g., QOL Medical, LLC); if none, list “None.”] PMS 294 2020 QOL Medical, LLC 2 WHAT IS CSID? PMS 294 2020 QOL Medical, LLC 3 CSID: Congenital Sucrase-Isomaltase Deficiency Sucrase-Isomaltase o An enzyme that digests the majority of dietary carbohydrates o Table sugar (sucrose) and many starches (e.g., potatoes, bread) o Expressed in the microvilli of the brush border membrane o Releases glucose and fructose from sucrose (sugar) so they can be absorbed into the bloodstream PMS 294 2020 QOL Medical, LLC 4 Congenital Sucrase-Isomaltase Deficiency The first report of an autosomal recessive Congenital Sucrase-Isomaltase Deficiency (CSID) was published in 1960. Diarrhoea Caused by Deficiency of Sugar-Splitting Enzymes Weijers HA, Van De Kamer JH, Mossel DAA, Dicke WK. Diarrhoea Caused by Deficiency of Sugar-Splitting Enzymes. Lancet. 1960;276(7145):296-7. PMS 294 2020 QOL Medical, LLC 5 Sucrase-Isomaltase Substrates Sucrose Isomaltose Glucose + Fructose Glucose + Glucose (a-1,2 glycosidic bond) (a-1,6 glycosidic bond) PMS 294 2020 QOL Medical, LLC 6 How Sucrase Works to Hydrolyze Sucrose 1. Enzyme Substrate binds to disaccharide (Sucrose) substrate Enzyme H20 (Sucrase) 4. Active site available for another substrate 3. Products are released and absorbed 2. Substrate is converted to monosaccharides Glucose Fructose PMS 294 2020 QOL Medical, LLC 7 CSID Carb Maldigestion Pathophysiology NORMAL CSID PMS 294 2020 QOL Medical, LLC 8 SI Gene o Encodes a heterodimer with 2 active sites – sucrase and isomaltase • Located on chromosome 31 • Very large – approximately 100 kilobases1 • 48 exons encoding 1827 amino acids1 o 2146 rare variants with 880 SI rare pathogenic variants (SI-RPVs)2 • Sucrase-Isomaltase protein transported and anchored to apical membrane of enterocytes to digest disaccharides in intestinal lumen3 1. -
Functional Variants in the Sucrase–Isomaltase Gene Associate With
Gut Online First, published on November 21, 2016 as 10.1136/gutjnl-2016-312456 Neurogastroenterology ORIGINAL ARTICLE Gut: first published as 10.1136/gutjnl-2016-312456 on 21 November 2016. Downloaded from Functional variants in the sucrase–isomaltase gene associate with increased risk of irritable bowel syndrome Maria Henström,1 Lena Diekmann,2 Ferdinando Bonfiglio,1 Fatemeh Hadizadeh,1 Eva-Maria Kuech,2 Maren von Köckritz-Blickwede,2 Louise B Thingholm,3 Tenghao Zheng,1 Ghazaleh Assadi,1 Claudia Dierks,4 Martin Heine,2 Ute Philipp,4 Ottmar Distl,4 Mary E Money,5,6 Meriem Belheouane,7,8 Femke-Anouska Heinsen,3 Joseph Rafter,1 Gerardo Nardone,9 Rosario Cuomo,10 Paolo Usai-Satta,11 Francesca Galeazzi,12 Matteo Neri,13 Susanna Walter,14 Magnus Simrén,15,16 Pontus Karling,17 Bodil Ohlsson,18,19 Peter T Schmidt,20 Greger Lindberg,20 Aldona Dlugosz,20 Lars Agreus,21 Anna Andreasson,21,22 Emeran Mayer,23 John F Baines,7,8 Lars Engstrand,24 Piero Portincasa,25 Massimo Bellini,26 Vincenzo Stanghellini,27 Giovanni Barbara,27 Lin Chang,23 Michael Camilleri,28 Andre Franke,3 Hassan Y Naim,2 Mauro D’Amato1,29,30 ▸ Additional material is ABSTRACT published online only. To view Objective IBS is a common gut disorder of uncertain Significance of this study please visit the journal online (http://dx.doi.org/10.1136/ pathogenesis. Among other factors, genetics and certain gutjnl-2016-312456). foods are proposed to contribute. Congenital sucrase– isomaltase deficiency (CSID) is a rare genetic form of What is already known on this subject? disaccharide malabsorption characterised by diarrhoea, ▸ fi fi IBS shows genetic predisposition, but speci c For numbered af liations see abdominal pain and bloating, which are features end of article.